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Drug repurposing has become a widely used strategy to accelerate the process of finding treatments.
While classical de novo drug development involves high costs, risks, and time-consuming paths, drug
repurposing allows to reuse already-existing and approved drugs for new indications. Numerous research
has been carried out in this field, both in vitro and in silico. Computational drug repurposing methods
make use of modern heterogeneous biomedical data to identify and prioritize new indications for old
drugs. In the current paper, we present a new complete methodology to evaluate new potentially repur-
posable drugs based on disease-gene and disease-phenotype associations, identifying significant differ-
ences between repurposing and non-repurposing data. We have collected a set of known successful
drug repurposing case studies from the literature and we have analysed their dissimilarities with other
biomedical data not necessarily participating in repurposing processes. The information used has been
obtained from the DISNET platform. We have performed three analyses (at the genetical, phenotypical,
and categorization levels), to conclude that there is a statistically significant difference between actual
repurposing-related information and non-repurposing data. The insights obtained could be relevant
when suggesting new potential drug repurposing hypotheses.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The process of giving new uses for already-existing and
approved drugs is known after the name of drug repurposing or
repositioning (DR) [1]. It has become a promising strategy, attract-
ing attention to both the pharmaceutical and the research commu-
nity, due to the notorious advantages over de novo drug discovery.
De novo drug design is a tremendously time-consuming, costly, and
difficult task. Generally, the process takes 17 years and costs an
average of US$2.6 billion. Furthermore, only approximately 2.01%
of all drug development candidates finally make it to the market
as a successful treatment [2]. The current increase in bioinformatic
knowledge and omics data, makes DR a potential alternative for
drug discovery, reducing time, investment, and risks [3].

Throughout history, multiple DR cases have been discovered by
serendipity. For instance,drugswithcertainsideeffects that resulted
tobe indications for anotherdiseases [4]. In the1970s,Minoxidilwas
approved to treat hair loss when it was planned to treat hyperten-
sion. In the 1990s and 2000s, Sildenafil, which was aimed for the
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treatment of angina, was repositioned for erectile dysfunction.
Duloxetine, whichwas originally intended formajor depressive dis-
order, was then used for stress urinary incontinence [2].

Identifying the right drug for an indication of interestwith a high
level of confidence is complicated. The approaches to generate DR
hypotheses are divided into: (i) experimental or activity-based, (ii)
computational or in silico and (iii) literature-based or existing
knowledgemethods. On the one hand, experimental strategies con-
sist in testing drugs in assays. Thesemethods are based on available
comprehensive clinical compound databases, requiring an entire
collection of drugs. They are laborious and expensive processes [5].
Bindingassays to identify target interactions andphenotypic screen-
ing stand up in this category [6]. On the other hand, computational
DR employs online public databases and bioinformatic tools to
detect interactions between drugs, targets, and diseases. In silico
strategies reduce investment and time, but need structural informa-
tionof targetproteins anddrug-inducedcell/diseasephenotypes [7].
There are different methods covered by these approaches: retro-
spective clinical analysis, signature matching, molecular docking,
Genome-Wide Association Studies (GWAS), pathway mapping or
network analysis [6], datamining, andmachine learning [5], among
others. Because of their capacity to integrate multiple data sources,
we point out network-based approaches, widely used since approx-
imately tenyears ago [3]. Networks can shed light ondrugs, diseases,
and targets modes of action and relationships, aiding to identify
therapeutic potentials and uncover DR applications [8–11].

The principal objective of the current research is to propose a
new methodology for validating DR cases through biomedical inte-
grated data. That is, to identify clear differences in the phenotypic
and genetic DR and non-DR data. This way, future hypothetical DR
cases could be suggested and prioritized in the light of the named
discovered differences. To achieve this objective, we have used
biomedical-integrated data, in particular, the DISNET project
knowledge base. DISNET is a large complex network that stores
information about diseases, symptoms, genes, and drugs extracted
from different public sources. The integration of this data can
uncover novel patterns and associations, and lead to hypotheses
for new DR case studies. A schematic illustration of DISNET 3 levels
database is provided in Fig. 1.

The manuscript is organized as follows: Section 2 explains the
materials and methods used for the validation analysis, Section 3
and Section 4 respectively present and discuss the results obtained,
and Section 5 details the conclusions.
2. Materials and methods

To develop a complete methodology to evaluate the potential of
new DR hypotheses by means of biomedical integrated data, a
study has been carried out following the stages shown in Fig. 2.
Firstly, a list of successful DR cases was generated from literature
evidence (Section 2.1). Afterwards, data pre-processing was imple-
mented to translate those DR cases to DISNET vocabularies (Sec-
tion 2.2 and 2.3). Then, we analysed the genes (Section 2.4),
symptoms (Section 2.5), and categories (Section 2.6) to conclude
whether the DR cases presented significant differences with non-
DR data. The two first analyses sought to study the therapeutic
potential of the underlying mechanisms of action of genes and
symptoms that were shared between the original and the new
indications for the drug. The category analysis was carried out to
find patterns within the disease and drug groups.
2.1. DR successful known cases

For this study, we selected some important DR cases to check if
they showed clear differences with the other biomedical data. To
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choose those successful known DR cases, the following methodol-
ogy was followed. The combination of ‘‘drug repositioning” and
‘‘examples” or ‘‘drug repositioning” AND ‘‘review” was searched
in Google Scholar without including a time interval specification
(dated 01/07/2021). The first 30 entries, ordered by relevance,
were examined looking for publications that contained tables with
DR examples, not adapted from previous revisions but original
from those articles. The cases and publications must accomplish
the following conditions:

� Cases should consist of ‘‘Drug name + Original condition + New
condition” triples. A condition should be a concept that maps to
a disease, but not, for example, to the role of the drug in the dis-
ease. Original and new indications must be clearly differenti-
ated. The publications discarded due to the non-completion of
this condition were [12,13].

� Publications should not only be focused on one type of disease
or a specific condition (e.g., cancer or Arthritis Rheumatoid).
More examples of dismissed works as they focused on particu-
lar conditions or types of conditions were [5,7,14–17].

� Drugs in the cases should be approved, not investigational.
Some of the cases of [8,18] were discarded as they were not
accepted.

