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Abstract

Background

Major depression is a common comorbidity in cancer patients. Oncology clinics lack practi-

cal, objective tools for simultaneous evaluation of cancer and major depression. Fludeoxy-

glucose F-18 positron emission tomography–computed tomography (FDG PET/CT) is

universally applied in modern medicine.

Methods

We used a retrospective analysis of whole-body FDG PET/CT images to identify brain

regional metabolic patterns of major depression in multiple myeloma patients. The study

included 134 multiple myeloma (MM) patients, 38 with major depression (group 1) and 96

without major depression (group 2).

Results

In the current study, Statistic Parameter Mapping (SPM) demonstrated that the major

depression patient group (n = 38) had significant regional metabolic differences (clus-

ters of continuous voxels) as compared to the non-major depression group (n = 96) with

the criteria of height threshold T = 4.38 and extent threshold > 100 voxels. The five sig-

nificant hypo- and three hyper-metabolic clusters from the computed T contrast maps

were localized on the glass-brain view, consistent with published brain metabolic

changes in major depression patients. Subsequently, using these clusters as features

for classification learner, the fine tree and medium tree algorithms from 25 classification

algorithms best fitted our data (accuracy 0.85%; AUC 0.88; sensitivity 79%; and speci-

ficity 88%).
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Conclusion

This study demonstrated that whole-body FDG PET/CT scans could provide added value

for screening for major depression in cancer patients in addition to staging and evaluating

response to chemoradiation therapies.

Introduction

Major depression is one of the most common mental illnesses in the world. The Global Burden

of Diseases, Injuries, and Risk Factors Study 2017 (GBD 2017) reported that depressive disor-

ders moved up to one of the leading causes of YLD (years lived with disability) in 2017 with an

estimated 264 million people suffering from depression [1]. Exacerbation of depression often

happens in a setting of a comorbidity, particularly in cancer patients. Approximately 1 in 4

cancer patients experience major depression [2]. Patients with a history of depression are also

more susceptible to relapse when they are diagnosed with cancer. Depressive disorders fre-

quently compromise cancer treatments leading to increased mortality rates by up to 39% [3].

Several pathways may result in the symptoms that lead to the consideration of depression,

including disruption in serotonin/dopamine pathways, the experience of loss or anticipated

loss, direct side effects of chemotherapy medications, presence of tumors in the central ner-

vous system, poorly managed pain, disruption of sleep due to medical treatments, and anemia

[4].

Screening, assessing, and appropriately managing depression is essential in advanced can-

cer care. Simplified questionnaires, for instance, the Hospital Anxiety and Depression Scale

(HADS), the nine-item Patient Health Questionnaire (PHQ-9), the Distress Thermometer, or

the Impact Thermometer can be useful in screening for depression. However, the performance

of these tools highly depends on professional experience and communication skills to make

patients willing to share their feelings. An objective, reliable, and measurable method would be

ideal for assessing a cancer patient’s mental status. Positron emission tomography–computed

tomography (PET/CT), a functional molecular modality, can assess cell and tissue functional

changes [5], in particular with modern scanners, which have the capability of highly specific,

accurately localized, reliable quantitative measurements of tissue concentration of tracers. Pio-

neer publications revealed brain regional metabolic changes between healthy subjects and

patients with depression [6–8]. As new quantitative methodologies have been developed, for

instance, Statistical Parametric Mapping (SPM) [9], there have been meta-analysis publications

mapping metabolic changes of brain cluster voxels in major depressive disorder patients [10–

13].

F-18 FDG PET/CT is increasingly playing a more critical role in staging, assessing treat-

ment response, and surveillance, in particular multiple myeloma [14]. Tashiro et al explored

metabolic changes of cancer patient’s brains to reflect various psychological factors [15–17].

However, challenges remain evident since there are many confounding factors, including ther-

apies [18, 19]. The University of Arkansas for Medical Sciences (UAMS) is one of leading Mul-

tiple Myeloma centers with the largest archived FDG PET/CT database. Multiple myeloma is a

cancer, which derives from plasma cells, and accumulates in the bone marrow leading to bone

pain and anemia. A survey by Lamers et al. showed that approximately 24% of multiple mye-

loma patients reported symptoms of depression [20]. To minimize the effects of confounder

variables, we selected multiple myeloma patients with or without major depression from the

FDG PET imaging database at the ratio of approximately one to three (depression vs. non-
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depression). Using SPM and Matlab machine learning toolboxes, we identified clusters with a

significant difference between the two groups and used the clusters as candidates of features

for machine learning. In this current study, we explored predictive models to identify major

depression cases from multiple myeloma patients.

