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Major depressive disorder (MDD) is the most prevalent mental disorder that constitutes a major public health problem. A tool for
predicting the risk of MDD could assist with the early identification of MDD patients and targeted interventions to reduce the risk.
We aimed to derive a risk prediction tool that can categorize the risk of MDD as well as discover biologically meaningful genetic
variants. Data analyzed were from the fourth and fifth data collections of a longitudinal community-based cohort from Southwest
Montreal, Canada, between 2015 and 2018. To account for high dimensional features, we adopted a latent topic model approach to
infer a set of topical distributions over those studied predictors that characterize the underlying meta-phenotypes of the MDD
cohort. MDD probability derived from 30 MDD meta-phenotypes demonstrated superior prediction accuracy to differentiate MDD
cases and controls. Six latent MDD meta-phenotypes we inferred via a latent topic model were highly interpretable. We then
explored potential genetic variants that were statistically associated with these MDD meta-phenotypes. The genetic heritability of
MDD meta-phenotypes was 0.126 (SE= 0.316), compared to 0.000001 (SE= 0.297) for MDD diagnosis defined by the structured
interviews. We discovered a list of significant MDD - related genes and pathways that were missed by MDD diagnosis. Our risk
prediction model confers not only accurate MDD risk categorization but also meaningful associations with genetic predispositions
that are linked to MDD subtypes. Our findings shed light on future research focusing on these identified genes and pathways for
MDD subtypes.
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INTRODUCTION
The complex nature of major depressive disorder (MDD)
significantly hinders its risk categorization [1, 2]. Although many
risk prediction algorithms for MDD have been proposed [3–7],
their prediction accuracy cannot meet the need for accurate
identification and classification of MDD. The advancement in
machine learning provides opportunities to address issues that
cannot be handled by conventional statistical approaches [8].
However, most of these prediction models rely on a limited
number of pre-determined self-reported psychological and social
factors, which can be subjective and selective. This might result in
an incomplete understanding of MDD. It is critical to apply a
holistic approach to consider all the possible combinations of
these attributable predictors in characterizing risk. However, this
approach can lead to a combinatorial feature space that grows
exponentially to the number of predictors, which easily becomes
intractable when dealing with a few hundred features. Notably,
many predictors share common information and can be
potentially categorized under much fewer latent dimensions. It
is reasonable to postulate that MDD patients with similar clinical
manifestations could also be grouped in some latent

memberships. Unsupervised learning is a class of dimensionality
reduction techniques, which can be used to generate representa-
tions of the underlying structure of the data and are often used to
obtain insight into the underlying structure of complex data [9].
Blei et al. proposed a topic modeling approach, which can
produce highly interpretable latent dimensions in the form of
latent topics for the ease of downstream analysis [10].
In this present study, we aim to develop MDD risk prediction

by comprehensively identifying meaningful predictors from a
wide range of clinical, biological, and psychosocial attributes. We
also conduct genome-wide association studies (GWAS) over the
MDD phenotype defined by the risk prediction algorithm and
compare the power of this approach with the traditional GWAS
approach using only the binary MDD phenotype and genotype
information.

MATERIALS/SUBJECTS AND METHODS
This study followed the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)
reporting guideline for reporting multivariable prediction model
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development and validation [11]. Table S1 provides a list of
abbreviations and their explanations.

Study cohort
Data analyzed were from the Zone d'Épidémiologie Psychiatrique
du Sud-Ouest de Montréal (ZEPSOM) cohort, which is a large-scale,
longitudinal, community-based, population cohort from the
Southwest Montreal [12]. Methods for recruitment, interview,
and measurement have been mentioned elsewhere [12–14]. The
present study utilized data from its fourth and fifth data
collections, which had complete information on major depression
and genetic information. ZEPSOM was approved by the Research
Ethics Board of the Douglas Mental Health University Institute
(#IUSMD- 06-33; #IUSMD-16-64). All participants gave informed
consent. The age of the study cohort ranged from 18 to 78 years
(mean= 50, standard deviation= 14). The majority of the present
study cohort were females (n= 850, 63%), French-Caucasian
(n= 832, 62%), and were not diagnosed with MDD (n= 1 035,
77%). Compared to participants without MDD, females, without
university degrees or being French-/English-Caucasian were more
likely to have MDD.

