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Abstract
The proportion of genetic variation in complex traits explained by rare variants is a key ques-

tion for genomic prediction, and for identifying the basis of “missing heritability”–the propor-

tion of additive genetic variation not captured by common variants on SNP arrays.

Sequence variants in transcript and regulatory regions from 429 sequenced animals were

used to impute high density SNP genotypes of 3311 Holstein sires to sequence. There

were 675,062 common variants (MAF>0.05), 102,549 uncommon variants

(0.01<MAF<0.05), and 83,856 rare variants (MAF<0.01). We describe a novel method for

estimating the proportion of the rare variants that are sequencing errors using parent-prog-

eny duos. We then used mixed model methodology to estimate the proportion of variance

captured by these different classes of variants for fat, milk and protein yields, as well as for

fertility. Common sequence variants captured 83%, 77%, 76% and 84% of the total genetic

variance for fat, milk, and protein yields and fertility, respectively. This was between 2 and

5%more variance than that captured from 600k SNPs on a high density chip, although the

difference was not significant. Rare variants captured 3%, 0%, 1% and 14% of the genetic

variance for fat, milk and protein yields, and fertility respectively, whereas pedigree

explained the remaining amount of genetic variance (none for fertility). The proportion of

variation explained by rare variants is likely to be under-estimated due to reduced accura-

cies of imputation for this class of variants. Using common sequence variants slightly

improved accuracy of genomic predictions for fat and milk yield, compared to high density

SNP array genotypes. However, including rare variants from transcript regions did not

increase the accuracy of genomic predictions. These results suggest that rare variants

recover a small percentage of the missing heritability for complex traits, however very large

reference sets will be required to exploit this to improve the accuracy of genomic
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predictions. Our results do suggest the contribution of rare variants to genetic variation may

be greater for fitness traits.

Introduction
Genome-wide common variants from large scale single nucleotide polymorphism (SNP) geno-
typing have been used successfully in the last decade to map associated mutations in genome
wide association studies (GWAS), and predict future phenotypes for complex traits with geno-
mic prediction. However polymorphisms reaching genome wide significance in GWAS do not
explain all of the heritability of complex traits (as reviewed by Manolio et al., [1]). While sub-
stantially more genetic variance is captured using all markers simultaneously [2], [3], a propor-
tion of the genetic variance is still not captured by the SNP on widely used arrays. For instance,
a joint analyses of 295k common SNPs only explained 45% of the pedigree heritability in
human height [2]. For disease traits, the proportion of genetic variance captured can be consid-
erably less—Lee et al., [4] reported that 23% of the variation in liability to schizophrenia was
captured by SNPs on a high density array. In livestock, Jensen et al., [5], Haile-Mariam et al.,
[3] and Roman-Ponce et al., [6] found that 50k common SNPs captured approximately
between 80 and 90% of the pedigree heritability for production traits but considerably less for
fitness traits such as fertility.

One hypothesis for this “missing heritability” is limited linkage disequilibrium between
markers and causative mutations, particularly causative mutations with low minor allele fre-
quency (MAF, rare variants) [1], [7], [8]. The rare variants-common disease theory has been
supported by some authors, but not yet rejected or ratified. Some rare variants have already
been associated with some complex diseases [9]. However, little or non-significant heritability
has been recovered by rare variants in human diseases [10]. Another possibility is that additive
genetic variance has been over-estimated in the past, for example in twin studies [11], and
hence the ratio of variance explained by the SNPs and the estimates of additive genetic variance
from non-genomic information (e.g. twins or pedigree) is always less than one.

The proportion of missing heritability from genotype or sequence data can be estimated in
dairy cattle populations, as excellent pedigree recording over long periods of time is available
(in our case tracing back to the 1940s), as well as wide spread recording of complex trait pheno-
types, such as milk production and fertility. This information enables accurate estimation of
genetic variance and heritability. We will use the term ‘missing heritability’ to describe the phe-
nomenon that occurs in these populations when estimates of genetic variance from genomic
relationships between individuals calculated from dense SNP chip markers are less than the
additive genetic variance estimated from deep pedigree data in these populations. We define

the proportion of missing heritability as a population parameter, s
2
a�s2m
s2a

, where s2
a is the additive

variance from pedigree, and s2
m is the genetic variance captured by markers.

Substantial whole genome sequence (WGS) data is now available for dairy cattle popula-
tions—the 1000 bull genomes project includes key ancestors, that have now been sequenced,
from a range of dairy breeds, allowing imputation of variant genotypes, including rare variants,
into reference populations genotyped with SNP arrays [12].