Materials and methods

Subjects

The study’s inclusion criteria included, using ICD 10 coding terminology, patients diagnosed

with multiple myeloma. Clinical data, including demographics and comorbid medical condi-

tions, were extracted from UAMS clinical data repository and confirmed by the patient’s chart

review. Using UAMS’ FDG PET/CT imaging database from 2010 to 2019, we excluded

patients with brain lesion or misregistration secondary to head motion during FDG PET

image acquisition. The resulting study cohort included 138 patients that met the study criteria,

divided into two groups. Group 1 (D) included 38 patients that have both multiple myeloma

and major depression, and Group 2 (Control) included 96 patients that have multiple mye-

loma without major depression, (Table 1). This study was reviewed and approved by UAMS

IRB (Protocol Number: 217785; PI: Xiaofei Wang).

PET images

Following the procedure standard for tumor imaging with FDG PET/CT of the Society of

Nuclear Medicine Molecular Imaging (SNMMI), patients fasted for at least 6 hours prior to

the scan. The serum glucose level was checked before the FDG dose injection with the cutoff

200 mg/dL. Intravenous administration of 12–18 mCi (444–666Mbq) of 18F-FDG was per-

formed in a quiet, warm, dimly lit room; however patients were not blindfolded. After approx-

imately 60 minutes of uptake, a whole-body PET/CT scan was performed. Images from 2010

to 2015 were acquired on either a CTI-Reveal or a Biograph 6 PET/CT system (Siemens Medi-

cal Systems), both with full ring LSO crystal configurations (3 min/bed). PET images were gen-

erated by three-dimensional (3D) iterative reconstruction on a 168 × 168 matrix, with a zoom

of 1.0, FWHM filter of either 5.0 or 6.0 mm, and two iterations with eight subsets. Images

from 2015 to 2019 were acquired on Discovery IQ (GE Medical System) with 5-ring BGO-

based detector blocks and 16-slice CT (2 min/bed). Images were reconstructed using two prin-

ciple algorithms, VUE-point HD with point-spread-function modeling (VPHDS) and Q.Clear

(QCHD) on a 192 x 192 matrix. CT data were used for anatomic localization and attenuation

correction.

Table 1. Demographic characteristics of multiple myeloma patients with and without depression.

Characteristic Depression (n = 38) Control (n = 96) Statistical Significance

(p value)

Sex (M:F) 17:21 52:44 0.34�

Age (year) (mean ± SD) 53 ± 7.4 55 ± 5.6 0.13+

Serum Glucose (mean ± SD) 100.5 ± 21.9 101 ± 19.1 0.8+

Diabetes (Yes:No) 4:34 9:87 1�

Plus-minus values are mean ± standard deviation. The p-value was calculated with the use of a Fisher exact test
�

or unpaired t-test+.

https://doi.org/10.1371/journal.pone.0251026.t001
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Brain voxel based analysis

FDG brain images were extracted from the whole-body FDG PET/CT attenuation corrected

images using Sectra stack tool, exported as DICOM files, and converted to analyze files (NifTI

format) for subsequent post processing. The images were subjected to affine and nonlinear

spatial normalization into the standard template of Montreal Neurological Institute (MNI)

using SPM12 (Wellcome Department of Cognitive Neurology, London, UK). All default

choices of statistical parametric mapping (SPM) were followed with dimension 91x109x91

(2x3 box: -90–126–72; 90 90 108), voxel size 2x2x2 mm, FWHM smooth 8x8x8 mm Gaussian

filter to blur for individual variations in gyral anatomy and to increase the signal-to-noise ratio

(Fig 1). The intensity normalization was performed by proportional scaling before obtaining T

contrast maps. Each voxel intensity was first scaled by dividing each voxel value by the average

of all the voxel values in the subject brain parenchyma using SPM12 to remove the confound-

ing effects of changes in the global level with a masking threshold of 0.8. The adjusted voxel

values were globally normalized to 50 ml/100 ml/min using proportional scaling. The resulting

statistical parametric maps, SPMT, were generated using flexible factorial design. A threshold

of p< 0.05 (voxel-level) family-wise error (FWE)–corrected for multiple comparisons and a

minimum cluster size of 100 was applied to all analyses. Using Marsbar [21], templates of

Fig 1. Example of FDG PET imaging post-processing. Left upper panel: MRI brain template (T1) with coronal,

sagittal, and axial views, generated from 305 normal subjects. Right upper panel: FDG PET brain template of summed

100 normal subjects. Left lower panel:Smoothed FDG PET brain of one study subject. Right lower panel: Normalized

FDG PET brain of the same subject. The red line is the contour of the subject’s normalized brain imaging.

https://doi.org/10.1371/journal.pone.0251026.g001
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cluster ROIs were created if clusters met the threshold. Signals were extracted from each image

within ROIs as clusters for further machine learning.

Machine learning

We applied a supervised machine learning approach with 5-fold cross-validation to determine

which classification algorithms would fit our data with the best performance [22]. The clusters

with statistical significance would serve as candidates of features for model comparisons. Clas-

sification Learner automatically employed twenty-five algorithms to fit our data with different

feature selection combination. Each model’s performance was measured by accuracy, confu-

sion matrix, and receiver operating characteristic (ROC)-area under curve (AUC).