The 30 first result entries obtained from querying Google Scho-
lar can be found in Table 1. The publications in yellow met the nec-
essary conditions to be used for the proposed analysis. Ashburn
et al. and Novac, N., are referenced in Xue et al’s table, so, eventually,
they were not selected since the cases described in them were
already included in the previous paper.

2.2. DISNET data acquisition and integration

The DISNET project incorporates biomedical disease knowledge
from public textual and structured sources to include, among
others, data regarding diseases, related symptoms, genes, drugs,
drug targets [37]. All these data are organized in 3 levels: the phe-
notypical layer (containing mainly disease-symptoms associa-
tions), the biological layer (containing diseases’ associations to
genes and proteins, among others), and the drugs layer (that stores
drug-related data, including their associations to diseases and the
drugs targets).

Since the very aim of the present work is to suggest a new
methodology to validate the potential of new possible DR cases
by means of integrated biomedical knowledge, we have worked
with DISNET database information (diseases, symptoms, genes,
drugs, drug targets and their relationships have been studied).
Details regarding the typology of the data are in Table 2.

2.3. Pre-processing of DR cases

The pre-processing of repositioning cases needed to have liter-
ature concepts translated to the different codifications present in
DISNET. DISNET is the result of querying and mining different data
sources and, accordingly, it registers different vocabularies. Litera-
ture concepts were not normalized so they could not be found
directly in DISNET. Therefore, it was necessary to translate them
to DISNET’s vocabularies. For the analysis of the genes, symptoms
and categories, only the DR cases having this information were
kept. The complete process is summarized in Fig. 3.

From literature-extracted DR cases, we (i) obtained the UMLS
(Unified Medical Language System) Concept Unique Identifier
(CUI) identifying conditions: the original and new indications
described in the literature were searched in UMLS’ API [43] to
get their corresponding CUIs. The UMLS API retrieves CUIs when
searching by code or term, having a properly-authenticated user.



Fig. 1. DISNET’s 3-level database. Data are integrated in 3 layers: the phenotypical (in orange), the biological (in green) and the drugs layer (in pink). The figure provides
simplifications of the studied entities and data sources. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 2. Pipeline for the evaluation of DR triples. DR cases selected from the literature were pre-processed and then used for genes, symptoms, and categories analyses, in order
to confirm DISNET’s capacity to find new uses for existing drugs.
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In this study, the original and new literature concepts of each DR
case were searched. An ‘‘exact searchType” query was made,
retrieving only concepts that included a synonym that exactly
matched the search term. This process was carried out for each
publication to have the DR cases standardized (SM S2.UMLS_tri-
ples.xlsx, sheets ‘‘Xue et al.”, ‘‘Jarada et al.” and ‘‘Li et al.”). At this
point, (ii) the coincidences among them were checked and repeti-
tions were discarded keeping the unique triples (SM S2.UMLS_tri-
ples.xlsx, sheet ‘‘Unique Triples”).

We (iii) mapped this final list of normalized cases to DISNET
(SM S3.DISNET_triples.xlsx, sheet ‘‘DISNET Vocabularies”). Those
DR cases whose conditions corresponded to a disease in DISNET
were selected. Therefore, only the ones with a DISNET ID (identi-
fier) were maintained. CUIs allowed us to get gene and category
information. And the DISNET IDs helped to obtain the symptoms.
Finally, we (iv) deleted those cases without any information about
genes, symptoms, or drug-targeted genes.

The pre-processing result was a list of ‘‘Drug – Original Disease
(OD) – New Disease (ND)” triples (SM S3.DISNET_triples.xlsx, sheet
‘‘DISNET Final Triples”), namely DR triples. Each triple was com-
posed of: (i) the drug information (its name in the article and in
DISNET, and the ChEMBL ID); (ii) the OD information (its name
in the article, CUI and CUI Name, and DISNET ID and name) and
(iii) the ND information (its name in the article, CUI and CUI Name,
and DISNET ID and name).

It is important to highlight the difference between DR cases and
triples (Fig. 4). One DR case can be represented by multiple triples
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since one indication concept can be represented with different
CUIs or DISNET IDs. All the combinations were considered for the
present validation analysis. As there are different codifications in
the DISNET knowledge base, different vocabularies allowed us to
obtain the information needed: ChEMBL drug IDs led us to associ-
ated drug targets, disease CUIs led us to associated genes, and DIS-
NET IDs led us to associated symptoms.

2.4. Analysis of the genes

One of the ideas underneath DR is that the two diseases
involved in it may have some kind of relationship with the gene
that encodes the target for the repurposed drug. This gene would
be important in the molecular development, pathway, or etiology
of a disease, this being one of the main reasons to repurpose a drug
for a new disease. Pathway mapping is one of the current DR com-
putational methods, being based on drug or disease networks [2].
This hypothesis has been the basis of the present analysis, depicted
in Fig. 5.

We compared the genes shared between the original and new
disease in the DR triples. We also extracted drug protein targets
and their codifying genes. In this manner, we could detect if the
diseases in each DR triple shared the gene targeted by the DR triple
drug.

To measure and give weights to disease-gene associations
(GDAs) we used DisGeNET scores. Those scores are in-house
developed metrics reflecting how well established a particular



Table 1
Examination of the first 30 entries returned by Google Scholar’s search engine to
identify successful DR cases. We chose those publications that contained tables and
met the established conditions. In dark yellow, the papers finally used for the
validation analysis are indicated. In pale yellow, entries that accomplished the
established requirements but were referenced in the previous ones are depicted.
Entries are presented by order of appearance in Google Scholar.