WGS data has the advantage that rare alleles can actually be in the data set, so that the pro-
portion of variance explained by the variants is not constrained by LD between markers and
the causative mutations. However one of the challenges of using such data is to differentiate
between true rare variants and sequencing errors. The primary errors are substitution errors, at
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rates of 0.5–2.5% per variant [13], [14]. Across the millions of variants detected in cattle (28.3
million reported in Daetwyler et al., [12]), this equates to a very large number of both called
variants which are actually mono-morphic sites and genotyping errors. Again, cattle offers a
unique opportunity to assess the impact of sequencing error on the proportion of variance
explained by rare variants. The 1000 bull genomes project includes a large number of sire-son
pairs which can be used to estimate error rates from the proportion of heterozygous sites for
rare variants in a sire which result in the rare allele (in the population) being transmitted to the
son.

The proportion of variance explained by rare variants in cattle also has important practical
implications, as genomic prediction [15] is now routinely used to identify individuals to breed
the next generation [16], [17]. Even with extremely large reference populations in dairy cattle
(>100,000 animals where SNP effects are estimated), accuracies of genomic predictions using
SNP on high density arrays are still considerably below one, with 0.78 the average across a
number of traits, and accuracies substantially below this for fitness traits such as fertility [3, 16,
17, 18]. These accuracies are measured as the Pearson correlation between the prediction of the
genetic merit of the individuals and the yet-to-be-observed progeny performance. If additional
variation could be captured using sequencing variants, the accuracy of genomic prediction
could potentially be improved.

The aim of this study was to test whether the hypothesis that sequence variants from coding
and potentially regulatory regions, including rare variants can account for the missing herita-
bility previously reported, and to estimate to what extent they can contribute to increasing the
predictive ability of genomic selection. First, two strategies to filter ‘true’ rare variants from
sequencing errors are proposed. Then, the genetic variance captured by sequence variants in
three classes (common, MAF>0.05, uncommon, 0.01<MAF<0.05, and rare, MAF<0.01) was
estimated for productive traits and fertility. Finally, the gain in accuracy of genomic prediction
from using sequencing variants compared to high-density (HD) SNP genotypes was evaluated
using mixed models with genomic relationship matrices.

Results

Distinguishing rare variants from sequencing errors
A data set of 3311 Holstein sires, genotyped with either the Bovine SNP50k SNP array or
Bovine HD 777k SNP array were imputed to sequence variant genotypes using the Holstein
and Jersey animals with WGS data from the 1000 Bull Genomes Project [12], using Beagle3.3
[19]. Only sequence variants in gene coding and flanking regions, in order to reduce computa-
tional burden, were imputed. For rare variants, those observed in the 1000 bull genomes data
with MAF�0.01 and appearing in at least two animals were selected (4,444,216 variants in
total across the genome). Among those, only 83,856 variants appeared with MAF�0.01 in the
imputed data set (transcript regions), these variants were retained for further analyses. This
subset of rare variants is named RV-SET from here onwards.

With very large numbers of base pairs sequenced, the number of sequencing errors are likely
to be considerable. In an attempt to determine what proportion of the rare variants were real
and what proportion were sequencing errors, we used Mendelian inheritance patterns in 38
Holstein cattle parent-offspring duos that were in the 1000 bull genomes data set. We investi-
gated what proportion of variants that were heterozygous in the sires were heterozygous in the
sons. For rare variants the expectation is close to 0.5, and the expectation increases as MAF
increases as there is an increasing probability that the rare allele is also inherited from the dam.
When MAF was very low, the proportion of variants where the sire was heterozygous and the
son was also heterozygous was much lower than expected, Fig 1. The results imply that for
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variants that are only observed with less than 4 copies (MAF<0.02) in the data set, up to 50%
have a high proportion of genotyping errors or are not true variants. For MAF>0.02, the pro-
portion of double heterozygotes (son and sire) was close to expectation, indicating low rates of
genotyping error. As a result of this analysis, we defined a second set of rare variants, those that
were validated by the parent-offspring duo method (e.g. those that were heterozygous in a son
if they were heterozygous in a sire). This subset of rare variants was called RVvalidated from
here onwards.

Estimates of genetic variance from rare, uncommon and common
variants in transcript and regulatory regions
We used lactation average production of fat (FY) and protein (PY), in kg, and milk (MY), in
litres, as production traits, and the calving interval (days) as fertility trait. The genetic variance
estimated for yield of fat, milk and protein and fertility from the pedigree, BovineHD array and
the three classes of sequence variants (common, uncommon and rare), each fitted individually
(e.g. separate models), are shown in Table 1. The markers from the Bovine HDarray SNP cap-
tured between 81 and 93% of the total genetic variability captured by pedigree. The genetic var-
iances estimated with a total of 675,062 common variants from sequence data (MAF>0.05)
were more similar (84–98%) to the estimates obtained with pedigree. On average, common
sequence variants captured 3% more genetic variation than HD SNP genotypes when they
were the only genetic effect in the model.

