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Most genes change expression levels across conditions, but it is unclear which of these changes
represents specific regulation and what determines their quantitative degree. Here, we accurately
measured activities of B900 S. cerevisiae and B1800 E. coli promoters using fluorescent reporters.
We show that in both organisms 60–90% of promoters change their expression between conditions
by a constant global scaling factor that depends only on the conditions and not on the promoter’s
identity. Quantifying such global effects allows precise characterization of specific regulation—
promoters deviating from the global scale line. These are organized into few functionally related
groups that also adhere to scale lines and preserve their relative activities across conditions. Thus,
only several scaling factors suffice to accurately describe genome-wide expression profiles across
conditions. We present a parameter-free passive resource allocation model that quantitatively
accounts for the global scaling factors. It suggests that many changes in expression across
conditions result from global effects and not specific regulation, and provides means for quantitative
interpretation of expression profiles.
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Introduction

Quantitative characterization of gene expression is a funda-
mental yet complex challenge. One of the major challenges
stems from the dynamic nature of gene expression, whereby
every gene can change its expression value across conditions.
Although genome-wide analyses of expression are among the
most commonly used methods in modern biology (Edgar,
2002), most studies produce lists of upregulated and down-
regulated genes, with limited focus on the numerical change in
values. Here, we identify quantitative relationships between
expression profiles under different conditions and observe a
unifying behavior that simplifies our quantitative under-
standing of gene regulation.

Traditionally, gene expression research has focused on
isolated genes and has generally shown that the transcriptional
response is highly and specifically regulated. For example,
upon exposure to lactose, bacteria respond by transcribing
lactose-assimilating genes (Jacob and Monod, 1961). More
recently, microarray and sequencing technologies have chal-
lenged this paradigm by enabling a genome-wide view of
expression, and establishing that the responses to different
conditions involve changes in expression of thousands of
genes (Pedersen et al, 1978; DeRisi, 1997; Spellman et al, 1998;

Gasch et al, 2000, 2001; O’Rourke and Herskowitz, 2002; Boer
et al, 2003; Saldanha et al, 2004; Tu et al, 2005; Lai et al, 2005;
Shalem et al, 2008; Chechik et al, 2008; Brauer et al, 2008;
Yassour et al, 2009; Costenoble et al, 2011; Tirosh et al, 2011).
Such massive expression changes between conditions raise
several fundamental questions. Primarily, it is unclear why the
expression of so many genes changes even between conditions
whose phenotypic differences appear to be minor. As one
example, it is unclear why growing yeast on either glucose or
its epimer galactose leads to detectable expression changes in
over half of the yeast genome (Gasch et al, 2000; Chechik et al,
2008) even though only a few enzymatic reactions separate the
two substrates.

Initial attempts to bridge the gap between specific regulation
and the wide spread changes observed in the data suggested
that specific responses actually encompass more genes than
initially appreciated (Spellman et al, 1998; Gasch et al, 2000,
2001; Tu et al, 2005). More recently, it was shown that many
changes in expression are correlated with growth rate
(Pedersen et al, 1978; Regenberg et al, 2006; Castrillo et al,
2007; Brauer et al, 2008; Fazio and Jewett, 2008; Zaslaver et al,
2009; Klumpp et al, 2009; Levy and Barkai, 2009), as proposed
decades ago by the Copenhagen school (Maaloe, 1969;
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Ingraham and Ole Maaløe, 1983; Neidhardt, 1999), suggesting
that they may result from global factors affecting many genes.
Although several new works have attempted to incorporate
global factors into gene expression models by analyzing
synthetically constructed constitutive promoters (Klumpp
et al, 2009; Scott et al, 2010; Gerosa et al, 2013), to date there
is still no methodology to tease apart and decouple global and
specific regulation. Therefore, it remains unknown what
fraction of the gene expression changes observed upon a
change in the growth condition can be explained by changes in
global cellular parameters and which genes are specifically
regulated. The ability to differentiate the two is critical for
understanding the gene expression regulation. Moreover,
except for isolated works (Van de Peppel et al, 2003;
Bakel and Holstege, 2008; Islam et al, 2011), the importance
of global changes in expression remains under-appreciated
and is typically overlooked when analyzing high-throughput
expression data. Such practice may lead to major misinterpre-
tation of expression changes, as recently shown in Lovén et al
(2012).

A second question invoked by the large magnitude of
expression changes across conditions regards the combina-
torics and complexity of gene expression programs. Consider-
ing all genes in all possible conditions, there is practically an
infinite range of possible expression patterns that cells can
reach. For example, yeast has B6000 potential transcriptional
degrees of freedom as each of its B6000 promoters can
potentially attain a different rate of transcription under each
growth condition. It is intriguing to consider the degree to
which this complexity is realized in cells. Indeed, genome-
wide surveys of expression suggest that not all expression
patterns are possible, as functionally related genes tend to be
co-regulated (Pedersen et al, 1978; DeRisi, 1997; Gasch et al,
2000; Gasch et al, 2001; O’Rourke and Herskowitz, 2002; Boer
et al, 2003; Saldanha et al, 2004; Lai et al, 2005; Chechik et al,
2008; Shalem et al, 2008; Brauer et al, 2008; Yassour et al,
2009; Costenoble et al, 2011; Tirosh et al, 2011). However, since
most of these studies typically focus on the directionality of co-
regulation (up or down) and not on the numerical change in
values, to date the quantitative aspects of expression changes
across conditions and their compliance with both classic
(Maaloe, 1969; Ingraham and Ole Maaløe, 1983) and recent
(Klumpp et al, 2009; Zaslaver et al, 2009; Scott et al, 2010)
models of expression remain largely unaddressed. We aim to
extend the existing qualitative description of co-regulated gene
modules (Ihmels et al, 2002; Gasch and Eisen, 2002; Segal et al,
2003) and identify quantitative relationships between expres-
sion profiles under different conditions, thus reducing the
space of possible expression patterns.

Here, we accurately measured the activities of B900 S.
cerevisiae and B1800 E. coli promoters in 10 and 9 environ-
mental conditions, respectively, using libraries of fluorescent
reporters (Zaslaver et al, 2006, 2009; Zeevi et al, 2011).
Notably, we found that most promoters (60–90%, depending
on the pair of conditions compared) change their expression
between conditions by a constant scaling factor that depends
only on the conditions and not on the promoters’ identity.
Thus, although there is a major change in values for nearly all
promoters, the relative activity levels are preserved. Account-
ing for global effects allows precise quantification of more

limited specific regulation—promoters deviating from global
scaling. These can be organized into a handful of functionally
related groups, such that within each group, promoters also
preserve their relative activity levels across conditions in
which they are activated. Hence, we can accurately describe
97% of the variability of the apparently complex promoter
activity profiles across conditions using only several scaling
factors. Finally, we present a parameter-free model that
encompasses growth rate and specific gene expression and
accounts for B90% of the observed variability in the global
scaling factors. Our results provide a mean to decouple global
and specific changes in activity between conditions, and a first
quantitative characterization of the global response. They
suggest that most changes in expression across conditions
result from global effects and propose that proportional scaling
is a major determinant of genome-wide expression profiles.