Google Scholar entries Table with DR
examples

Valid
conditions

Xue et al., 2018 [3] X X
Jarada et al., 2020 [8] X X
Lotfi Shahreza et al., 2018 [19]
Brown and Patel, 2018 [20]
Luo et al., 2021 [21]
Novac, N., 2013 [22] X X
Hurle et al., 2013 [23]
Ashburn et al., 2004 [1] X X
Rameshrad et al., 2020 [24]
Turanli et al., 2018 [5] X
Corbett et al., 2012 [16] X
Ballard et al., 2020 [25]
Lima et al., 2020 [15] X
Turanli et al., 2021 [14] X
Dudley et al., 2011 [26]
Wilkinson and Pritchard, 2015

[27]
Shim and Liu, 2014 [7] X
Masuda et al., 2020 [17] X
Liu et al., 2013 [12] X
Li et al., 2016 [28]
Adasme et al., 2021 [29]
Ma et al., 2013 [30]
Oprea and Overington, 2015 [31]
Nzila et al., 2011 [32]
Yella et al., 2018 [33] X
Kharkar et al., 2014 [34]
Li and Jones, 2012 [18] X X
Chen et al., 2015 [35]
Yang and Agarwal, 2011 [36]
Frail et al., 2015 [13] X
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association is based on the current knowledge. Varying between 0
and 1, they give highest values to associations that are reported by
several databases, by expert-curated resources, and with large
numbers of supporting publications (https://www.disgenet.org/
dbinfo). DisGeNET scores were extracted for ‘‘Original disease –
Shared Target Gene” and ‘‘New disease – Shared Target Gene” asso-
ciations, in those DR cases that shared target genes.

At this stage, the goal was to verify if the scores in such DR cases
showed stronger associations than the average. That is, if target
genes involved in DR cases had a stronger association with their
OD and ND than the rest of DISNET GDAs. To assess the statistical
significance of the difference between association score values of
‘‘OD – Shared Target Gene” and ‘‘ND – Shared Target Gene”, and
all the other GDAs in DISNET, a Welch T-Test has been used. The
Welch T-Test is a two-sample location test that is used to test
the hypothesis that two populations have equal means having
the samples different variances and/or size [44].

Eventually, to confirm the differences between DR cases and
non-DR data, 10,000 random ‘‘Drug – OD – ND” triples that shared
the drug target gene were selected from all the possibilities present
in DISNET. The mean of their GDA scores was calculated and com-
pared with the GDA scores of the actual DR cases through a Welch
T-Test. This way, we could assess the reliability of new DR hypoth-
esis by using DISNET to check if they have higher GDA scores than
the randomly generated triples. It is noteworthy that the generated
triples share an association with a gene, which encodes the protein
that will be target to a drug. Such pathway is one of the many that
can be considered when generating new DR hypothesis. These
steps to compare actual DR and DISNET randomly-generated tri-
ples are schematically shown in Fig. 6.
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2.5. Analysis of the symptoms

At the phenotypical level, it has been proven that diseases that
share symptoms may share ‘‘something more”. Therefore, we have
analyzed the phenotypical similarity between diseases, to under-
stand whether two diseases involved in a DR case present higher
values of similarity than the rest of the diseases. This is, if when
looking at their symptoms, OD-ND pairs had a lower metric dis-
tance than other disease pairs in DISNET.

To calculate such distances between all disease combinations,
we have built Boolean symptom vectors. For each disease, we have
generated a vector in which each dimension represents the pres-
ence (1) or absence (0) of an associated symptom. Distance has
been measured between all combinations of vectors by means of
Jaccard index, which is computed as follows:
dJaccard A;Bð Þ ¼ 1� A\Bj j

A[Bj j, being A and B, the two symptom vectors

related to the two different diseases. Values of this coefficient close
to 0 represent two highly similar diseases phenotypical-wise,
whilst values that approximate to 1 would illustrate a more distant
disease pair.

A Welch T-Test was used to examine the statistical significance
of the phenotypical distance difference in the two disease pair sets:
DR OD – ND set and the rest of DISNET disease – disease (D – D) set.

2.6. Categorization patterns of the triples

Discovering patterns within the repositioning cases would help
in the discovery of new uses of existing drugs and shed light on
uncovered relationships. To this aim, different standards and clas-
sifications can help to generalize the multiple cases of DR. DISNET
includes several drug and disease classifications. For this study,
MeSH-PA Therapeutic Uses [45] and ICD-10-CM [46] were consid-
ered, respectively, and analysed in the different DR triples.

MeSH (Medical Subject Headings) is NLM’s (National Library of
Medicine) vocabulary to index PubMed and Medline publications
by drugs, chemicals, diseases, and other biomedical processes.
MeSH does not consistently link drugs to diseases or conditions
in an explicit manner. Nonetheless, it counts with a relevant Phar-
macological Action (PA) association which connects to therapeutic
uses which could be mapped to diseases/conditions and processes
[47].

ICD (International Classification of Diseases) is a global standard
used to classify and monitor causes of injury and death and to
identify health trends and statistics. DR ODs and NDs were classi-
fied according to ICD-10-CM (International Classification of Dis-
eases, 10th revision, Clinical Modification, https://www.cdc.gov/
nchs/icd/icd10cm.htm).
3. Results

Three main publications have provided the DR cases. Xue et al.
and Jarada et al. included a review of the important sources, chal-
lenges, and opportunities of DR computational approaches. Li and
Jones specifically focused on the potential of combining personal-
ized medicine and DR. The collection of successful DR cases
selected from the literature has been included in Supplementary
Materials (SM) section (S1.Literature_cases.xlsx). DR cases con-
sisted of the drug name, the condition (disease or symptom) for
which the drug was indicated, and the new indication for which
the drug was repositioned.

DR cases were pre-processed to perform the validation analysis.
The final number of cases considered was 79, as shown in Fig. 7.
Through the stages of the data pre-processing, we dismissed some
cases. Once we obtained the CUIs of the DR diseases, the repeated
cases were discarded. Only the unique cases among the three pub-
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Table 2
Summary of DISNET’s data typology. Entities and relationships are included. A description, DISNET layer, total count, the identifiers’ nature, data sources and accessed date are
provided.