Fig 1. Observed vs expected less common alleles transmitted in 38 sire-son duos(left) and confidence interval of unrelated duos at different MAF
(right) in the Bos Taurus autosome 1 (BTA1). Almost 35% of sequence variants had MAF<0.01 (green dashed line in left plot), however 50% of these
variants were not observed in the expected proportions in the parent offspring duos (red solid line in left plot). The proportion of transmitted alleles to the
progeny was modeled according to the MAF (right plot). Green lines represent each of the duos, and the solid green line is the local weighted regression for
the 38 duos. Red shadow represent the confident interval for the same regression when 10 pairs of unrelated animals were evaluated, with the red solid line
being the local weighted regression. The dashed black line represents the expected theoretical proportion of transmission for the less frequent allele from sire
to son under randommating. At MAF<0.10 we observed that observed proportions of transmission deviated from the theory, which implies that up to 50% of
the uncommon and rare variants (at MAF<0.01) are sequencing errors.

doi:10.1371/journal.pone.0143945.g001
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Next we tested if the variances explained by the different classes of variant in transcript and
potential regulatory regions were significantly different. Table 2 shows the increase in log Like-
lihood from incorporating pedigree, uncommon or rare variants as additional genetic effects
into the common variants model, which makes the analyses more meaningful than fitting them
separately. For production traits, the inclusion of either the pedigree or rare variants to the
common variants model improved the likelihood (P<0.005) compared with the model with
only common sequence variants. The models including common variants and pedigree had
higher likelihood than the models with common and rare variants. Further, incorporating ped-
igree, common and rare sequence variants together, resulted in the most likely model for FY
(P<0.05). For fertility, rare variants significantly improved the likelihood compared to the

Table 1. Genetic variance estimates from genomicmarkers (s2
g) or pedigree (s2

a) and their respective standard error (s.e.) for milk, fat and protein
yield, and fertility captured fromGBLUPmodels using 3311 Holstein sires. Narrow sense heritability from pedigree is provided, and the proportion of
missing heritability frommarkers was calculated as ðs2

a � s2
gÞ=s2

a .

Trait BLUP-PED1 GBLUP-HD2 GBLUP-Seq3

s2
a se h2 s2

g se Missing h2 s2
g se Missing h2

Fat kg 175 7.2 0.34 143 6.7 18% 146 8.6 17%

Milk L 175,355 6,867 0.34 152,554 7449 13% 157,947 10,212 10%

Prot kg 127 4.7 0.53 106 5.4 17% 108 7.2 15%

Fert 65 4.1 0.20 61 3.8 6% 64 4.5 2%

1BLUP model with numerator relationship matrix from pedigree used as a genetic relationship matrix.
2GBLUP model with genomic relationship matrix built using 632,003 SNP genotypes;
3GBLUP model with genomic relationship matrix constructed using 675,062 SNPs pruned for LD and MAF>0.05.

doi:10.1371/journal.pone.0143945.t001

Table 2. Level of statistical significance of the log-likelihood tests from GBLUPmodels incorporating different sources of genetic information
against GBLUPmodel incorporating only common variants1.

Common variants and
pedigree2

Common variants and rare
variants3

Common variants, pedigree and
uncommon variants4

Common variants, pedigree and
rare variants5

Fat kg ** ** N.S. †
(b)

Milk L ** * N.S. N.S.(b)

Prot
kg

** ** N.S. N.S.(b)

Fert N.S. ** N.S. **(b)

1GBLUP-Seq model: genomic relationship matrix constructed using 675,062 SNPs pruned for LD<0.999 and MAF>0.05;
2as (1) plus the polygenic effect
3as (1) with an additional random effect with genomic relationship matrix constructed from 83,856 variants with MAF<0.01 detected in 429 sequenced

animals;
4as (2) with an additional random effect with genomic relationship matrix constructed from variants with 0.01<MAF<0.05 extracted from the imputed-

sequence data set;
5as (2) with an additional random effect with genomic relationship matrix constructed from 83,856 variants with MAF<0.01 detected in 429 sequenced

animals;

**P<0.005

*P<0.025
†P<0.05
(b)Statistical test against model 2.

doi:10.1371/journal.pone.0143945.t002
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model with only common variants (P<0.005), whereas the pedigree did not show any addi-
tional improvement. Uncommon variants did not significantly improve the log-likelihood of
any model. Using only those rare variants validated from sire-son transmission did not
increase the likelihood either (results not shown).