Results

Obtaining accurate measurements of promoter
activity across different growth conditions

To obtain accurate measurements of promoter activity in yeast,
we employed an experimental system based on the genomic
fusion of promoters to fluorescent reporters (Zaslaver et al,
2006; Zeevi et al, 2011). We selected 867 native yeast
promoters of genes that represent a wide variety of cellular
functions, processes, and compartments (Supplementary
Table S1). Although these genes cover only B1/6 of the
S. cerevisiae genome, they cover the various Gene Ontology
(GO) categories (Ashburner et al, 2000), promoter types
(divergent/unique) (Saccharomyces Genome Database, avail-
able at: http://www.yeastgenome.org/), promoter architec-
tures (OPN/DPN) (Tirosh and Barkai, 2008), and transcription
regulation strategies (TFIID/SAGA-dominated) (Huisinga and
Pugh, 2004). In addition, their combined expression repre-
sents B60% of the protein mass expressed in rich media
(Wang et al, 2012) and thus accounts for much of the cellular
activity under standard growth conditions (Supplementary
Table S1, Supplementary material 1.1). We genomically
integrated each promoter upstream of a yellow fluorescent
protein (YFP) and used a robotically automated plate
fluorometer to track the amount of reporter expression over
time, in living cells, and across various growth conditions.
Altogether, 859/867 (99%) promoters were successfully
constructed. Simultaneous measurements of optical density
(OD), indicative of population mass (Bremer and Dennis,
1987), enabled us to extract the doubling time of the culture
and calculate the YFP production rate per OD unit per second
(Methods, Zeevi et al, 2011), hereafter referred to as the
promoter activity (Figure 1). These strains represent the largest
library of native promoter-reporter fusions in eukaryotes
to date.

The use of fluorescent reporters for measuring expression is
a well-established approach (Bronstein et al, 1994; Kalir et al,
2001; Zaslaver et al, 2004; Newman et al, 2006; Ligr et al, 2006;
Murphy et al, 2007; Cox et al, 2007; Gertz et al, 2009; Zeevi
et al, 2011; Raveh-Sadka et al, 2012; Sharon et al, 2012), with
several pronounced advantages. Unlike most current high-
throughput techniques, which require cell lysis, fluorescence
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enables to perform live non-invasive imaging of the same cells
over time with high temporal resolution. Accordingly, it does
not require elaborate analysis and normalization techniques as
required by other high-throughput measurement systems,
such as microarrays or sequencing (Churchill, 2002; Marshall,
2004; Frantz, 2005; Bammler et al, 2005; Tang et al, 2007;
Balázsi and Oltvai, 2007; Oshlack and Wakefield, 2009). This is
especially important for our current study question as such
normalizations may obliterate shared global effects (Lovén
et al, 2012). It was also shown that fluorescent reporters
provide highly precise and reproducible values (Bronstein
et al, 1994; Kalir et al, 2001; Zaslaver et al, 2004; Ligr et al,
2006; Cox et al, 2007; Murphy et al, 2007; Gertz et al, 2009;
Zeevi et al, 2011; Raveh-Sadka et al, 2012; Sharon et al, 2012).
Here, we used replicate biological measurements to validate
that our system provides highly sensitive and precise
measurements for our set of promoters (CV ranging from
0.05 to 0.36 for promoters with high to very low activity, see

Materials and methods and Supplementary Figure S2); more
reproducible than those obtained by microarrays, sequencing,
or mass spectrometry (Supplementary Figure S3). Together,
these features of the system are critical for the ability to detect
and quantify the global and specific changes in expression
reported here.

To make sure that our synthetic fluorescence measurements
are representative of the true promoter activity (of the native
gene in its native genomic location), we performed several
analyses to gauge the integrity and accuracy of the system. We
compared the promoter activities with quantitative real-time
PCR measurements of 18 selected strains under two growth
conditions, and confirmed that YFP levels are an accurate
proxy for the corresponding mRNA levels (R¼ 0.99 and
R¼ 0.98, Supplementary Figure S4A and B). In addition, we
compared our promoter activity values with three microarray
studies (Holstege et al, 1998; Shalem et al, 2008; Lipson et al,
2009), three RNA-seq studies (Nagalakshmi et al, 2008; Lipson
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Figure 1 Strain construction and promoter activity measurements. Illustration of our experimental system. The master strain into which we inserted the 859 different
native yeast promoters that comprise our library is shown. Every promoter is integrated into the HIS3 locus upstream of a yellow fluorescent reporter (YFP). The master
strain also includes a second mCherry reporter, driven by the same TEF2 promoter across all strains. Measurements are done in 96-well plates, where each well contains
a different promoter strain, and cell density (OD), and YFP and mCherry fluorescence are measured along the entire growth curves of each tested growth condition. The
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maximal growth (dashed black lines). Values from 1 to 6 replicate experiments were averaged to extract final promoter activities and standard deviations.
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et al, 2009; Yassour et al, 2009), protein abundance obtained by
immuno-tagged proteins (Ghaemmaghami et al, 2003), fluor-
escently tagged proteins (Stewart-Ornstein et al, 2012), mass
spectrometry (De Godoy et al, 2008), and a curated data set of
protein abundances integrated from five different data sets
(Wang et al, 2012). In all of these comparisons, our promoter
activity data correlated well with mRNA and protein abun-
dance (R¼ 0.72–0.81 and R¼ 0.57–0.74 respectively, similar
to the correlations between these data sets; Supplementary
Figure S5), suggesting that promoter activity as measured by
our system is a major determinant of these properties
(Supplementary material 1.2). For further discussion of the
experimental system, see Supplementary material 1.3.

Most promoters’ expression changes between
conditions by a constant factor dependent only
on condition and not on the promoter’s identity

To compare promoter activities across conditions, we mea-
sured our library under 10 different environmental growth
conditions, known to affect the expression of genes in the
library (Materials and methods, Supplementary material 1.1,
Supplementary Table S2). In line with observations using other
methods, most promoters changed their activity levels
between every pair of conditions, indicating that a major
fraction of the genome responds to growth under different
conditions (Supplementary Tables S3 and S4).

Next, we plotted promoter activities in every pair of
conditions (Figure 2; Supplementary Figure S6). Strikingly,
we found that in each such pair, most promoters change their
expression between conditions by a constant factor that
depends only on the conditions and not on the promoter’s
identity. This result indicates that although most promoters
change their activity between conditions, they preserve their
relative values. To quantify this global effect, we robustly fitted
a scale line to the promoter activities of each pair of conditions,
with the slope of the line ranging from 0.19 to 1 (arbitrarily
setting glucose to 1, Materials and methods, Supplementary
Table S4). We quantified the extent to which promoters adhere
to the scale line by three independent methods: (A) Analysis of
variance: We found that the scale line captures 80–99% of the
variance in the data (Po10� 45), depending on the pair of
conditions compared. (B) We termed a promoter as behaving
according to the global scale line if it deviated from it by less
than three experimental standard deviations (Materials and
methods). We found that between any two conditions, 60–
90% of genes (depending on the pair of conditions compared)
change expression by the same factor to within our relatively
precise observation capacity. (C) Limiting the analysis to
promoters that are moderately active in at least one of the two
conditions being compared (40.1, for which our measure-
ments yield lower STD values; Supplementary Figure S2), we
found that 58–88% are within ±30% of the global scale line
(Materials and methods). These independent analyses confirm
that for most promoters, their activity in condition B is equal to
their activity in condition A multiplied by a single number (the
slope of the scale line between conditions A and B). We term
this number the global scaling factor between conditions A
and B and return to analyze it below.