Measures
Clinical, psychological, and social predictors. A series of validated
questionnaires were used to measure clinical, psychological, and
social predictors. The present study used a total of 515 predictors,
including psychological distress, family history of mental dis-
orders, use of psychotropic drugs in the past 12 months prior to
the interview, lifetime stressful events, early life adversities, social
support, impulsivity, coping, life satisfaction, aggressivity, chronic
physical diseases, sociodemographic characteristics, spirituality,
cognitive impairment, and perceived need for mental health care.
Responses to questions were either binary (i.e., “yes” or “no”),
categorical (e.g., Likert-type scale), or continuous. Table S2
provides a full list of predictors in the present study.

MDD phenotype. MDD was measured by a modified version of
the World Health Organization version of Composite International
Diagnostic Interview (WHO-CIDI) [15], which used the Diagnostic
and Statistical Manual of Mental Disorders, 4th edition (DSM-IV)
and the International Statistical Classification of Diseases and
Related Health Problems, 10th revision (ICD-10) definitions
[16, 17]. We hereafter use “MDD diagnosis” to refer to the
diagnosis based on the measurement from the WHO-CIDI.

Genetic variants. The genetic dataset consisted of single-
nucleotide polymorphism (SNP) data from genetic sequencing.
ZEPSOM was genotyped using genome-wide platforms (Global
Screening Array V2, Illumina, CA, USA) according to the
manufacturer’s guidelines with 200 ng of genomic DNA derived
from buccal epithelial cells and our quality control procedures.

Statistical analysis
Phenotypic modeling using a topic model. Continuous variables
were dichotomized following a proportional split method
consisting of computing a threshold based on the skewness of
the data [18]. Fifteen of the continuous variables were removed
because they were too skewed and could not be dichotomized
properly, even after applying a log transform. Categorical variables
were transformed into binary variables.
To infer latent topics (we called meta-phenotypes) from the

questionnaire data, we used the MixEHR software, which is an
implementation of the collapsed variational Bayesian inference of
the Latent Dirichlet Allocation (LDA) model [19]. MixEHR
computes a membership matrix where each input phenotype is
assigned a probability of belonging to a meta-phenotype. MixEHR
was first trained on all the data except for MDD diagnosis. Then
the inferred patient topic mixture (meta-phenotype membership

values for each patient) was used as input to a least absolute
shrinkage and selection operator (LASSO) logistic regression
model, as implemented in the Scikit-Learn Python library [20]. The
target variable for LASSO regression was MDD diagnosis. We
experimented with the different numbers of the meta-
phenotypes and found that 30 meta-phenotypes yielded the
highest classification accuracy in terms of the area under the
receiver operating characteristic (AUC) curve and the area under
the precision-recall curve (AUPRC). We developed a phenotype-
MDD probability - using the fitted probability values from the
LASSO regression model regressed on the 30 meta-phenotypes.
MDD probability was then used in our subsequent genetic
analyses and was compared to MDD diagnosis for the GWAS
power. Figure 1 shows a schematic diagram of the pipeline as a
summary.

Statistical genetic analysis. The genotype data were preprocessed
using PLINK [21]. Respondents with a low genotyping rate (<98%)
and SNPs showing significant deviation from Hardy-Weinberg
equilibrium (P-value < 1 × 10–5), a low minor allele frequency (MAF
< 10%), or high rates of missing data (>5%) were excluded. We
only used SNP data from respondents who were Caucasian. The
final genetic dataset consisted of 745,201 SNPs from a total of
1083 Caucasian participants.
SNP-heritability and genetic correlation values were estimated

using the GCTA software tool [22], which uses a restricted
maximum likelihood algorithm (REML) [23, 24]. Summary statistics
were generated with PLINK. Logistic and linear regressions were
used for binary and continuous outcomes respectively. Gene
scores were computed with the Pascal tool [25], and the DisGeNET
database [26] was used to identify genes that have been
associated with MDD in previous work.
Pascal gene scores were used to compute pairwise gene

score correlations. For a pair of phenotypes, the gene scores of
MDD genes were correlated with the scores of the same genes
for the other phenotype. Enrichment analysis for the top (p ≤
0.1) MDD genes for a meta-phenotype was done using the
DAVID functional annotation tool [27, 28]. The databases used
for the enrichment analysis were the Genetic Association
Database [29] and the Gene Ontology Biological Processes
database [30, 31].