Description DISNET layer Count Identifiers Sources Access date

Entities Diseases Data representing diseases Phenotypical 9225 DISNET own
identifiers

Wikipedia (https://www.
wikipedia.org/)Mayo
Clinic
(https://www.mayoclinic.
org/)PubMed
(https://pubmed.ncbi.
nlm.nih.gov/)

February 2018 – April
2021 (twice a month)

Biological 24,314 UMLS CUIs DisGeNET [38]
(https://www.disgenet.
org/)

May 2020

Symptoms Data representing symptoms and
phenotypical effects

Phenotypical 2248 UMLS CUIs Wikipedia
Mayo Clinic
PubMed

February 2018 – April
2021 (twice a month)

Genes Data representing genes Biological 20,610 NCBI
identifiers

DisGeNET May 2020

Proteins
and
Targets

Data representing proteins and drug
targets

Biological 18,521 UniProt
Accession
Numbers

UniProt [39]
(https://www.uniprot.
org/)

May 2020

Drugs 1594 ChEMBL
identifiers

ChEMBL [40]
(https://www.ebi.ac.uk/
chembl/)

May 2020

Drugs Data representing drugs of different
molecular types

Drugs 3944 ChEMBL
identifiers

ChEMBL May 2020

2540 DrugBank
identifiers

DrugBank [41] (https://
www.drugbank.com/)

May 2020

Relationships Disease -
Symptom

Associations between diseases and
their related symptoms

Phenotypical 211,362 – Wikipedia
Mayo Clinic
PubMed

February 2018 – April
2021 (twice a month)

Disease -
Gene

Associations between diseases and
their related genes

Biological 358,209 – DisGeNET May 2020

Gene -
Protein

Associations between genes and the
proteins they encode

Biological 15,770 DisGeNET May 2020

Drug -
Disease

Associations between diseases that are
indications for drugs and drugs

Drugs 628,036 – CTD [42]
(http://ctdbase.org/)

May 2020

Drug -
Target

Associations between drugs and the
targets to which they are directed

Drugs 7727 – ChEMBL May 2020
DrugBank December 2020

Fig. 3. Data pre-processing pipeline. Once the CUIs of the literature concepts were extracted, repeated cases were discarded. DISNET registers different codifications, thus,
literature concepts needed to be translated to their vocabularies in order to carry out the validation analysis. Furthermore, diseases and drugs in the DR cases must fulfil other
conditions: they should have at least one associated gene and symptom, and at least one associated target gene, respectively.
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lications were used. We also deleted the cases that did not have the
information needed for the analyses in the DISNET knowledge base
(information about genes, symptoms or drug targets).

Moreover, the numbers of DR triples through pre-processing
final stages are indicated in Table 3. As previously explained, one
case could correspond to several triples on account of the different
codifications present in DISNET.

To summarize, the current study was performed with 79 suc-
cessful DR cases which were disaggregated in 247 different triples
composed of combinations of 40, 34, and 53 different drugs, origi-
nal and new diseases, respectively. Among the final 79 cases, every
‘‘OD – ND” pair shared genes except five. Furthermore, 46 pairs
shared the gene that encodes the target protein of the correspond-
ing repositioned drug.
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To analyse the distribution of GDA scores in both DR cases and
in DISNET in general, we have included Fig. 8. It represents the
scores of the associations ‘‘OD – Shared Target Gene” and ‘‘ND –
Shared Target Gene” from the actual DR cases, and the associations
‘‘DISNET Disease – Gene” from other DISNET diseases. Relative
densities of the GDA scores in each disease set (ODs for ‘‘Original
Diseases”, NDs for ‘‘New Diseases” and DISNET Ds for all the other
DISNET diseases not encompassed in the previous two) have been
depicted along with their mean values (0.32 for ODs, 0.23 for NDs,
and 0.14 for DISNET Ds).

As it can be observed in Fig. 8, ODs and NDs associations with
their target genes show stronger connections than DISNET’s aver-
age. The statistical significance of such difference between DR
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Fig. 4. DR cases vs DR triples. Through data pre-processing, DR cases are transformed to DR triples. One DR case can correspond to different DR triples due to the different
codifications present in DISNET.

Fig. 5. Hypothesis for evaluating DR cases based on gene analysis. The original and new diseases involved in DR would share (within others) the gene that encodes the drug
target.
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Fig. 6. Comparing GDA scores from DISNET randomly-selected vs actual DR triples. From all the possible ‘‘Drug – OD – ND” triples that share a drug target gene (in purple)
allocated in DISNET, 10,000 were randomly selected to calculate the mean of their GDA scores. The results were compared with actual DR triples via Welch T-Test. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Evolution of the successful DR cases through the pre-processing. In grey, Xue et al. included 137 cases, Jarada el at., [26], and Li and Jones, [11]. In orange, we searched
the CUIs of literature concepts (127, 22, 8) and dropped those without them. In blue, DR cases were normalized, and we selected non-repeated ones (144). In nude, we deleted
13 repetitions. In purple, we mapped the unique cases to DISNET (16) and, finally, in green, picked those with genes, symptoms, and drug target genes data to fulfil the
validation analysis (79). In pink, those cases lost through the stages have been indicated (82). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 3
Evolution of successful DR triples through the pre-processing. The unique number of
drugs, original and new diseases, and the total number of triples are indicated in each
stage starting from the unique ones to the final. Header colours correlate with stages
in Fig. 7.

Unique DISNET Final

Triples 789 367 247
Drugs 69 42 40
ODs 68 37 34
NDs 91 58 53
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and DISNET’s mean GDA score was confirmed by aWelch T-Test for
each pair of distributions.

The obtained result (p-values <0.05) confirmed that null
hypotheses (that is, ‘‘means are equal”) were false. Since higher
values of the score illustrate stronger gene-disease relationships,
associations of DR diseases with shared drug target gene seemed
to be more intense than the others in DISNET, given that the means
DR GDA scores were greater and statistically significant.

A total of 10,000 ‘‘Drug – OD – ND” combinations of dis-
eases sharing associations to a target gene connected to the



Fig. 8. GDA scores’ distributions. [A] Comparing GDA scores’ relative densities in each disease set. In red, GDA scores distributions of ‘‘Original Disease – Shared Target Gene”
associations. In green, ‘‘New Disease – Shared Target Gene” associations. In blue, all the rest of ‘‘DISNET Disease – Gene” associations. The vertical lines indicate the mean for
each group: 0.32, 0.22, and 0.14, respectively. Probability density functions have been generated by means of Kernel Density Estimation (KDE). [B] Comparing DISNET vs DR
diseases GDA scores distributions. DISNET diseases (DISNET Ds) are coloured in blue and DR diseases (DR ODs and NDs) in gold. Medians are represented with vertical black
lines in the boxes and means with white circles. Outlier points are depicted by diamonds. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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drug, were randomly generated from DISNET data. GDA score
distributions in both sets of triples have been represented in
Fig. 9.