In addition to the dominating global response, for each pair
of conditions there remains a smaller subset of promoters that
do not scale according to the global scaling factor (Figure 2,
gray dots). We termed a promoter as condition specific if it is
deviated from the scale line by more than three experimental
standard deviations (Materials and methods), using glucose as
a reference condition. We note that the relatively small sizes of
the specifically responding groups does not appear to result
from low representation of these promoters in the library, since
our library was initially designed to represent different groups
of genes (Supplementary Table S1; Supplementary material
1.1). Additionally, genes and environmental conditions were
chosen together to include genes that are known to respond to
the conditions (based on Gasch et al, 2000, 2001). Further-
more, we repeated the analysis, excluding known growth-
related groups of genes, such as those involved in protein
synthesis, and obtained very similar results (Supplementary
Figure S10), indicating the robustness of our results with
respect to input genes. We found that for each condition, its set
of condition-specific promoters showed remarkable agreement
with our understanding of yeast physiology and encompassed
known co-regulated gene modules (Gasch and Eisen, 2002;
Ihmels et al, 2002; Segal et al, 2003). For example, the specific
response to galactose includes almost all the promoters whose
corresponding genes belong to the galactose utilization path-
way (8/9, Po10� 3), while the specific response to amino-acid
starvation is enriched for amino-acid metabolism (28/50,
Po10�10, Figure 2C).

Our results agree with previous studies (Pedersen et al,
1978; DeRisi, 1997; Gasch et al, 2000, 2001; O’Rourke and
Herskowitz, 2002; Boer et al, 2003; Saldanha et al, 2004; Lai
et al, 2005; Chechik et al, 2008; Shalem et al, 2008; Brauer et al,
2008; Yassour et al, 2009; Costenoble et al, 2011; Tirosh et al,
2011), showing that a considerable fraction of the yeast
genome changes activity levels between every pair of
conditions. Here, the accuracy of our experimental system,
together with the use of replicates, which allowed the
construction of a reliable error model, enabled us, for the first
time, to provide concrete means to tease apart global and
specific regulation using the global scale line. This decoupling
provides a novel reconciliation between the known specificity
of gene expression regulation and the ubiquitous changes in
expression observed in high-throughput data. It suggests that
between conditions there exists a highly regulated, relatively
small specific response augmented by many global changes. It
further implies that in most cases, and in contrast to many
common interpretations, changes in expression are not
indicative of specific regulation.

In addition to decoupling global and specific changes in
promoter activities between conditions, we provide a quanti-
tative characterization of the global response. We find that
global changes in activities between conditions are accurately
captured by a single scaling factor, thus providing a first
experimental validation for the theory of proportional scaling
suggested decades ago by the Copenhagen school (Maaloe,
1969; Ingraham and Ole Maaløe, 1983). We note that the
observed linearity is far from trivial, as different theoretical
models exert different predictions regarding the expected
behavior of unregulated promoters across conditions, includ-
ing static, linear, non-linear, and promiscuous responses
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Figure 2 Most promoters preserve their relative activity levels across conditions. (A) The promoter activity in glucose (x axis) and glucose lacking amino acids (y axis) is
shown. Black lines represent three standard deviations of experimental noise around a robust linear fit to the data (cyan line) (Materials and methods). The slope of the
robust linear fit represents the global scaling factor between the two conditions and is notably different than 1 (blue line), indicating that absolute values change between
the conditions, but in a proportional manner. Promoters are colored black or gray depending on whether they fall within or outside the black lines, respectively. Dashed
red lines indicate the lowest promoter activity level detected by our experimental system. (B) Same as in (A), but in logarithmic scale. Here, the scaling is reflected by the
vertical shift between the blue and cyan lines. (C) Zoom-in on (B), showing the major global response and the identities of several specifically responding genes, all
involved in amino-acid metabolism. (D–K) Same as in (B), but when comparing glucose (x axis) to fructose (D), sorbitol 1 M (E), growth at 391C (F), NaCl 1 M (G),
galactose lacking amino acids (H), galactose (I), glycerol (J), and ethanol (K).
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(Supplementary material 1.4; Klumpp et al, 2009; Scott et al,
2010; Gerosa et al, 2013). Importantly, a prominent feature of
the observed proportionality is that it preserves the ratio
between most promoters across conditions. Specifically, it
provides experimental evidence that complexes and pathways
preserve the internal stoichiometry of their components,
which may serve proper cell function. This finding reduces
the degrees of freedom needed to characterize genetic
programs, and opens the way for interrogation of the
expression ratios being preserved.

Condition-specific promoters follow alternative
scale lines

We further wished to examine whether proportional scaling is
also a prominent feature in the specific responses. Previous
studies have shown that functionally related genes are usually
co-regulated (Pedersen et al, 1978; DeRisi, 1997; Gasch et al,
2000, 2001; O’Rourke and Herskowitz, 2002; Ihmels et al, 2002;
Gasch and Eisen, 2002; Boer et al, 2003; Saldanha et al, 2004; Lai
et al, 2005; Chechik et al, 2008; Shalem et al, 2008; Brauer et al,
2008; Yassour et al, 2009; Costenoble et al, 2011; Tirosh et al,
2011). However, to date it was not determined whether
individual members within these co-regulated groups maintain
proportionality throughout conditions. To this end, we studied
promoters which are off the scale line under two different
conditions: when comparing condition A with B and also when
comparing condition A with C. Comparing these promoters in
conditions B and C shows that they too fall on a scale line
(Figure 3A–C; Supplementary Figure S7). In most cases, its
scaling factor is very close to the global scaling factor between
conditions B and C (Figure 3C–E). This finding can be interpreted
as follows: the off-line genes have altered specific regulation in
condition A (e.g., due to specific transcription factors (TFs)), but
in conditions B and C they are not differentially regulated and
thus follow the global scaling along with most other genes.

In other cases, we found that functionally related condition-
specific genes fall on a separate scale line (Figure 3G;
Supplementary Figure S7). One interesting example is the
comparison of growth on ethanol (a respiratory condition) and
galactose (a semi-respiratory condition). Both conditions
require activation of respiration-related promoters, yet to a
different extent (Fendt and Sauer, 2010). We found that
between these conditions, respiration-related promoters pre-
serve their relative levels, but with a scaling factor that was
nearly two-fold higher than the global scaling factor (0.5
versus 0.28; Figure 3F and G), consistent with the increased
utilization of the genes associated with these promoters in
ethanol. Thus, for most (87%) promoters, the relationship
between their activities in ethanol and galactose can be
characterized either by a global scaling factor that accurately
accounts for 77% of the promoters, or by a respiration-related
scaling factor that accurately accounts for another 10% of the
promoters. The remaining promoters are specific to either
ethanol or galactose.