Common sequence variants captured most of the genetic variance for all traits when pedi-
gree, common, uncommon and rare variants were fitted jointly in the model for production
traits (Table 3), accounting for 76–84% of the total genetic variance. Pedigree accounted for
between 14 and 23% of the total genetic variance, whereas rare variants accounted for between
0 and 3% of total genetic variance. Uncommon variants did not contribute to the genetic vari-
ance in the joint analyses. For fertility, rare variants explained a larger proportion of the total
genetic variance compared to production traits (14%), and the pedigree did not provide any
additional information.

These results imply that, although most of the genetic variance can be explained by common
sequence variants in these regions, the pedigree still explains some additional genetic variability
of the traits studied here, and rare variants explain more variation for fitness traits such as
fertility.

Accuracy of genomic prediction
We evaluated the accuracy of genomic prediction that could be achieved with GBLUP [20],
[21], with the three classes of variants and the Bovine HD array, with the BLUP model with
only pedigree information as benchmark. The surrogate for the accuracy of genomic prediction
was the correlation of the genomic predictions and phenotypes in a validation set of 465 bulls
(these were the youngest bulls in the data set, and their phenotypes were never used in the deri-
vation of genomic predictions).

All models incorporating genomic information were more accurate than the model using
only pedigree. Accuracy of genomic prediction using the BovineHD SNP genotypes or
sequence variants (regardless of class of variant) were very similar, Table 4. There were slight
(0.01–0.02) improvements for fat yield and milk yield using sequence variants in comparison
to BovineHD SNP genotypes.

Rare variants did not increase the predictive ability in comparison to common sequence
data regardless of whether they were validated through duos or not.

Discussion
In our dairy cattle population, relationships defined by SNPs and also by sequence variants in
annotated regions captured less genetic variance than pedigree. One potential issue here is that
the genetic variances estimated by markers and pedigree may not be strictly equivalent because
using pedigree estimates the genetic variance among founders, whereas the genetic variance
estimated from the SNP genotypes or sequences are estimates of the genetic variance in the
modern (genotyped or sequenced) population. It should be noted nonetheless that we do in

Table 3. Posterior mean estimates (standard errors within brackets) for proportion of genetic variance for milk, fat and protein yield, and fertility
captured from the GBLUPmodel fitting jointly: pedigree and common and rare variants, using 3311 Holstein sires.

Pedigree Common variants Uncommon variants Rare variants Total additive variance

Fat kg 14% (2) 83% (10) 0% (0) 3% (1) 147

Milk L 23% (0.1) 77% (0.1) 0% (0) 0% (0) 157919

Prot kg 23% (5) 76% (14) 0% (0) 1% (1) 108

Fert 2% (0.4) 84% (16) 0% (0) 14% (5) 63.9

doi:10.1371/journal.pone.0143945.t003
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fact have many of the founders of the population either genotyped with BovineHD and in the
sequence data set [12]. Further, the SNPs on the Bovine HD array are ascertained to have high
MAF, and therefore are unlikely to be in LD with causal mutations with low MAF [22]. The
limits of LD between common and rare variants were studied by Wray [23]. The LD between
rare variants and common SNPs tends to zero as the MAF of the rare variant approaches to
zero. These findings are supported by an example on human chromosome 21 [24], and also in
S1 Fig of our data. The proportion of missing heritability we observe from SNP array genotypes
is in agreement with previous studies [3]. [4]. [5].

We overcome this limitation by fitting the pedigree and sequence variants from transcript
and regulatory regions simultaneously, and tested the hypothesis that the additional variance
component is significant by investigating the change in log likelihoods. We found that WGS
explained only part of this missing heritability (Table 2). The recovery of the missing heritabil-
ity was minor for PY and MY, showing that commonWGS variants may track little additional
information that is not tracked from HD SNP genotypes for these traits. We did observe an
increase on the heritability (3% for FY and up to 14% for fertility) captured by variants with
very low frequencies. Fertility is a fitness trait and natural selection may have driven deleterious
QTLs to extreme frequencies where they cannot be in high LD with individual SNPs on the
SNP chip.

These figures (3% and 14%) are expected to be under-estimates because we only included
sequence variants in gene coding and flanking regions within 2 kb of annotated regions. Causal
variants for complex traits probably occur throughout the genome [25, 26, 27] but they are
more likely close to genes, which explain most of the genetic variance [10]. Sequence variants
in unannotated regulatory regions might explain additional variance. However, the proportion
of variance explained by these mutations, or at least those not in LD with common variants,
must be relatively small in our population. The reason is that similar genetic variance was cap-
tured when using only variants in annotated regions compared to pedigree and HD SNP geno-
types (Table 1).

Table 4. Pearson correlation (cor), slope coefficient for the linear regression andmean square error7 (MSE) between observed and predicted
daughter yield deviation for fat, milk and protein yield, and fertility from different GBLUPmodels. Training set consisted of 2832 animals and there
were 465 animals in the validation set.