In both parts of Fig. 9, it can be observed that actual DR triples
presented higher GDA scores than randomly generated ones. To
prove the statistical significance of such a difference, the T-Tests
depicted were performed separating ODs and NDs. Both DR ODs
and NDs had relevant greater GDAs than DISNET random ODs
and NDs, yet ODs seemed to present higher GDA scores than NDs.

From a symptomatology point of view, we have studied the
phenotypic similarity of the repositioning diseases compared to
4566
DISNET’s. Among the 79 DR cases, all the OD – ND pairs had symp-
toms in common except two. Distance distributions of OD – ND
pairs and the rest of DISNET’s ‘‘Disease – Disease” (D – D) pairs rep-
resented in Fig. 10.

The repositioning diseases appeared to be phenotypically more
similar than the rest of DISNET’s, as shown in Fig. 10. Diseases that
share symptoms and that are, thereby, phenotypically more simi-
lar, would show distance values closer to 0. We confirmed that
DR disease-pairs were phenotypically more alike with a statistical
significance than the rest of disease-pairs in DISNET by a Welch T-
Test (obtaining a p-value <0.05).



Fig. 9. GDA score distributions in actual DR and random DISNET triples. [A] Comparing actual DR ODs and NDs vs randomly-selected DISNET ODs. [B] Comparing ODs vs NDs
distinguishing actual DR triples vs randomly-selected DISNET triples. ODs and NDs diseases sets are differentiated in the Y axis. In both subfigures, actual DR triples are
coloured in green and random DISNET triples are coloured in grey. Medians are represented with vertical black lines in the boxes and means with white circles. Outlier points
are depicted by diamonds. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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To discover patterns within the DR cases, we extracted the drug
and disease categories of the final set (Fig. 11). Drug categories
from MeSH-PA Therapeutic Uses are shown in Fig. 11[A]. Out of
the 40 different drugs in the final studied triples, 32 had an associ-
ated categorization. One drug may belong to several categories.
The most repeated classes among repositioned drugs were ‘‘Central
Nervous System Agents” (22%), ‘‘Antineoplastic Agents” (16%) and
‘‘Antirheumatic Agents” (14%). The 247 DR final triples included a
total of 34 different ODs and 53 different NDs. Fig. 11[B] presents
the ICD-10-CM category frequencies of OD and ND, separately.
‘‘F00-F99 (Mental and behavioural disorders)” (17%), ‘‘I00-I99 (Dis-
eases of the circulatory system)” (16%) and ‘‘G00-G99 (Diseases of
the nervous system)” (13%) are the most frequent classes for
ODs, in that order. NDs are principally classified after ‘‘C00-D48
(Neoplasms)” (25%), followed by ‘‘M00-M99 (Diseases of the
musculoskeletal system and connective tissue)” (16%) and ‘‘F00-
F99 (Mental and behavioural disorders)” (14%).
4567
Moreover, in Fig. 12 we show the class frequency of OD – ND
pairs in DR triples. The most recurrent case has been seen to be
of a drug initially used to treat a ‘‘M00-M99 (Diseases of the mus-
culoskeletal system and connective tissue)” disease that is reposi-
tioned to a ‘‘C00-D48 (Neoplasms)”. Most of the drugs that are
related to this OD – ND category pattern belong to the ‘‘Antirheu-
matic Agents” MeSH-PA Therapeutic Uses class. Other relevant pat-
terns would be ‘‘C00-D48 (Neoplasms)” – ‘‘A00-B99 (Certain
infectious and parasitic diseases)” and ‘‘L00-L99 (Diseases of the
skin and subcutaneous tissue)” – ‘‘C00-D48 (Neoplasms)”.

4. Discussion

In this work, we have proposed a complete methodology to
analyse the suitability of new potential DR cases by means of
biomedical data integration. For such validation, we have first col-
lected a series of previously demonstrated cases of successful DR



Fig. 10. Distribution of symptom-based disease distance in each disease-pair set. DISNET disease pairs are coloured in blue, whilst diseases involved in DR are coloured in
gold. The entire distribution range is represented in the upper part of the figure. Diamonds depict outlier points. The lower part zooms in the region of the X axis where both
distributions are enclosed, discarding outliers. Medians are represented with vertical black lines in the boxes and means with white circles. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. Categories of the drugs and diseases in DR triples. [A] MeSH-PA Therapeutic Uses categories of the repositioned drugs. In the Y-axis, classes are represented. In the X-
axis, the percentage of drugs in each group is indicated. [B] ICD-10-CM categories of ODs and NDs. In the Y-axis, disease classes are represented, while X-axis indicates the
percentage of diseases in each group. In red, the frequency of ODs categories from the final DR triples. In green, NDs. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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from the literature. Once normalized to DISNET codifications, we
have analysed 3 aspects of our data: the genes, the symptoms,
and the categories. We will start this section discussing the results
obtained in each of them.
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The gene analysis has provided us a clear perspective of the dis-
tributions of GDA scores when comparing different disease sets. On
the one hand, we have compared GDA scores of DR ODs and NDs vs
GDA scores of all DISNET diseases. The results (both the represen-



Fig. 12. ICD-10-CM category frequencies of OD – ND pairs in DR triples. Heatmap showing from which type of disease and to which type a drug is most frequently
repositioned.
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tations and statistical tests in Fig. 8) have suggested that diseases
that participate in known DR cases tend to have greater associa-
tions with the target gene of the repurposed drug, than the rest
of GDAs in DISNET. That is, when it comes to suggest new DR cases,
we would rather first pose hypotheses that involve diseases whose
GDA scores with the drug target gene are higher than the average.

On the other hand, we have compared actual DR ODs and NDs
vs DISNET randomly selected triples. The aim here was to prove
whether, going a step further and imposing the condition of the
two DISNET diseases sharing the drug target gene, the differences
between the two sets were still significant. The results obtained
in terms of visual representations and statistical tests (Fig. 9) have
suggested so, meaning that diseases implicated in actual known DR
cases have again a stronger connection to the drug target gene than
randomly generated triples. Even when the diseases from random
triples share the drug target, real DR cases still show significantly
higher GDA scores.