Altogether, we found, as have many before us (Pedersen
et al, 1978; DeRisi, 1997; Gasch et al, 2000, 2001; O’Rourke
and Herskowitz, 2002; Gasch and Eisen, 2002; Ihmels et al,
2002; Segal et al, 2003; Boer et al, 2003; Saldanha et al,

2004; Lai et al, 2005; Chechik et al, 2008; Shalem et al, 2008;
Brauer et al, 2008; Yassour et al, 2009; Costenoble et al, 2011;
Tirosh et al, 2011), that functionally related genes are co-
regulated. Our results additionally show that promoters
within these functionally related groups tend to preserve
proportionality, changing their expression according to a
common scaling factor. Adding to previous observations on
co-regulation, we show that the ratios between co-regulated
genes remain constant. This finding provides another
layer of structure to our quantitative understanding of the
organization of the genome-wide response to different condi-
tions, on top of the dominating global response. We propose
that the prevalent specific response of yeast to different
conditions is to alter the degree to which an entire group of
co-regulated genes is activated, without changing the internal
stoichiometry between the member genes of the group.

Scaling factors accurately represent the entire
promoter activity profile across conditions

Following the observations that proportional scaling underlies
both global and specific responses in pairwise comparisons
between conditions, we asked to what extent can the entire
expression profile of yeast across conditions be represented by
groups of genes that scale proportionally; and if so, how many
such groups exist, and what are their sizes, scaling factors, and
biological characteristics. To this end, we subjected the entire
data set to k-means clustering with the cosine metric, as it has
the property of preserving relative values within each cluster
(Materials and methods). Notably, we found that partitioning
our set of promoters into six well-separated clusters (Materials
and methods, Supplementary Figure S8; Supplementary Table
S3) accounts for 97% of the variance in our entire data set
(Figure 4). This result indicates that if we could visualize our
10-dimentional expression space (in which every axis repre-
sents a different condition), promoter activities would not
occupy the entire space, but rather adhere to only six lines
(Figure 4; Supplementary Table S5, for more analysis see
Supplementary material 1.5).

We performed several tests to assess the above clustering,
both technically and biologically. First, we examined the
clusters in terms of biological function by subjecting them to
enrichment analysis of GO terms, TFs, promoter architectures
(OPN/DPN), promoter types (divergent/unique), and tran-
scription regulation strategies (TFIID/SAGA-dominated)
(Materials and methods, Supplementary material 1.6). We
found highly significant enrichments across all six clusters
(Figure 4; Supplementary Tables S6 and S7). The first cluster
contains most of the promoters (77%), and corresponds to
promoters that scale according to the global scaling factor
across all examined conditions. It includes all of the promoters
in our data set whose corresponding genes represent
components of the translation, transcription, chromatin, cell
cycle, cytoskeleton machineries and most (85%) TFs. It is
enriched for constitutive, TATA-less, TFIID-regulated promo-
ters with an open chromatin architecture. This cluster
represents promoters that are not differentially regulated
across our set of conditions, and whose coordinated change
in activity is mediated solely by global effects.
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The other clusters exhibit condition-specific responses in a
subset of the tested conditions and are highly enriched for
families of genes that are known to respond to these conditions
and their known regulators (Figure 4; Supplementary
Tables S6 and S7; Supplementary material 1.6). For example,
cluster 2 is upregulated both in fully aerobic (ethanol and
glycerol) and in partially aerobic (galactose and galactose lacking
amino acids) conditions, and is highly enriched with respiratory
genes (15/16, Po10�14). It also includes promoters of six TFs,
and four of these (HAP4, CAT8, ADR1, and USV1) are major
known regulators of respiration (Haurie et al, 2001; Segal et al,
2003; Tachibana et al, 2005; Fendt and Sauer, 2010). Thus, these
clusters may represent complete regulatory units that are co-
regulated across conditions in a manner that largely preserves
their internal stoichiometry. Whereas the identification that these
genes are co-regulated is not surprising, our finding that they
preserve their relative activities is novel.

An important implication of our clustering results is that
proportional scaling of promoter activities transcends the
usual partition of promoters to housekeeping/condition-
specific, growth-regulated/stress-regulated, open/closed
NFR, TFIID/SAGA-dominated. Notably, even clusters 2–6,
which displayed condition-specific behaviors in one or more
conditions, were not differentially regulated between most
conditions. Whether active or inactive, their scaling factors
mostly coincided with the global scaling factor (Figures 3C–E
and 4; Supplementary Table S5). This is consistent with the
complementary observation that cluster 1 contains condition-
specific promoters that are not differentially regulated across
our tested set of conditions and therefore scale according
to the global scaling factors across the entire data set (e.g.,
ER stress-associated proteins, which probably would have
clustered separately if ER stress-inducing conditions were
tested). These observations hint that the mechanisms
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responsible for global proportional scaling are not unique to a
limited set of genes, promoter architecture, or transcription
regulation strategy. Accordingly, known growth-related
sequence motifs, such as binding sites for Rap1/Ifh1/Fhl1/
Sfp1/, RRPE and PAC (Hughes et al, 2000; Wade et al, 2001;
Badis et al, 2008; Zhu et al, 2009) could not account for
global scaling throughout all clusters. Thus, global propor-
tional scaling of promoter activities is probably the result of a
basic mechanism, shared across all promoter classes and
architectures.

Next, we gauged the integrity and robustness of our clustering
by means of cross-validation. For each of our conditions, we
clustered the promoters based on all other conditions. We then
used the activity values of only 10 predefined representative
promoters in the tested condition to retrieve the scaling factors
and thus predict the activity levels for the hundreds of other

promoters (Materials and methods). If our clustering truly
captures the variation in the underlying data, then we would
expect these predictions to match the measured activities.
Indeed, using only 10 promoters, we obtained highly accurate
predictions, whereby in every condition we can explain over
85% of the variance of the activities of at least 98% of the
promoters (Figure 5; Supplementary Figure S9; Supplementary
material 1.7). These results suggest that describing the response
to a new condition may only require the description of the
behavior of a relatively small number of clusters, representing
the few degrees of freedom the cell actually utilizes.

Finally, we validated that our results were not determined by
growth-related groups of genes, such as protein synthesis
which are overrepresented in our library, by excluding these
promoters from the data set and repeating the analysis
(Materials and methods). We obtained very similar clustering
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results with 95% of the genes preserving their cluster identities
(Supplementary Figure S10), indicating the robustness of our
clustering with respect to input genes.

Our results present a first attempt to quantitatively analyze
the transcriptional response of yeast across conditions in terms
of proportional scaling. In addition to partitioning the genes
into groups which are co-regulated, as is the usual practice in
the field, here we show that individual members within these
groups scale together and preserve proportionality. We find
that the B900 yeast promoters that we measured do not span
the entire possible space of expression values, but rather
adhere to a small number of scaling lines. This allows us to
accurately describe the activity levels of the majority of
promoters across conditions using only a handful of numbers
representing the scaling factors of each of the different clusters.
Moreover, we provide a first estimation for the relative
magnitude of global and specific responses, showing that the
former can account for much of the expression changes across
many conditions. Together, our results suggest that gene
expression profiles across different environmental conditions
may exhibit less degrees of freedom and more structure than

previously appreciated. These findings could probably be
largely extended to hold not only for promoter activities, but
also for mRNA and protein levels based on the analysis
of existing data sets (Supplementary Figures S5 and S11;
Supplementary material 1.2).