Trait BLUP1 GBLUP-HD2 GBLUP-Seq3 GBLUP-Seq-
Uncommon4

GBLUP-Seq-
RV-SET5

GBLUP-Seq-
RVvalidated6

cor slope MSE cor slope MSE cor slope MSE cor slope MSE cor Slope MSE cor slope MSE

Fat kg 0.46 0.79 0.98 0.56 0.96 0.83 0.57 0.94 0.82 0.57 0.94 0.82 0.57 0.95 0.82 0.57 0.95 0.82

Milk l 0.52 0.86 0.81 0.61 0.92 0.65 0.63 0.93 0.63 0.63 0.93 0.63 0.63 0.93 0.63 0.63 0.93 0.63

Prot kg 0.57 0.89 0.77 0.65 0.98 0.64 0.65 0.97 0.64 0.65 0.97 0.64 0.65 0.97 0.64 0.65 0.97 0.64

Fert 0.36 0.87 3.02 0.43 1.13 2.80 0.42 1.12 2.80 0.42 1.12 2.80 0.43 1.17 2.80 0.43 1.17 2.80

1 BLUP model with pedigree numerator relationship matrix;
2 G-BLUP model with genomic relationship matrix built using 632,003 SNP genotypes;
3 G-BLUP model with genomic relationship matrix constructed using 675,062 SNPs pruned for LD and MAF>0.05;
4 G-BLUP model with genomic relationship matrix for common variants constructed using 675,062 SNPs pruned for LD and MAF>0.05 and a genomic

relationship matrix constructed from variants with 0.01<MAF<0.05 extracted from the imputed-to-sequence data set;
5 G-BLUP model with genomic relationship matrix for common variants constructed using 675,062 SNPs pruned for LD and MAF>0.05 and genomic

relationship matrix for rare variants constructed from 83,856 variants with MAF<0.01 detected in 429 sequenced animals;
6 G-BLUP model with genomic relationship matrix for common variants constructed using 985,757 SNPs pruned for LD and MAF>0.05 and genomic

relationship matrix for rare variants constructed from 20,648 confirmed rare variants detected in 38 sire-son duos;
7 MSE is expressed as units of additive genetic standard deviations. All models included a polygenic effect.

doi:10.1371/journal.pone.0143945.t004
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Here, we demonstrated that rare variants are capturing variation different from that cap-
tured by common variants, and possibly include variation from rare deleterious effect. It is
desirable to recognize rare mutations to drive them to higher frequency in populations under
artificial selection if they are favorable or remove them if they are deleterious.

This is the first time, to the best of our knowledge, that mixed models accounting simulta-
neously for pedigree, common and rare sequence variants have been used to estimate the heri-
tability explained by each. Many studies in humans have reported that the genetic variance
explained by SNPs is only 1/3 to ½ that estimated from pedigree using analyses that fitted only
one variance component at a time. Yang et al [2] showed the missing heritability could be due
to low MAF in causal variants but offered no direct proof of this. Other studies have offered
some insight, for instance, Liu and Leal [28] estimated that rare variants in the ANGPTL4 gene
contribute at least 1.63% of the overall heritability of triglyceride in blood. An et al., [29] esti-
mated a larger heritability in circulating adiponectin explained by rare variants, between 6 and
18% of the variance in Hispanic and African American populations.

We would not expect the gap between genetic variance estimated from pedigree and WGS
to be as great in Holstein cattle as in humans. Holsteins have a smaller recent effective popula-
tion size (around 100) than human populations and hence fewer rare variants are expected in
the Holstein population due to inbreeding, which flattens the allele frequency spectrum. The
lower recent effective population size also leads to longer range LD and hence, in cattle, a rare
causal variant may be predicted from a linear combination of SNPs spread over a large genomic
region.