It is worth mentioning that ODs have shown slightly stronger
linkage to drug target genes than NDs in the two parts of the gene
analysis. This may be due to the nature of drug development: the
indication to which the drug was originally developed for, could
be more highly related to the drug target than the disease to which
the drug was repositioned. Be that as it may, it can also be relevant
when bringing on the new DR hypotheses. We will keep this in
mind and consider that the GDA scores between ODs and the drug
target gene may be greater than for NDs.

Regarding the symptom analysis, we have studied the pheno-
typical resemblance of disease pairs in two sets (DR OD – ND
and DISNET D – D), with the purpose of determining whether dis-
eases involved in a repositioning process presented higher similar-
ity than the rest of DISNET diseases. We have employed Jaccard
distance to measure symptom-sharing between diseases: such
metric coefficients range from 0 to 1, giving lower values to those
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diseases that phenotypically relate the most. For this reason,
resulting Jaccard coefficient distributions can provide insights
(both via graphic visualization and statistical test in Fig. 10) of
the relationships stablished between DR and not-DR diseases. We
can observe that those diseases participating in DR cases have a
distribution moderately shifted to the left, that is, closer to 0 and
thus phenotypically more similar. The statistical significance of
the difference between the two sets was confirmed, suggesting
that, when generating a new DR hypothesis, those ODs – NDs with
higher phenotypic similarity should be acknowledged at first.

In order to identify patters in the categorization of triples and
understand which classes predominate along ODs, NDs and drugs
in repositioning cases, we have carried out a category analysis.
ODs and NDs have been classified with ICD-10-CM, and drugs,
according to MeSH-PA Therapeutic Uses. We have seen that in
the final DR triples used for the study there has been a trend: most
repositioned drugs are classified after ‘‘Central Nervous System
Agents”. However, this class is the most frequent one in DISNET,
consistent with the results obtained, and consequently not as
informative as other examples. For instance, ‘‘Antirheumatic
Agents”, which are not as frequent in DISNET, are presented in
third place in Fig. 11, suggesting that this kind of drugs may be
important in repurposing processes. Furthermore, in most
repeated category patterns of OD – ND pairs (Musculoskeletal –
Neoplasms, Fig. 12), the majority of drugs that are repurposed from
one indication class to another, are antirheumatic treatments,
stressing the relevance of this category.

There are some non-represented classes both for drugs and dis-
eases. In the case of repurposed drugs, triples did not include
‘‘Anti-Allergic”, ‘‘Hematologic”, ‘‘Lipid Regulating”, ‘‘Pharmaceuti-
cal”, ‘‘Radiation-Sensitizing”, ‘‘Renal” and ‘‘Smoking Cessation”
agents. In the case of diseases, ‘‘D50-D89 (Diseases of the blood
and blood-forming organs and certain disorders involving the
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immune mechanism)”, ‘‘H00-H59 (Diseases of the eye and
adnexa)”, ‘‘H60-H95 (Diseases of the ear and mastoid process)”,
‘‘O00-O099 (Pregnancy, childbirth and the puerperium)”, ‘‘P00-
P96 (Certain conditions originating in the perinatal period)” had
no representation in DR triples. Nevertheless, this also provides
useful information: some classes are less likely to participate in a
DR case, and this should be kept in mind when putting forward
new hypothesis.

The novelty of the proposed work lies in the fact that it unveils
the differences at the genetic, phenotypical and categorization
levels between those data that are related to actual known cases
that have been successful in DR and other data not yet acknowl-
edged to be related to DR. Presenting the evidenced differences
between DR and non-DR data, would allow us in a future to eval-
uate and prioritize cases when generating new DR hypotheses.
To generate such new DR hypotheses multiple methods could be
used (some examples can be found at [10,11,48–53]). While other
popular DR methods place their attention in either disease, gene or
drug signatures [54], the results obtained in the present work
would aid in the task of selecting those possible candidates in
terms of providing a confidence statistical score (i.e., a p-value),
which depicts the potential of the hypothetical case both from a
genetic and phenotypic point of view. Moreover, we have dis-
played the patterns in drugs and diseases (original and new indica-
tions) classes in those cases known to be successful repositioning
stories.

To exemplify some of the most representative DR cases, we will
now discuss them and their information from DISNET. Examining
the 46 cases (59 triples) that shared drug target genes, further lit-
erature research was done for 8 of them as described in Table 4. In
SM section (S7.DR_validation_summary.xlsx, sheet ‘‘DR Cases
Numbers”), an extensive table with all the cases has been included.
The selected cases had GDA scores higher than 0.13 (DISNET’s aver-
age), and they also shared symptoms. DISNET stores information
about the gene that encodes the target of the drug, as well as the
type of action exerted by the drug on the target. Below, we have
explained the role of such gene in each DR case. We have also
included the information regarding each drug provided (when pos-
sible) by the Connectivity Map (CMap) [54] web application, CLUE
Repurposing tool. The categories of these top 8 DR cases are shown
in Table 5.

Celecoxib is an inhibitor of cyclooxygenase 2 (COX-2). COX-2 is
an enzyme responsible for inflammation and pain [55]. Rheuma-
toid Arthritis (RA) and breast cancer shared the gene that encodes
this enzyme, among 510 other genes, and a mean of 4.83 symp-
toms. Both are associated with COX-2 with a 0.4 GDA score, signif-
icantly higher than DISNET’s average, denoting a strong
relationship. In RA its inhibition reduces inflammation processes
and has analgesic activity without adverse upper gastrointestinal
tract effects [56]. Furthermore, COX-2 expression is associated
with angiogenesis and lymph node metastasis in human breast
cancer [57]. Celecoxib may stop the growth of tumour cells by
blocking the enzymes and stopping blood flow to the tumour
[58]. This drug, classified as an antirheumatic agent, is repositioned
from a musculoskeletal disease to a neoplasm (Table 4), being an
example of the most recurrent type of DR case, as shown previ-
ously in Fig. 12.