RESULTS
Inferring meaningful MDD meta-phenotypes
We applied the MixEHR model to infer latent MDD meta-
phenotypes and developed a probabilistic MDD risk prediction –
MDD probability. Figure 2A provides side-by-side comparisons
between the probabilities of inferred 30 MDD meta-phenotypes
and MDD diagnosis based on the structured interview among a
subset of respondents in the study cohort (top 10 subjects with
the highest probability within each meta-phenotype). Respon-
dents with MDD were clustered in different groups, suggesting
that the latent meta-phenotypes learned by the MixEHR model
discriminate MDD subtypes. We quantified correlations between
the 30 MixEHR meta-phenotypes and MDD diagnosis in Fig. 2B.
We focused our analysis on six meta-phenotypes that exhibit the
strongest correlations (three positive ones: M6, M22, M13, and
three negative ones: M10, M11, M5) with MDD diagnosis.
Figure 2C displays the top five features in these most correlated
meta-phenotypes. Meta-phenotypes with the strongest positive
correlations were related to high psychological distress (M6), pre-
existing substance abuse problems (M13), and use of medica-
tions for mental problems (M22). Meta-phenotypes with the
strongest negative correlations were related to better self-
perceived health (M10), limited restrictions on mobility and no/
limited impulsiveness (M11), and no/low psychological distress
(M5).
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Classification of MDD using inferred meta-phenotypes
To evaluate the classification performances of meta-
phenotypes and MDD diagnosis, we compared AUC and
AUPRC for different MixEHR models and MDD diagnosis. We
ran MixEHR models based on both the questionnaire data
(clinical and psychosocial predictors) only and the question-
naire and SNP data. The MixEHR model with the questionnaire
data provided better classification accuracy, so we focused on
the MixEHR model using the questionnaire data only. Overall,
the 30-meta-phenotype topic model outperformed other
models and had the highest values (AUC= 0.786 and AUPRC
= 0.534). Figure 3 shows the classification accuracy of 5-fold
cross-validations in AUC and AUPRC for meta-phenotypes and
the raw clinical and psychosocial predictors. The MixEHR-
derived 30 meta-phenotypes had superior performance in both
AUC and AUPRC.

Genetic associations with MDD meta-phenotypes
To further investigate whether MDD probability is related to the
known neurobiological factors in the literature, we examined
heritability for the 30 latent meta-phenotypes, MDD probability,
and MDD diagnosis. Figure 4 illustrates the SNP-heritability
estimates for 30 meta-phenotypes along with their top-3
predictors. We found that some meta-phenotypes (e.g., M1, M3,
M5, M11, and M21) had higher heritability estimates than their
top-3 predictors. The estimated SNP-heritability for MDD prob-
ability (estimate= 0.126, SE= 0.316) was much higher than the
estimates for MDD diagnosis (estimate= 0.000001, SE= 0.297)

although statistically non-significant due to large standard error
likely because of the small sample size.
We then computed gene scores for MDD diagnosis, MDD

probability, and the top six meta-phenotypes having the strongest
correlations with MDD diagnosis, respectively, using the Pascal
algorithm. Figure 5A provides a list of significant genes associated
with MDD probability, MDD diagnosis, and the top six meta-
phenotypes identified (see Fig. 2B for the list of top six meta-
phenotypes). MDD probability and these top six meta-phenotypes
identified several MDD associated genes that have been suggested
in the literature, whereas MDD diagnosis was not associated with
them, for instance, Dopamine Receptor D3 (DRD3), 6-phospho-
fructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3), Solute Carrier
Family 6 Member 4 (SLC6A4), 5-Hydroxytryptamine Receptor 2 A
(HTR2A), and Coiled-Coil And C2 Domain Containing 1 A (CC2D1A),
that has been consistently proven its genetic predisposition for
MDD. MDD diagnosis and MDD probability identified different sets
of significant genes with one gene- Interferon Induced Protein 44
Like (IFI44L) identified by these two phenotypes.
Pathway enrichment analyses were conducted on those MDD

significant genes. These selected meta-phenotypes were asso-
ciated with different combinations of significant pathways, and
both MDD probability and MDD diagnosis identified psychiatric
disorders-related pathways. Figure 5B summarizes MDD significant
pathways (including both those with p < 0.05 and p < 0.01)
associated with each meta-phenotype, MDD probability, and
MDD diagnosis in a Circos plot. A substantial number of genes
were shared among the meta-phenotypes, MDD, and MDD

MDD 
probability 

Genotyping 

…

Questionnaires

Topic modeling

Topic 1

Topic 2

…

LASSO regression 

MDD diagnosis 

Heritability 

Evaluation by AUC 
AND AUPRC

PLINK

PASCAL 

Summary 
statistics

Gene scores Pathways

Fig. 1 Schematic pipeline of the preprocessing and statistical analysis performed in this study.
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probability, implying pleiotropy of causal architectures among
these MDD-related traits.
We further explored the gene score correlation for top meta-

phenotypes and found that only M6 was genetically correlated

with M5, whereas other meta-phenotypes did not exhibit
significant genetic correlations with each other. Fig. S1
provides the Pascal gene score correlation based on MDD-
related genes.