The larger genetic variance captured by WGS data did not translate into higher accuracy of
genomic prediction. That is, including the rare variants did not improve the predictive ability
of the models. There are at least 4 possible reasons for this: 1) The increase in variance
explained is small; 2) the small size of the training population limits the accuracy with which
the effect of rare variants can be estimated; 3) long LD in Holsteins means that common SNPs
can trace signals from a rare QTL, and 4) rare variant genotypes are poorly imputed. For 3),
this is particularly the case here as our validation population was only one generation removed
from the training or reference population. We would expect greater benefit from the sequence
data if the prediction was tested in a validation population less closely related to the reference
population [30], [31]. That is, if the causal mutations are in the data, we would expect more
robust prediction of breeding value because we would not be relying on long distance LD
between SNPs and causal variants which may decay rapidly over generations [32], [33]. To cap-
ture the benefit of this increased robustness, it may be necessary to use statistical methods that
give increased emphasis to variants close to the causal variants [34], rather than estimate small
effects for all variants as in G-BLUP [25], [35], [36], [37], or GWAS which may cause synthetic
association with common variants [38], [39]. The accuracy of estimating individual sequence
variant effects is limited by the accuracy with which rare variants are imputed from HD SNP
data. Unfortunately, the accuracy of imputation for rare alleles is low at present [40]. S2 Fig
shows a large range in imputation accuracy across MAF for rare variants. The lower the MAF
the lower the accuracy. Nonetheless, many rare variants are imputed at accuracies close to 1.
One reason why some rare alleles are hard to impute accurately might be that many of them
are sequencing errors, or the rate of genotyping error is high. We used the transmission of rare
alleles from sire to son to show that as the MAF falls below 0.1 the fraction of rare alleles rises
towards 50% (Fig 2). It is possible to use this transmission to validate rare alleles by deleting
from the data all alleles not so validated. The number of rare variants that we were able to dis-
tinguish from sequencing error with our duo approach increased with the number of duos uti-
lized (Fig 2). This curve was fitted with a non-linear regression detailed in S1 Text. The
resulting non-linear function of the number of confirmed rare variants (y) was y = T(1-e-kN),
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where T was the total number of rare variants, N was the number of duos available and k
depends on the allele frequencies of rare variants. The value of T was estimated at 2.19 million
of total rare variants in the Holstein genome, and 29,930 rare variants in transcript and up or
down-stream regions like those used here. However, we didn’t observe larger accuracies when
using only these validated rare variants. It would be necessary to have around 150 duos to con-
firm most of the rare variants present in these regions in the Holstein population under study.
In this study, only about 70% of total rare variants were validated. However, even a 50%
increase in the number of true rare variants would only be expected to increase the modest var-
iance ascribed to them by 50%. Further research is needed to distinguish rare variants from
sequencing errors using an alternative method to the parent-offspring duos strategy, because
rare variants validated in this way track familiar relationships as well as possible rare causal
variants.

Materials and Methods

Sequence data preparation
As part of the 1000 Bull Genomes Project Run 3, a total of 429 individuals of 15 breeds were re-
sequenced with Illumina and SOLiD technology. In many breeds the sequenced ancestors were

Fig 2. Number of variants detected by number of parent-offspring duos. Boxplot for the occurrence of variants with MAF<0.01 detected from 38 sire-son
duos (blue). The boxplots in red show howmany of them were present in transcript regions. Each boxplot is constructed from 50 replicates of random
samples of a given number of duos (from 1 to 38). Solid lines are the corresponding quadratic regression for the number of rare variants discovered in the
Australian Holstein population according the number of duos used. The regression equation for the total number of rare variants (y) according to the number
of duos (x) was y = 108432+80557x-926x2. The regression equation equivalent for the number of rare variants in transcript regions was y = 653+775x-6.7x2.
This means that we would need 44 duos for detecting most of the rare variants along the genome, which number is projected to be 1,860,826. Among these
23,000 are expected to be present in transcript regions, and 58 parent offspring duos would be necessary to detect them.

doi:10.1371/journal.pone.0143945.g002
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key ancestors that captured the most genetic variation, chosen by algorithms similar to Druet
et al., [41].

Raw re-sequence reads were filtered based on chastity score and trimmed based on quality
scores. Fastq files were then aligned to the reference bovine genome assembly UMD3.1 using
BWA [42]. All BAM files were analysed simultaneously using Samtools-0.1.18 mpileup to call
variants [43]. Variants were filtered to reduce the incidence of false positives. Variants were
discarded if they had: two or more alternative alleles, no observations of the alternative allele
on either the forward or reverse reads, an overall quality score (QUAL) of<20, a mapping
quality (MQ) score of<30, a read depth of<10 or more than median plus 3 SD read depth,
>10% opposing homozygotes between parent and offspring pairs, or the same bp position (e.g.
SNP overlapping with indel). In addition, we also filtered variants for proximity: when an indel
was within 10 bp of another indel, the indel with a lower QUAL score was removed; when any
variant was within 3 bp of another variant, the lower QUAL variant was removed. The filters
were implemented by extending the python VCF file parser PyVCF (https://github.com/
jamescasbon/PyVCF/).

The Genome Analyzer Tool Kit [44] was used to convert Phred score genotype probabilities
in the filtered VCF file to true probabilities. In turn, these probabilities were utilized by BEA-
GLE [19] to impute missing genotypes and correct low probability genotype calls arising from
incomplete coverage. Concordance of re-sequence genotypes with Bovine HD chip genotypes
was calculated as the proportion of identical genotypes pre and post the BEAGLE step. Oppos-
ing homozygotes were calculated as the proportion of non-matching homozygotes between
parent-offspring pairs and collected per pair and per locus. SNPs and indels were annotated
with predicted functional consequences using NGS-SNP [12], [45]. The sequenced variants
that were identified during annotation were restricted to the coding regions and potentially
regulatory regions (including 3’ and 5’ untranslated gene regions and ±2000 bp up- and down-
stream of genes) (i.e. totalling 2,785,440).