Etanercept is a tumour necrosis factor-alpha (TFN-a) inhibitor.
TFN-a competitively binds to a proinflammatory cytokine and pre-
vents interactions with its cell surface receptors. RA and asthma
have in common 15 symptoms and 295 genes. They share five
genes that encode targets of Etanercept: Fc fragment of IgG recep-
tor IIa (FCGR2A), IIIa (FCGR3A), and IIIb (FCGR3B), lymphotoxin
alpha (LT-a), and tumour necrosis factor (TNF-a). Only the associ-
ation with the last one exceeds DISNET’s average with GDA scores
of 0.7 and 0.4, respectively. In RA, excessive production of TFN-a, in
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the synovial fluid and the serum, causes chronic inflammation, tis-
sue damage, and immoderate keratinocyte proliferation [59].
Otherwise, in patients with severe asthma, TFN-a high levels have
been found in bronchial biopsies and induced sputum [60]. The
mechanism behind these observations has not been fully enlight-
ened but it could be caused by a direct effect of TNF-a on airway
smooth muscle or by the release of the cysteinyl-leukotrienes
LTC4 and LTD4 [61]. Etanercept is englobed in the most recurrent
MeSH-PA category: ‘‘Antirheumatic Agents” (22%).

Finasteride is a steroid 5-alpha-reductase (SRD5A) inhibitor
that blocks the conversion of testosterone to dihydrotestosterone.
Normal and abnormal growth of the prostate is dependent on
the presence of hormones and growth factors pointing out dihy-
drotestosterone. The number of symptoms and genes in common
between benign prostatic hyperplasia (BPH) and hair loss is
lower: 3.33 and 6. At any rate, the gene that encodes SRD5A2 is
shared, being the GDA scores 0.4 (OD) and 0.34 (ND). In BHP, the
inhibition of steroid 5-alpha-reductases decreases the prostate
size, thereby reducing the risk of acute urinary retention [62]. In
the case of hair loss, dihydrotestosterone is the cause for androge-
netic alopecia so the ingest of Finasteride promotes scalp hair
growth and prevents further hair loss [63]. From a category stand-
point, this DR case is not that common, since it is formed by a uro-
logical agent (6%), a genitourinary disease, and a skin disease.

Infliximab is a monoclonal antibody against TNF-a. Crohn’s
Disease and RA share 8 symptoms and 11 genes being TNF-a
one of them. Both GDA scores have a value of 0.4. Crohn’s Disease
is characterized by segmental transmural inflammation and gran-
ulomatous lesions of the intestinal mucosa, and this drug appeared
to be useful in patients with fistulas. In RA, infliximab binds with
high affinity to both soluble and transmembrane TNF being able
to reduce synovial inflammation, bone resorption, and cartilage
degradation [64]. Infliximab is an antirheumatic agent reposi-
tioned from a digestive disease to a musculoskeletal one, the sec-
ond more frequent type of ND.

Leflunomide is an agonist of aryl hydrocarbon receptor (AhR).
AhR is a ligand-activated transcription factor that controls the tox-
icity and activity of dioxins and related chemicals. It plays an
important role in cellular growth, differentiation processes, [65]
and immune diseases. RA and prostate cancer are related by 9
symptoms and 36.4 genes. They are both associated with AhR with
a GDA score of 0.37. AhR activation contributes to several aspects
of Rheumatoid Arthritis pathogenesis: differentiation into Th17
cells from naïve T-cells; inflammation, angiogenesis, and cartilage
destruction; production of proinflammatory cytokines; and osteo-
clastogenesis [66]. On the other hand, AhR has been shown to act
as a tumour suppressant in animal models of cancer such as pros-
tate and liver cancers, inhibiting the proliferation of cells through
different mechanisms [67]. This DR case is once again, of the most
frequent types of repositioning: from a musculoskeletal disease to
a neoplasm. The drug is not classified under a MeSH-PA Therapeu-
tic Uses category.

Perindopril is an angiotensin-converting enzyme (ACE) inhibi-
tor. Hypertension (HT) and Alzheimer’s Disease (AD) have in
common 13 symptoms and 211 genes, being one ACE. The GDA
scores are 0.6. Its inhibition improves endothelial dysfunction
and prevents cardiac remodelling, being indicated for HT [68].
Otherwise, ACE is overexpressed in the hippocampus, frontal cor-
tex, and caudate nucleus of AD patients. The treatment with
perindopril has slowed down the rate of cognitive decline in
patients that also have HT [69]. ‘‘Circulatory – Nervous” are quite
recurring cases in DR.

Raloxifene is a selective estrogen receptor modulator (SERM)
that works as an estrogen agonist in bone, and as an antagonist
in breast and uterine tissues. Breast cancer and osteoporosis are
connected by 4 symptoms, and estrogen receptors 1 (ESR1) and 2



Table 4
Top 8 DR cases that share drug target genes. The GDA scores are higher than DISNET’s mean (0.13) for both ODs and NDs. Cases with more than one gene in common have the one
with the score above the mean underlined. Since one DR case can have many DR triples, columns ‘‘N� of symptoms in common” and ‘‘N� of genes in common” represent the mean
number of symptoms and genes per DR case. Information regarding CLUE Repurposing is also provided when possible.

Drug OD ND N� of
symptoms
in
common

N� of
genes in
common

Target gene/s shared by the DR diseases CLUE Repurposing

Celecoxib Rheumatoid
Arthritis

Breast
cancer

4.83 510 Prostaglandin-endoperoxide synthase 2 (PTGS2/
COX-2)

Indications for celecoxib:
osteoarthritis, rheumatoid arthritis,
ankylosing spondylitis, primary
dysmenorrhea.