A simple passive resource allocation model
accounts for a large fraction of the global scaling
factors across conditions

Next, we asked what mechanisms can account for the
quantitative values of the global scaling factors. Since
enrichment analysis of promoter types, architectures, and
regulation strategies did not provide mechanistic insights
(Supplementary material 1.6), we examined two plausible
theoretical models that result in proportional changes across
promoters and compared their ability to explain the global
scaling factor of each condition. In both models, we have no
free parameters and we assume that promoter activity is
an adequate proxy for protein production (Supplementary
Figure S5; Supplementary material 1.2).
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Many genes were shown to change their expression in
accordance with the growth rate (Pedersen et al, 1978; Bremer
and Dennis, 1987; Neidhardt, 1999; Regenberg et al, 2006;
Castrillo et al, 2007; Brauer et al, 2008; Fazio and Jewett, 2008;
Zaslaver et al, 2009; Klumpp et al, 2009; Levy and Barkai,
2009; Scott et al, 2010), and we thus first tested whether growth
rate provides a good approximation for the values of the
observed global scaling factors. In this model, we expect that
in conditions where cells divide twice as fast, the activity of
most promoters would double, overall preserving their
concentration. Formally, this model predicts that the global
scaling factor from condition A to condition B, S[A,B], will be
given by:

S½A;B� ¼ t½A�
t½B� ð1Þ

where t[A] and t[B] represent the doubling time in conditions A
and B, respectively. A possible mechanism for implementing
such regulation is discussed in Supplementary material 1.4. This
model entails that, per doubling time, the sum of activities of all
unregulated promoters will be preserved across conditions
(Figure 6A). We found that there is indeed a good correlation
between the global scaling factors and growth rate
(Supplementary Figure S12a) and that the scaling factors

predicted by this model deviate by 30±28% from the measured
scaling factors (3 of the 9 conditions are within 15%; Figure 6C).

Alternatively, in line with earlier models discussing differ-
ential allocation of resources between conditions (Ehrenberg
and Kurland, 1984; Koch, 1988; Zaslaver et al, 2009; Molenaar
et al, 2009; Scott et al, 2010), the overall promoter activity can
be thought of as a fixed resource available to the cell per
doubling time (Maaloe, 1969; Ingraham and Ole Maaløe, 1983).
This is supported by our data, in which the total promoter
activity per doubling time is relatively conserved (CV¼ 0.13,
Supplementary Table S4, Supplementary Figure S12b). In each
condition, this resource is differentially partitioned between
the condition-specific genes, Gspe, and the globally responding
genes, Gglo, where the exact partition is determined by the
varying magnitudes of the specific response required in each
condition (Figure 6B). Thus, the value of the global scaling
factor will accommodate both changes in growth rate and the
magnitude of the specific response in each condition. Formally,
this model predicts that the global scaling factor from condition
A to condition B, S[A,B], is given by:

S½A;B� ¼ t½A�
t½B�

f ½Gglo;B�
f ½Gglo;A�

ð2Þ

where f Gglo;A
� �
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Figure 6 A passive resource allocation model accounts for a large fraction of the global scaling factors across conditions. (A, B) Two proposed models for cellular
invariants that result in the observed scaling factors: (A) Concentration of unregulated fraction is preserved. This model posits that growth rate accounts for the global
scaling factors. It assumes that promoters that are not differentially regulated between conditions preserve their activity per doubling time. This entails the global scaling
factor to be equal to the ratio between the doubling times of the compared conditions. (B) Total concentration is preserved. This model posits that both the growth rate
and the magnitude of the specific response account for the global scaling factors. It assumes that the sum of activities over all promoters per doubling time is preserved.
Promoters that are not differentially regulated between conditions will proportionally scale to accommodate the specific response in each condition. (C, D) Histogram of
the ratio between the observed global scaling factors and those suggested by models (A) and (B) respectively.
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represents the fractions of the total resources that are allocated
to the global response promoters of conditions A and similarly
for B. Gglo represents the set of globally responding genes, Gspe

the set of condition-specific genes, and P[g,A] and P[g,B]
represent the activity of promoter g in conditions A and B,
respectively. Notably, this model achieves better explanatory
power, deviating by only 12±19% from the measured scaling
factors (6 of the 9 conditions are within 15%; Figure 6D).

We thus propose this passive resource allocation model as a
potential explanation for the global scaling of promoter
activities between conditions. We suggest that an environ-
mental change requires changes in the activation of condition-
specific gene clusters, which in turn affects the amount of
cellular resources available to all other genes. Most promoters
in the cell are not specifically regulated under a given
condition and therefore their activity level will passively vary
based on the availability of global cellular resources, as
captured by the global scaling factors, but still preserving their
relative values (Supplementary Material 1.8).

We note that there remains a fraction of the proportional
response unexplained by the resource allocation model. This
may partly stem from inaccuracies in our estimates of the total
activity of all promoters, since our library does not include all
promoters. Additionally, this simplified model is per biomass
unit as measured by OD and does not account for other global
properties, such as cell size and macromolecular composition,
which are known to vary in different conditions along with the
doubling time (Schaechter, 1958; Bremer and Dennis, 1987;
Neidhardt, 1999). Nevertheless, the accuracy with which this
model matches the measured global scaling factors based on
the doubling times and magnitude of the specific responses
suggests that these factors are likely to be major determinants
of the global scaling factors.

Together, global proportional scaling of promoter activities
across conditions and the passive resource allocation model,
which quantitatively accounts for the global scaling factors,
can potentially shed a new light on the previously reported
correlations between the expression of many genes and growth
rate (Pedersen et al, 1978; Bremer and Dennis, 1987; Neidhardt,
1999; Regenberg et al, 2006; Castrillo et al, 2007; Brauer et al,
2008; Fazio and Jewett, 2008; Zaslaver et al, 2009; Klumpp et al,
2009; Levy and Barkai, 2009; Scott et al, 2010). First, in contrast
to previous reports, which reported that different genes have
different correlations with growth rate, here we suggest that
different genes have the same quantitative coordination with
growth rate (Supplementary Figure S13). Second, our results
agree with classical theoretical models (Maaloe, 1969;
Ingraham and Ole Maaløe, 1983), and show that the correlation
with growth rate is not limited to a specific subset of genes, as
was suggested by these works (Regenberg et al, 2006; Castrillo
et al, 2007; Brauer et al, 2008; Fazio and Jewett, 2008). Rather, it
is an inherent trait of expression resulting from global cellular
constraints, and thus common to all genes in all conditions in
which they are not differentially regulated. Finally, the resource
allocation model suggests that global proportional changes in
expression should extend far beyond the previously observed
correlations with growth rate. We predict that such changes
should occur not only in exponential growth under different
environmental conditions, but in all cases where there are
changes in global cellular resources. These include, for

example, dynamic changes in the environmental conditions,
mutations, different stages of the cell cycle, and different stages
of the metabolic cycle. Indeed, a recent study showed that
global regulation is growth rate dependent not only during
steady state but also during dynamic changes in growth rate
(Gerosa et al, 2013). Thus, scaling lines can potentially provide
a conceptual framework for analyzing expression changes,
whatever the condition.

Promoter activities in E. coli scale proportionally
between different growth conditions

To examine the generality of our results, we asked whether
they also hold in other organisms. To this end, we measured
promoter activities of B1800 promoters of the model bacteria,
E. coli, using a library of GFP-reporter strains (Zaslaver et al,
2006, 2009, Supplementary Figure S14A). Measurements were
performed in nine growth conditions (Supplementary Table
S8) and promoter activity was calculated by the rate of GFP
production per OD unit, at the time of maximal growth, as
described (Materials and methods, Supplementary Table S9;
Supplementary Figure S14). In total, 969 promoters were
active above background in at least one condition. Using
replicate measurements, we validated that this system
provides precise promoter activity values (Materials and
methods, Supplementary Figure S13).