Imputation to sequence
A data set of 3311 Holstein bulls were genotyped either with the Illumina Bovine 54K SNP
array or the Illumina Bovine HD SNP array (777K SNP). After quality control of the genotype
data following Erbe et al., [35], 43,425 and 632,002 segregating SNP remained. All animals
with the 54K genotypes were imputed to the HD SNP using Beagle 3 [19]. Only the 122 Hol-
stein and 26 Jersey animals with WGS data from the Run 3 of the 1000 bull genomes project
were used to impute the subset of 2,785,440 sequence SNPs and indels in transcript and regula-
tory regions into the 3311 Holstein bulls.

Pruning of uncommon and common variants in the sequence data
Variants were classified as uncommon if 0.01<MAF< 0.05 and common if they had
MAF�0.05. Also one of each pair of variants that were found to be in complete LD (r2 geno-
typic correlation>0.999) was removed. This pruning was carried out with PLINK software
[46]. The number of common and uncommon variants retained were 675,062 and 102,549,
respectively.

Detection of rare variants
Two procedures were implemented to select rare variants. The first one selected those rare vari-
ants that appeared at least twice in the WGS from the 433 bull genomes data set and had
MAF<0.01. Then, those that were still present with MAF<0.01 in the imputed data were allo-
cated to a rare variant set (RV-SET) with 83,856 variants in total. This procedure does not
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confirm the rare variants or distinguish them from sequencing errors. A second procedure vali-
dated these rare variants utilizing duos of sires and their sons, and kept only those that were
present in both individuals of the duo (RVvalidated). If both of them carry the same rare muta-
tion, it is likely that it is a ‘true’ rare variant rather than a sequencing error. A sire that is homo-
zygous for the less frequent allele will transmit it to 100% of the progeny. However, if the allele
is very rare, homozygous individuals for this variant will be observed very infrequently, and
therefore many rare variants would be missing. Rare variants appear more frequently in hetero-
zygous form. Here, the less common allele with some MAF, is transmitted to the progeny in a
proportion of 50%. Therefore, the theoretical probability of observing at least one rare variant
in the son in the loci along the genome is:

pðaprogenyjAasireÞ ¼ 0:5ð1�MAFÞ þMAF

We used 38 sequenced Holstein sire-son duos to calculate the proportion of loci at which
the sire was heterozygous and his son presented at least one rare allele for different MAF along
all chromosomes. The same procedure was undertaken at other 10 pairs of unrelated Holstein
individuals selected at random, as a control sample. These proportions were modeled via a
local weighted regression at different MAF. Local weighted regression is a nonparametric
approach to fitting curves to data based on smoothing [47]. This method approximates the
relationship between the proportion of loci sharing the less common allele in both sire and son
(response variable) and the MAF (explanatory variables) locally by a smooth curve based on a
non-parametric function, using locally weighted least squares. Weights are assigned such that
points close (in the Euclidean distance) to the predictor value of interest receive a higher
weight. For simplicity, fitting was such that one fifth of the points in the plot were allowed to
influence the smoothing at each value. The regressions were computed using the loess function
built in R software [48], and were compared to the theoretical expected proportion under the
null hypothesis of no mutation and no sequencing errors in the control set of 10 unrelated
pairs.

Then, the variants with MAF<0.01 that appeared in both the sire and the son in any of the
duos were proposed as ‘true’ rare variants. These ‘true’ rare variants were extracted from the
imputed-to-sequence data set. Those which were still observed with MAF<0.01 were kept for
further analyses, and recognized as validated rare variants (20,648).

Phenotypes
Four different complex traits were analyzed: lactation average of kg of fat (FY), litres of milk
(MY) and kg of protein (PY) yields, as production traits, and calving interval, in days, as a fer-
tility trait. Daughter trait deviations were used as phenotypes, which are the daughter average
performance previously adjusted by environmental effects. Phenotypic correlation between
traits, as well as histograms are shown in S3 Fig. Heritabilities and genetic correlations between
traits are shown in S2 Text.