Etanercept Rheumatoid
Arthritis

Asthma 15 295 Fc fragment of IgG receptor IIa (FCGR2A), IIIa
(FCGR3A) and IIIb (FCGR3B), lymphotoxin alpha
(LT-a) and tumour necrosis factor (TNF-a)

–

Finasteride Benign
prostatic
hyperplasia

Hair loss 3.33 6 Steroid 5 alpha-reductases 1 (SRD5A1) and 2
(SRD5A2)

Indication for finasteride: androgenetic
alopecia

Infliximab Crohn’s
Disease

Alzheimer’s
Disease

8 111 Tumour necrosis factor (TNF-a) –

Leflunomide Rheumatoid
Arthritis

Prostate
cancer

9 364 Aryl hydrocarbon receptor (AhR) Indication for leflunomide: rheumatoid
arthritis

Perindopril Hypertension Alzheimer’s
Disease

13 211 Angiotensin I converting enzyme (ACE) Indications for perindopril:
hypertension, myocardial infarction,
coronary artery disease (CAD)

Raloxifene Breast cancer Osteoporosis 4 147 Estrogen receptors 1 (ESR1) and 2 (ESR2) Indications for raloxifene:
osteoporosis, breast cancer

Requip Parkinson
Disease

Restless leg
syndrome

16 11 Dopamine receptor D3 (DRD3) Indications for requip: Parkinson’s
Disease, restless leg syndrome

Table 5
Categories of the top 8 DR cases. Drug MeSH-PA therapeutic uses classification and
disease ICD-10-CM categories.

Drug (MeSH-PA
Therapeutic Uses
category)

OD (ICD-10-CM category) ND (ICD-10-CM
category)

Celecoxib
(Antirheumatic
Agents)

Rheumatoid Arthritis
(M00-M99:
Musculoskeletal)

Breast cancer (C00-
D48: Neoplasms)

Etanercept
(Antirheumatic
Agents)

Rheumatoid Arthritis
(M00-M99:
Musculoskeletal)

Asthma (J00-J99:
Respiratory)

Finasteride
(Urological
Agents)

Benign prostatic
hyperplasia (N00-N99:
Genitourinary)

Hair loss
(L00-L99: Skin)

Infliximab
(Antirheumatic
Agents)

Crohn’s Disease (K00-
K93: Digestive)

Rheumatoid Arthritis
(M00-M99:
Musculoskeletal)

Leflunomide (–) Rheumatoid Arthritis
(M00-M99:
Musculoskeletal)

Prostate cancer (C00-
D48: Neoplasms)

Perindopril
(Cardiovascular
Agents)

Hypertension (I00-I99:
Circulatory)

Alzheimer’s Disease
(G00-G99: Nervous)

Raloxifene (–) Breast cancer (C00-D48:
Neoplasms)

Osteoporosis (M00-
M99: Musculoskeletal)

Requip (Central
Nervous System
Agents)

Parkinson’s Disease
(G00-G99: Nervous)

Restless leg syndrome
(G00-G99: Nervous)
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(ESR2) genes, among 145 others. Raloxifene’s ingest reduces the
risk of fractures, improves the lipid profile, protects the breast,
and provides uterine safety. It simulates the effects of estrogens
on bone, increasing bone density [70]. Otherwise, it inhibits
estrogen-dependent proliferation of human breast cancer cells
[71]. Raloxifene is not classified under MeSH-PA Therapeutic Uses.
This OD and ND combination has representation in DR.
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Requip, also known as ropinirole, is a non-ergoline dopamine
agonist. Dopamine receptors are G protein-coupled receptors that
participate in motor activity, regulation, and several neurological
disorders [72]. Ropinirole has the highest affinity for D3 receptors,
which are concentrated in the limbic areas of the brain and may be
responsible for some neuropsychiatric effects [73]. Parkinson’s
Disease (PD) and restless leg syndrome (RLS) share the highest
number of symptoms: 16. Among the genes in common, they share
the dopamine receptor D3 with a GDA score of 0.2. This drug reliefs
PD and RLS symptoms by stimulating dopamine receptors, even
though its exact mechanism of action is still unknown. Central Ner-
vous System Agents are the most frequent drugs in DR (22%). Repo-
sitioning between nervous diseases has been repeated too.
5. Conclusions

The current manuscript has presented a new methodological
pipeline for the potential generation of new DR hypotheses by
means of integrating biomedical knowledge. The main conclusion
of this work is that such type of data (in particular, we have used
DISNET integrated data) could be considered and used to suggest
novel potential repurposing cases. We mainly state this conclusion
because: i) actual well-known DR cases show significant differ-
ences with other non-DR data regarding their gene and symptom
similarities; and ii) DISNET provides known DR-related informa-
tion important to the repurposing process (e.g., the drug target
gene related to DR-involved diseases).

Other conclusions derive from the previous. The analysis of
genes, symptoms and categories can provide hints on which DR
cases should be prioritized or given more attention. The gene anal-
ysis has confirmed that the diseases participating in DR processes
present higher associations with drug target genes than the rest
of DISNET GDAs. The symptom analysis has demonstrated that dis-
eases involved in a DR case are phenotypically more similar (in
terms of shared symptoms) than the rest of DISNET phenotypical
disease relationships. And the category analysis has suggested that
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the classes of repositioned drugs and DR diseases frequently follow
some specific patterns. These three analyses will allow us to build
better hypothetical DR cases in the future through DISNET knowl-
edge. The differences shown between all DISNET data and actual
DR data are key to discern those novel hypotheses.

Nonetheless, we have identified some limitations in the present
analysis. The main one would be the difficulties found when inte-
grating and interoperating with heterogeneous biomedical data
coming from many different sources. The entities in our data differ
in identification codes, hindering the discovery of plausible DR
hypothesis. Although DISNET already works as a good integrating
platform and has been successful for the proposed methodology,
we are planning on semantizating DISNET’s biomedical informa-
tion in order to improve data integration. We have also detected
that not having a disease – symptom association score (analogous
to GDA scores) might signify a drawback. If we could weight such
relationships, finer results could be drawn. Moreover, we have to
state some potential drawbacks that should be considered when
employing data-driven techniques for DR. Certain drugs might
act through a different target that is not observed when treating
the original indication. In these cases, some candidates could be
overlooked and not prioritized, as the new and original indication
would not share targets. Or even the definition of the target could
be incorrect in some cases. More insights could be obtained by
using tools as Connectivity Map analyses. In addition, an experi-
mental in vitro or in vivo validation would be needed afterwards,
in order to further test the prioritized candidates for the new
indications.

Other future lines of this study would include expanding our set
of known DR triples by covering other sources. These could be both
scientific publications data and/or direct DR databases, as long as
they satisfy the aforementioned requirements. Once proposed this
approach for evaluating DR cases, the next step that we would like
to implement, would be to directly use DISNET for suggesting new
indications for already-existing drugs. That is, targeting drug
repurposing.
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