Notably, the results for E. coli were highly analogous to
those obtained for S. cerevisiae, whereby between each pair
of conditions 70–90% of the promoters preserve their relative
activities (Figure 7B). As in S. cerevisiae, the global scaling
factors for the different conditions span a wide range (0.51–
1.68, arbitrarily setting M9þ glucose to 1, Supplementary
Table S10). The scaling factors correspond to the growth rate
and magnitude of the specific response predicted by the passive
resource allocation model (85% of the variability explained;
Supplementary Figure S16). Moreover, the specific responses
are highly enriched with genes known to respond to the tested
conditions (Supplementary Figure S17). Under conditions
where a certain specific response was not differentially
regulated, its promoters scaled according to the global scaling
factor (Supplementary Figure S18). Here too, we can accurately
predict the activity of most promoters in a new condition, using
only a handful (five) of representative promoters (Materials
and methods, Supplementary Figure S19).

Taken together, these results demonstrate that S. cerevisiae
and E. coli exhibit similar global properties of transcriptional
regulation, and that proportional scaling of promoter activity
could be a basic and general trait across both prokaryotes and
eukaryotes.

Discussion

We quantitatively characterized promoter activities under
different growth conditions. In agreement with previous
studies (Pedersen et al, 1978; DeRisi, 1997; Gasch et al,
2000, 2001; O’Rourke and Herskowitz, 2002; Boer et al, 2003;
Saldanha et al, 2004; Lai et al, 2005; Chechik et al, 2008;
Shalem et al, 2008; Brauer et al, 2008; Yassour et al, 2009;
Costenoble et al, 2011; Tirosh et al, 2011), we find that a
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considerable fraction of the yeast genome changes activity
levels between conditions. We further show that most of this
change is accurately captured by a global linear function
whose single scaling factor corresponds to the change in
growth rate and magnitude of the condition-specific response.
When specific groups of genes are activated, these too change
according to scaling factors, changing the degree to which the
entire group is activated, while preserving the ratios between
genes within the group. We show that the activity levels of all
promoters in any condition can be accurately described using
only a handful of numbers representing the scaling factors of
each of the different groups, thus showing the quantitative
manifestation of the hierarchical nature of gene expression.
To the best of our knowledge, this is the first time that
proportional scaling of expression was analyzed and demon-
strated to have such a major role in genome-wide expression
profiles.

Our results imply that in many cases, changes in expression
are not necessarily indicative of specific regulation, as recently
suggested by several studies (Klumpp et al, 2009; Scott et al,

2010; Lovén et al, 2012; Gerosa et al, 2013). The global
proportional scaling that we detected provides concrete means
by which to tease apart global and specific regulation. The
ability to differentiate genes that are actively regulated from
those that are merely responding to changes in global
parameters is critical for the understanding of gene expression
regulation, and may provide a powerful tool for focusing on
‘functional biology’. Moreover, accounting for global effects
allows precise quantification of specific regulation. Notably,
we find that in each condition, only a relatively small and
highly specific group of genes is actively regulated. The
majority of expression changes across conditions, while real,
seem to be the result of changes in global cellular factors and
thus not informative about the regulation specific to the
condition. This has broad practical implications, suggesting
that global factors should be carefully taken into consideration
when designing and analyzing studies that aim to understand
gene expression regulation (Lovén et al, 2012).

Our work extends observations that the expression of many
genes across conditions is correlated with growth rate

BA

PSC101 low copy origin

1800 E.coli reporter strains
Full length intragenic region

0.1 1 10

0.1

1

10

2%
 a

bo
ve

3%
 b

elo
w

94
%

 w
ith

in 
ex

p.
 e

rro
r

scaling factor = 1.11

Promoter activity
(glucose)

P
ro

m
o

te
r 

ac
ti

vi
ty

(g
lu

co
se

+F
e)

0.1 1 10

0.1

1

10

3%
 a

bo
ve

3%
 b

elo
w

94
%

 w
ith

in 
ex

p.
 e

rro
r

scaling factor = 0.89

P
ro

m
o

te
r 

ac
ti

vi
ty

(g
lu

co
se

+F
e+

C
u

)

Borders for

±3 standard deviations
Line of Y = X

Line of linear robust fit

Promoters within

3 standard deviations
Promoters outside

3 standard deviations
0.1 1 10

0.1

1

10

10
%

 a
bo

ve

11
%

 b
elo

w

79
%

 w
ith

in 
ex

p.
 e

rro
r

scaling factor = 0.54
P

ro
m

o
te

r 
ac

ti
vi

ty
(N

aC
l a

ft
er

 5
h

)
0.1 1 10

0.1

1

10
10

%
 a

bo
ve

14
%

 b
elo

w

76
%

 w
ith

in 
ex

p.
 e

rro
r

scaling factor = 1.67

Promoter activity
(glucose)

Promoter activity
(glucose)

Promoter activity
(glucose)

Promoter activity
(glucose)

Promoter activity
(glucose)

Promoter activity
(glucose)

Promoter activity
(glucose)

P
ro

m
o

te
r 

ac
ti

vi
ty

(A
A

 a
ft

er
 5

h
)

0.1 1 10

0.1

1

10
0%

 a
bo

ve

1%
 b

elo
w

99
%

 w
ith

in 
ex

p.
 e

rro
r

scaling factor = 1.12

P
ro

m
o

te
r 

ac
ti

vi
ty

(g
lu

co
se

+s
u

cc
in

at
e)

0.1 1 10

0.1

1

10

5%
 a

bo
ve

4%
 b

elo
w

91
%

 w
ith

in 
ex

p.
 e

rro
r

scaling factor = 0.79

P
ro

m
o

te
r 

ac
ti

vi
ty

(M
9+

N
aC

l)

0.1 1 10

0.1

1

10
9%

 a
bo

ve

24
%

 b
elo

w

66
%

 w
ith

in 
ex

p.
 e

rro
r

scaling factor = 1.72

P
ro

m
o

te
r 

ac
ti

vi
ty

(M
9+

A
A

)