Fig. 2 Inferring meaningful MDD meta-phenotypes. A Inferring 30-topic mixture of the study cohort; (B) Linear correlation coefficients of the
30 meta-phenotypes; (C) Top MDD meta-phenotype features.
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DISCUSSION
The present study is one of the first analyses applying the topic
model to categorize the risk of MDD using a wide range of clinical
and psychosocial predictors and demonstrating the latent MDD
phenotypes augmenting the capacity of exploring meaningful
genetic variants that are linked with clinical subgroups of MDD.
Our findings illustrate the adaptation of state-of-art technology –
unsupervised machine learning –in improving prediction accu-
racy. Our findings also shed light on investigating and interpreting
susceptible genetic predispositions in the etiopathogenesis
of MDD.
Our study yielded two major findings. First, we identified the

following six latent MDD phenotypes that confer the risk
categorization of MDD including high psychological distress
(M6), pre-existing substance abuse problems (M13), use of
medications for mental health problems (M22), better self-
perceived health (M10), limited restrictions on mobility and no/
limited impulsiveness (M11), and no/low psychological distress
(M5). Prior work on MDD risk categorizations has also identified
some of these meta-phenotypes consistently associated with
MDD: people with a high level of psychological distress, pre-
existing substance abuse problems, and use of mental health
medications were positively correlated with MDD, whereas those
with better self-perceived health, low level of psychological
distress, or limited restrictions on mobility less likely to have
MDD [32–34].
High psychological distress predicts a high level of psycholo-

gical stress. The vulnerability-stress model suggests that multiple
risk factors throughout the development period interact with
stressors and protective factors contributing to either normal
development or psychopathology, such as MDD [35]. The
cumulative effect of multiple stressors can produce lasting effects
on the neural structure or function as well as stress physiology and
increase the risk of MDD [36, 37]. Our data-driven approach with
the focus on diversified clinical and psychosocial profiles detected
a total of 30 latent meta-phenotypes that were associated with
MDD diagnosis, especially the following three meta-phenotypes
positively correlated with the risk of MDD, including stress-related
subgroup (M6), comorbidity with substance abuse subgroup
(M13), and the use of antidepressants in the past 12-month period

prior to the data collection (M22). In clinical practice, MDD with co-
occurring illicit drug and alcohol abuse or dependence has
distinguishing characteristics, including family history, depressive
symptomatology, suicidal ideation, and the treatment outcome of
depression [38]. Antidepressants primarily work on the mono-
amine neurotransmission system to increase levels of serotonin,
norepinephrine, and/or dopamine by alleviating depressive
symptoms [39]. Our latent model identified a group of depressed
patients on antidepressants indicating a group of depressed
patients fall within a more homogeneous “monoamine neuro-
transmitter subtype” that is attributed to the functional imbalance
or deficiency of monoamine-series neurotransmitters, including
dopamine, serotonin, and norepinephrine [40].
The second major finding of the present study is that genetic

predispositions (including susceptible genes and pathways) were
identified by these latent meta-phenotypes and MDD probability
derived from these latent meta-phenotypes. Compared to the
questionnaire-derived MDD diagnosis, some latent meta-
phenotypes (e.g., M1, M3, M5, M11, and M21) had higher
heritability and MDD probability and its meta-phenotypes
detected a list of significant MDD-related genes and pathways.
Some of these genes, including DRD3, PFKFB3, SLC6A4, HTR2A, are
involved in the different etiological hypotheses of MDD, including
the monoamine theory (i.e., SLC6A4, which encodes the serotonin
transporter that is responsible for the reuptake of serotonin;
HTR2A, receptor genes for serotonin), the stress-induced theory (i.e.,
FKBP Prolyl Isomerase 5 (FKBP5), one of stress hormone genes,
one of a key player in human response to stress), the cytokine and
inflammatory response hypothesis (i.e. C-C Motif Chemokine Ligand
24 (CCL24), a part of the subfamily of small cytokine genes,
proinflammatory cytokines contribute to the major symptoms of
MDD; IFI44L, belongs to interferon-induced protein family with
inflammatory function), circadian rhythm disturbances (i.e.,
A-Kinase Anchoring Protein 8 (AKAP8), involved in the biosynth-
esis of the circadian hormone melatonin), and the neurodevelop-
mental theory (i.e., Ras Association (RalGDS/AF-6) And Pleckstrin
Homology Domains 1 (RAPH1), responsible for proper neuronal
migration) [41–43].
Our pathway enrichment analyses also diversified pathways