Estimation of genetic variance
The G-BLUP model [2], [49] was implemented to obtain the genetic variance estimates. The
underlying statistical model was

y ¼ 1mþ Zgþ e

In this model, the ith component of the y vector is the phenotypic value of the ith animal
used for prediction. Then, 1 was an n-row vector of ones (n being the number of records), and
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μ is the overall mean; g was the vector of additive genetic merits of the animals, assumed to be
multivariate normal as g � Nð0; s2

gGÞ, withG the genomic relationship matrix of all n animals

calculated as in Yang et al., [2]. Here, s2
g was the additive genetic variance among sires. The

matrix Z is an (n×n)-incidence matrix, whose rows consist of unit vectors with one component
being 1 and all the others zero, indicating the respective positions of animals in the g-vector of
genetic values. Finally, e � Nð0; s2

eDÞ is the residual term, where s2
e is the residual variance

andD a diagonal matrix with weights on the residual variance according to the number of
effective numbers of the sire at calculating his phenotype [50]. The covariance matrix G was
calculated as in Yang et al., [2].

Three different models per trait were used in which the only difference was the construction
of the Gmatrix:

1. GBLUP-HD. constructed with 580,125 common SNPs (MAF>0.05) from the BovineHD
Illumina Beadchip,

2. GBLUP-Seq. constructed with the 675,062 common variants from pruning the sequence
data for LD>0.999 and MAF<0.05.

3. BLUP-PED. the Gmatrix was assumed to be the numerator relationship matrix made up
from pedigree relationships. The pedigree contained 8978 animals tracked up to 7 equiva-
lent generation in the Holstein data set. This is usually named the Amatrix and the model
is equivalent to the commonly known as a BLUP model in animal breeding.

Variance components were estimated via restricted maximum likelihood using ASReml 3
[51].

Log likelihood ratio test. Since the common-variants complex-traits theory is well-estab-
lished, we tested if the inclusion of pedigree and rare variants further improved the statistical
fitting through log likelihood ratio test as

w2df¼1 ¼ �2 log
likelihood for common variants model

likelihood for alternative model
¼ �2 log Likðcommon variantsÞ þ 2 log Likðalternative modelÞ

We assumed a significance threshold of P<0.005 for the w2df¼1 distribution, which corre-

sponds to a value of 6.635.

Genome-wide prediction using sequence and rare variants data
The predictive ability of different sorts of genomic information was assessed using cross valida-
tion. The data set was split into reference and validation sets. The former included 2832 Hol-
stein sires, whereas the latter was created with the 465 youngest animals in the data set.

The underlying statistical model to predict data in the validation set included a genomic
and a polygenic effect [3] as,

y ¼ wmþ Zggþ Zuþ e

In this model, g was the genomic component assumed to be distributed as g � Nð0; s2
gGÞ.

We compared two different models differing in the marker subsets used to calculate G
(described in models 1–2 above). Then, u � Nð0; s2

aAÞ was the polygenic effect with Z being a
corresponding incidence matrix. All other components were as described previously. Model 3
above with corresponding reference and validation sets was considered as the benchmark
model.
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Additionally, three joint analyses of common and uncommon or rare variants from
sequence data were implemented using the following model:

4. y = wμ+Zseqgseq+Zuncommonguncommon+Zu+e

5. y = wμ+Zseqgseq+Zrv−setgrv−set+Zu+e

6. y = wμ+Zseqgseq+Zrv−validatedgrv−validated+Zu+e

where gseq, guncommon, grv-set and grv-validated were the vector of additive genetic merits for the
common, uncommon, rare variants from sequence data, and rare variants from duos, respec-
tively, assumed to be multivariate normal as g� � Nð0; s2

g�G�Þ, with G. being the corresponding

genomic relationship matrix for each set of variants constructed as described above, and s2
g� the

genetic variance explained by such set of markers. All other components were as described
previously.

Predictive ability was assessed using the metrics of Pearson correlation, slope of the linear
regression and predicted mean squared error between predicted and observed daughter yield
deviations in the validation set.

Supporting Information
S1 Fig. Heat map between rare variants and common SNPs (1/5 of SNPs uniformly distrib-
uted) in the Bos Taurus autosome 1 (BTA1).
(TIF)

S2 Fig. Box plots for imputation accuracy estimated from Beagle [19] for variants with
(MAF<0.01) according to their minor allele frequency in the imputed data set of 3311
sires. Density distribution for imputation accuracy is shown in the plot for each group of MAF.
(TIFF)

S3 Fig. Summary plot of phenotypes. The histograms and corresponding density functions
are plotted in the diagonal. On the upper diagonal the value of the phenotypic correlation plus
the result of a correlation test (���P<0.001). On the lower diagonal, the bivariate scatterplots,
with a fitted line.
(TIFF)

S1 Text. Probability to validate rare variants with N sire-son duos.
(DOCX)

S2 Text. Pedigree heritability (diagonal), phenotypic covariances (up-diagonal) and pedi-
gree genetic correlations (low-diagonal) for traits in the analyses.
(DOCX)
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