0.1 1 10

0.1

1

10
3%

 a
bo

ve

3%
 b

elo
w

94
%

 w
ith

in 
ex

p.
 e

rro
r

scaling factor = 0.92

P
ro

m
o

te
r 

ac
ti

vi
ty

(g
lu

co
se

+C
u

)
Figure 7 Most E. coli promoters preserve their relative activity levels across conditions. (A) Reporter low-copy plasmid has a full-length intragenic region from E coli
MG1655 driving the rapidly folding, non-toxic green fluorescent protein variant gfpmut2. Altogether, 1800 strains each corresponding to a different promoter were grown
in 96-well plates in 371C shaker incubator, and robotically moved every 8 min to a multi-well fluorometer for measuring GFP fluorescence and optical density over 24 h of
growth. (B) Shown is a comparison of promoter activities glucose (x axis) and all other tested conditions (y axis) for the detectable E. coli promoters, as in Figure 2. Black
lines represent three standard deviations around a robust linear fit to the data (cyan line). Promoters are colored black or gray depending on whether they fall within or
outside the black lines, respectively. Scaling is reflected by the vertical shift between the blue and cyan lines.
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(Pedersen et al, 1978; Bremer and Dennis, 1987; Neidhardt,
1999; Regenberg et al, 2006; Castrillo et al, 2007; Brauer et al,
2008; Fazio and Jewett, 2008; Zaslaver et al, 2009; Klumpp
et al, 2009; Levy and Barkai, 2009; Scott et al, 2010). Here, we
considerably strengthen this correlation by further showing
that different genes have the same quantitative coordination
with growth rate (Supplementary Figure S13). Moreover,
generalizing classical theoretical models (Maaloe, 1969;
Ingraham and Ole Maaløe, 1983), we claim that the correlation
with growth rate is not limited to a specific subset of ‘growth-
related’ genes, as previously suggested (Regenberg et al, 2006;
Castrillo et al, 2007; Brauer et al, 2008; Fazio and Jewett, 2008).
Rather, it is an inherent trait of expression resulting from global
cellular constraints, and thus common to all genes in all
conditions in which they are not differentially regulated. The
shared quantitative relation of many genes to growth rate
greatly reduces the degrees of freedom of the expression
program across conditions (as we show by our ability to
accurately predict the activity of B70% of the promoters in a
new condition from measurement of only a single promoter),
and simplifies our understanding of expression regulation.
Proportional scaling paves the way for mechanistic under-
standing of the previously reported associations between
growth rate and expression.

We also found that a simple parameter-free passive resource
allocation model can account for the quantitative values of the
global changes in promoter activities across conditions. If
correct, then this model suggests that our findings regarding
proportional changes in expression and their implications
regarding specific and global modes of regulation extend far
beyond the previously observed correlations with growth rate.
We suggest that global proportional changes should occur not
only in exponential growth at different growth rates, but in all
cases where there are changes in global cellular resources.
These include, for example, dynamic environmental changes,
mutations, different stages of the cell cycle, different stages of
the metabolic cycle, or different cell sizes. Thus, scaling lines
can potentially provide a conceptual framework for analyzing
expression changes, whatever the condition. It is interesting to
speculate whether proportional scaling will be observed under
such conditions and what will be the major determinant of the
global scaling factors in these cases in which growth rate
presumably has a minor role.

Our study opens many questions for future interrogation.
Primarily, it will be interesting to learn how much of the
proportionality observed for promoter activities is preserved
by additional layers of regulation and perpetuates at the mRNA
and protein levels, at both population level and in single cells.
Additionally, it is interesting to consider what mechanisms are
responsible for the observed proportionality and the coordina-
tion between promoter activity and growth rate. In bacteria, it
has been suggested that cAMP (You et al, 2013), ppGpp
(Magnusson et al, 2005), and use of alternative sigma factors
(Klumpp and Hwa, 2008; Zaslaver et al, 2009) may contribute
to the differential allocation of resources to different groups of
genes. In yeast, transporters, cAMP, master growth regulators
(e.g., TOR) and different ribosomal subunits have been
suggested to perform a similar task (Broach, 2012). However,
to date the molecular mechanisms underlying proportional
responses, the identity of the limiting resources, and the role

that cell size, shape, and composition may have in this process
remain unknown.

Finally, our observations regarding proportional scaling of
condition-specific genes adds yet another layer of structure to
our quantitative understanding of the organization of the
genome-wide response to different conditions. We show that
individual genes within co-regulated gene groups respond in a
similar quantitative manner, thereby maintaining propor-
tionality, that is, their relative expression values, across
conditions. An important implication of this preserved
proportionality is that complexes and pathways preserve the
internal stoichiometry of their components across conditions.
This greatly reduces the degrees of freedom needed to
characterize a genetic program and quantitatively manifests
the hierarchical nature of gene expression regulation. It invites
further interrogation of the expression ratios being preserved
and the numerical values of the different scaling factors.

Materials and methods
A complete Materials and methods can be found in Supplementary
material.

Library design and construction

Promoters were chosen to cover a wide variety of cellular functions
and processes (Supplementary material 1.1). Promoter sequences
were defined as the genomic region between the translation start site
(TrSS) and the end of the upstream neighboring gene. All strains were
constructed as previously described (Zeevi et al, 2011), based on the
genomic integration of promoter sequences into a common master
strain, upstream of an YFP reporter (Supplementary material 2.1).
Final strains were validated by sequencing, growth curves, and
mCherry expression levels, and abnormal strains were removed. For a
full list of promoters, primers, and sequences, see Supplementary
Table S1.

Promoter activity measurements

Cells were inoculated from frozen stocks into synthetic complete
dextrose (SCD) (150 ml, 96-well plate) and grown at 301C for 48 h,
reaching complete saturation. Cells were then diluted 1:36 in fresh
medium to a total volume of 180 ml and were grown at 301C for at least
16 h in 96-well plates while being measured. Measurements were
carried out every 20 min using a robotic system (Tecan Freedom EVO)
with a plate reader (Tecan Infinite F500). Each measurement included
optical density (OD600), YFP fluorescence, and RFP fluorescence.
Measurements of each plate at every growth condition were repeated
1–6 times. The growth media are outlined in Supplementary Table S2.

Computing promoter activity levels

Basic analysis of measured OD, YFP, and RFP was done as previously
described and included removal of strains with abnormal growth
curves and RFP expression, subtraction of background levels of OD
and auto-fluorescence, and smoothing of outlier measurements for
each strain (Zeevi et al, 2011). Promoter activities were calculated as
previously described (Zeevi et al, 2011; Raveh-Sadka et al, 2012)
pa ¼ YFP t2ð Þ�YFP t1ð Þð Þ=

R t2
t1

ODðtÞdt, with t1 and t2 defining a
window of two doublings at the maximal growth rate
(Supplementary material 2.4). The system’s detection level was
assessed by examining the distribution of promoter activity levels for
a strain containing an RFP gene but no YFP gene. For each condition,
430 biological replicates of the strain were measured and fitted to a
normal distribution (Supplementary Figure S1), and the 95th
percentile of the distribution was taken to be the detection level. For
each strain in every condition, we took the final promoter activity

Promoters maintain their relative activity levels under different growth conditions
L Keren et al

& 2013 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2013 13



levels to be the average of the strain across replicates. If this average
was below the detection level, then we set the promoter activity to the
detection level.

Experimental variability

The relative error was estimated by the coefficient of variation (CV) of
replicate measurements. Mean values across expression bins were
used to estimate the CV of any promoter activity level, by linear
interpolation (Supplementary material 2.6). The CV values ranged
from 0.36 for very low promoter activity levels to 0.05 for high
promoter activity levels (Supplementary Figure S2).

Global scaling factors and error model

For all conditions, the global scaling factor represents the best robust fit
to the data (Supplementary material 2.7). For each pairwise
comparison, we determined the variance explained by the global scale
line. The promoter activity values, v(p), of each promoter p was
projected to the global scale line. Denoting the difference between the
vector and its projection by d(p), the variance explained by the
clustering was calculated as 1� variance(d(p))/variance(v(p)). To
obtain a P-value for the explained variance, for each comparison
between conditions X and Y, we randomized the promoter activities of
condition Y and quantified the variance explained by the original
global scaling line, as described above. This was repeated 1000 times
for each pairwise comparison.