related to different functioning, including psychiatric disorders,

Fig. 3 Classification accuracy of five-fold cross-validations in AUC curves and AUPRC (MixEHR meta-phenotypes vs. raw psychosocial
attributes). AUC area under the receiver operating characteristic, AUPRC area under the precision-recall curve.
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basic cellular functioning, immune, the development of cancer,
neurological and developmental functioning. For instance, the
high psychological distress (M6) subgroup identified top pathways
involved in the occurrence of psychiatric disorders, including
MDD, as well as a pharmacogenomics-based pathway, that is
involved in pharmacokinetic and pharmacodynamic processes
[44]. Comorbid MDD and substance use subgroup (M13) identified
more essential pathways related to synapse formation, for
instance, chemical-synaptic-transmission, and synaptic signaling.
Synapse formation plays an important role in neurocircuitry and
likely requires interactions between pre-and post-synaptic neu-
rons [45]. The use of antidepressants subgroup (M22) found the
top significant pathways related to psychiatric disorders, immune
functioning, and depression. The better self-rated health subgroup

(M10) identified pathways more related to psychiatric disorders,
immune functioning, neurological and developmental pathways.
Limited restrictions on mobility and no/limited impulsiveness
(M11) identified pathways related to psychiatric disorders,
schizophrenia, depression, and weight gain. No/low psychological
distress (M5) identified pathways related to psychiatric disorders,
single-organism behavior, response to clozapine, and positive
regulation of the cellular process. MDD probability identified
pathways related to psychiatric disorders, synapse formation, and
cell-cell signaling.
Blano-Gomez et al. believed that the complex origins of MDD to

some extent result from a component of multiple traits with
polygenic influence [46]. This present study further expands the
literature by applying a multivariate modeling process to detect

Fig. 4 SNP-heritability for 30 meta-phenotypes and top three predictors for each meta-phenotype.
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Fig. 5 Pascal gene scores and MDD significant pathways associated with Top six meta-phenotypes, MDD probability, and MDD
diagnosis. A Pascal gene scores for Top six meta-phenotypes, MDD probability, and MDD diagnosis, respectively; B MDD significant pathways
associated with top six meta-phenotypes, MDD probability, and MDD diagnosis.
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key predictors associated with the risk of MDD and its subtypes.
These predictors and the MDD phenotypes derived from these
predictors not only discover known MDD genes and pathways but
also provide evidence to support the multiple causes connected
to different pathogenesis and heterogeneous clinical
manifestations.
The findings of the present study have several clinical and

research implications. First, these findings suggest a holistic
approach to settle the long-debated nosology of MDD that can be
further categorized into subtypes with stress-related and those
with abnormal neurobiological changes [47, 48]. Second, the most
significant MDD meta-phenotypes identified could help to identify
MDD subtypes and suggest appropriate clinical management
strategies for different subtypes. Third, our findings direct future
research to focus on these identified genes and pathways for MDD
subtypes.
The present study adopted a latent topic model and utilized

rich, well-characterized clinical and psychosocial predictors to
identify latent MDD meta-phenotypes and categorize MDD. The
study cohort consists of community-based samples, which are
from the general population. The generalizability of the research
findings is excellent. Although the latent topic model is a data-
driven approach, it does identify biologically meaningful genetic
variants that are known for their biological functioning.
Three limitations should be noted. First, we are not aware of any

population-based cohorts with rich psychosocial information to
replicate our current findings. Our results should be taken as
exploratory, although their plausibility is supported by previous
research and cross-validation. Second, our power to detect genetic
variants is limited, which restricts us to run the latent topic model
with the biopsychosocial framework of MDD. Third, our psycho-
social data are self-reported and hence subject to information
biases.
Overall, our risk prediction model confers not only accurate

MDD risk categorization but also meaningful associations with
genetic predispositions that are linked to MDD subtypes. The
findings of the present study could help to navigate appropriate
clinical management strategies for various MDD subtypes and
support multidisciplinary risk prediction research by benefiting the
state-of-art technology– unsupervised machine learning
algorithms.

CODE AVAILABILITY
The code used in this study is available from the authors upon reasonable request.
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