For each pairwise comparison, we then determined which
promoters behave according to the global trend between these two
conditions using two separate methods: (A) We analyzed all data
points above detection and estimated their probability to behave
according to the global trend. For each promoter, let (x, y) and (sx, sy)
denote its activity level and standard deviation in conditions x and y,
respectively. Denoting the scaling factor between the respective
conditions by a, then promoters were defined as part of the global
trend if j ax� y jo3sy or j x� y=a jo3sx. (B) We restricted each
pairwise comparison to promoters with an activity of 40.1 in both
conditions. For such values, we found the average CV to remain
constant at 0.05 (Supplementary Figure S2). For each pairwise
comparison, we defined a promoter as part of the global trend if its
value deviated by no more than 30% from its expected value
according to the global scaling factor.

These two methods complement each other as the first is relative yet
it enables the analysis of the entire data set, taking into account our
different level of confidence in low and high values. The second is
restricted to only parts of the data, yet it enables to determine absolute
values. Both yielded similar results with B60–90% of promoters
(depending on the pair of conditions compared) changing between
conditions according to the global scaling factor.

Quantitative PCR analysis

Eighteen representative strains belonging to cluster 1 (RPB10, TEF1,
DPM1, SEC61, SHP1, CDC10, RPS3, GLY1, RPL3, RPL33A, RPL8B,
RPS7A, RPS11B, RPL4B, RPL28) or cluster 6 (GAL1, GAL2, GAL7) were
inoculated from frozen stocks into SCD (150 ml, 96-well plate) and
grown at 301C for 48 h, reaching complete saturation. Cells were then
diluted 1:36 in fresh medium and pelleted at mid-exponential phase.
RNA was extracted using the EPICENTER Yeast MasterPURE RNA
extraction kit, and cDNAwas created using random hexamers (sigma).
Quantitative PCR was performed by RT–PCR (StepOnePlus, Applied
Biosystems) using a ready-mix kit (KAPA, KK4605). For each strain,
measurements were performed in two sets of triplicates, measuring
both YFP and RFP mRNA. Reported values are of mean YFP/RFP from
nine replicates derived from three independent experiments
(Supplementary material 2.8).

Functional annotation and enrichment analysis

Sets of genes were assigned process, function, and cellular compo-
nents according to the annotations from the GO (Ashburner et al,

2000). The significant representation of GO terms in the set was
evaluated by Gorilla GO Term Finder (Eden et al, 2009) with a P-value
threshold of 10�3. For TF analysis, we examined the distribution of
known TF promoters (Badis et al, 2008; Zhu et al, 2009) across the
different clusters. For enrichment analysis, promoters were classified
as previously described according to their properties as: OPN/DPN
(Tirosh and Barkai, 2008), SAGA-dominated/TFIID-dominated
(Huisinga and Pugh, 2004), divergent/unique (this study, based on
the Saccharomyces Genome Database, available at: http://www.yeast-
genome.org/). P-values were computed according to the HG distribu-
tion and corrected for multiple hypothesis testing using FDR correction
(Benjamini and Hochberg, 1995).

Clustering promoter activities

To partition the promoters into clusters that preserve proportionality,
we used K-means clustering with the cosine metric (defined by
(x,y)¼ 1� cosð-xOyÞ ¼ 1� x�y

jj xjj �jj yjj , where x and y are vectors of

promoter activity levels in a given condition and O is the origin). The
clustering was repeated 100 times with different random starting
points and the clustering that minimized the sum of distances from the
centers was chosen. The number of clusters, K, was determined as the
largest K for which the distance between any two centers is at least 0.05
(Supplementary Figure S8), thereby ensuring a minimal separation
between any two clusters (Supplementary material 2.10). For
generation of Supplementary Figure S10, this analysis was repeated
excluding all ribosomal promoters.

Variance explained by clustering

For each promoter p, its vector of promoter activity levels across
conditions, v(p), was projected to the center of the corresponding
cluster. Denoting the difference between the vector and its projection
by d(p), the variance explained by the clustering was calculated as
1� variance(d(p))/variance(v(p)).

Predicting promoter activity levels

We used the following scheme to predict promoter activity levels under
growth condition Y from measurements of several other conditions
x1,y,xm. First, the number of clusters k for all promoters under the
measured m conditions was determined using above criterion. Then,
the promoters were clustered by the k-means algorithm using the
cosine metric. Denote the centers of the clusters by c1,y,ck. A small
number of representative promoters were chosen as the training set,
and their promoter activity levels under the new condition Y were used
for the prediction task. For each cluster t, an extended center ĉt of size
mþ 1 was calculated from the representative promoters that belong to
cluster t. The activity level of a promoter under the new condition Y

was predicted to be ðĉtðmþ 1Þ/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 ĉtðjÞ2
q

Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

j¼1 xðjÞ2
q

, where x is

the vector of activity levels for that promoter. The representative
promoters were chosen such that an equal number of promoters
were chosen from each cluster, which are closest (by the cosine
metric) to the centers c1,y,ck of the relevant clusters (Supplementary
material 2.12).

E. coli

Growth conditions
All media for bacterial growth were based on a defined M9 minimal
medium (Supplementary material 3.1). Specific growth conditions and
the respective growth rates in each condition are listed in Supple-
mentary Table S8.

Robotic assay for genome-wide promoter activity data
The library of reporter strains, each bearing a low-copy plasmid with
one of E .coli promoters controlling fast-folding GFP (Supplementary
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Figure S14A; Cormack et al, 1996) was previously described (Zaslaver
et al, 2006). This library includes 1820 reporter strains that represent
B75% of E. coli promoters. Reporter strains were inoculated from
frozen stocks into 96-well plates containing M9 minimal medium
supplemented with 11 mM glucose, 0.05% casamino acids and 50mg/
ml kanamycin and grown overnight in a shaker at 371C. All steps from
this point were carried out using a programmable robotic system
(Freedom Evo, Tecan Inc.). Overnight cultures were diluted 1:33 into
M9 medium followed by a second 1:15 dilution into flat bottom
microwell plate (nunc) containing one of the growth media
(Supplementary Table S8) in a final culture volume of 150 ml. Bacteria
were grown in an incubator with shaking (6 Hz) at 371C for about 20 h.
Every 8 min the plate was transferred by the robotic arm into a
multiwall fluorometer (Infinite F200, Tecan) that reads the OD
(600 nm) and GFP (excitation 480 (20), emission 515(10)). After 5 h
of incubation, NaCl or casamino was added to the appropriate plates
by automated pipetting.

Computing promoter activity levels, detection level,
experimental variability and error model
Promoter activity was calculated by the rate of GFP production per OD
unit, as described above for yeast (Supplementary material 2.4) for the
3-h window around mid-exponential growth (Supplementary Figure
S14). For conditions in which a compound was added to the media,
promoter activity was calculated for the window of time after its
addition. Background fluorescence was measured using a promoter-
less control strain in each plate. Promoter activities lower than 3 STDs
above the mean background promoter activity were set to zero. In
total, 969 promoters were active above background in at least one
condition. Experimental variability was assessed as described above,
using three replicate measurements in M9 glucose (Supplementary
Figure S15) and error model was calculated as for S. cerevisiae.

Identification of representative promoters for predictions was done
iteratively. At each iteration, we calculated the best linear sum of the
representative promoter, which predicted the experimental data, and
added an additional representative promoter, which contribute the
most to predict the experimental data.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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