Results

Global metabolic difference between multiple myeloma with or without

major depression

We measured the global average FDG activity of each subject, and further compared the differ-

ence of means between two groups. From Fig 2, group 1 (Depression) has significantly lower

global FDG activity in comparison to group 2 (Control) (p< 0.001 and Cohen’s d -1.33). The

box plot also shows marked variation among individuals of brain FDG uptake as expected

from our experience.

Clusters with significant metabolic changes

Voxel-based analysis reveals significant regional metabolic changes in major depression

patients. Globally, there are extensive brain regions (5831 voxels) demonstrating hypo-

Fig 2. Box plot of global FDG activity in major depression group (D) and control group (N).

https://doi.org/10.1371/journal.pone.0251026.g002
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metabolism (Group 1< Group 2) in patients with major depression (Table 2). To a lesser

extent, regions of hyper-metabolism (Group 1> Group 2) are appreciated as well (1094 vox-

els) (Table 2). To better visualize the metabolic changes, the results of the SPM T maps were

displayed on xjView [23]. Subsequently, we confirmed the corresponding anatomic locations

of each peak MNI of these significant hyper- or hypo-metabolic clusters in major depression

patients. Fig 3 illustrates these clusters on Collin-27 T1 MRI brain template. Interestingly,

hyper-metabolic clusters were anatomically localized in limbic system bilaterally and right

brainstem (Fig 3 and Table 2), whereas hypo-metabolic clusters predominantly involved bilat-

eral frontal, parietal, and right temporal lobes (Fig 3 and Table 2).

Machine learning

We used eight clusters as features without Principal Component Analysis (PCA) and hyper-

parameters during machine learning and explored twenty-five classification algorithms.

Results are shown on Table 3, Figs 4 and 5. Overall Fine Tree and Medium Tree performed the

best (accuracy 85.1%; ROC-AUC 0.88; sensitivity 79%; and specificity 88%).

Discussion

Major depression is a severe mental disorder and its mechanism remains not well understood

in spite of decades of rigorous research. Based on our limited knowledge, major depressive dis-

order is complicated, temporary or permanent neuron function and/or interaction changes

between neurons and glial cells, and/or physical structure changes based on our limited knowl-

edge [24–26]. Molecular functional imaging makes in vivo brain research feasible and trans-

lates finding for facilitating diagnosis of disorders and assessment of therapy. Brain perfusion

SPECT/CT imaging showed regional brain perfusion defects in depression patients, particu-

larly lateral frontal lobe and temporal lobe [27–31]. FDG PET/CT metabolic imaging, another

surrogate of brain functional activity, correlates to blood flow and local energy metabolism

[32]. As a quantitative molecular imaging modality, the exploratory studies in late 19th and

early 21st century revealed metabolic changes in multiple areas of major depression patients as

compared to healthy control subjects. However, there were discrepancy of anatomic locations

and hyper/hypo-metabolic changes among published FDG PET/CT studies due to heterogene-

ity of clinical syndrome and genetics of depression [33, 34], and relative small sample sizes and

ROI definitions published [11, 13].

To our knowledge, this is the first study to explore whole brain metabolic changes between

major depression and non-major depression among multiple myeloma patients. The study

Table 2. Significantly changed metabolic clusters corresponding anatomic/functional regions.

AAL Region TD Labels BA (large to small) Cluster (voxels) T (Peak) Z (Peak) Peak Coordinates (x, y, z)

Frontal_Mid_R Middle Frontal Gyrus 9, 46, 8, 10, 6, 44, 45 1740 -6.69 -6.2 44, 32, 28

Frontal_Mid_L Middle Frontal Gyrus 9, 46, 6, 10, 8, 44, 45 1459 -6.2 -5.79 -46, 24, 26

Angular_R Angular Gyrus 40, 39, 19, 2, 3, 18, 7, 1 1247 -6.08 -5.7 44, -64, 36

Parietal_Inf_L Supramarginal Gyrus 40, 39, 19, 7 760 -5.89 -5.54 -52, -50, 38

Temporal_Mid_R Middle Temp Gyrus 21, 20, 37, 22, 19 625 -5.39 -5.11 62, -40, -8

ParaHippocampal_L Uncus 28, 34, 36 696 5.78 5.45 -24, 0, -32

Brainstem_R 183 4.92 4.71 14, -26, -22

Amygdala_R Sub-Gyral 215 4.82 4.62 30, 2, -16

AAL: automated anatomical labeling. TD Labels: automated Talairach atlas labeling. BA: Brodmann area (areas with at least five voxles are listed). Signs of T or Z value:

negative indicates hypo-metabolic changes; positive denotes hyper-metabolic changes.

https://doi.org/10.1371/journal.pone.0251026.t002
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demonstrated that the major depression group had a significant reduction of metabolic activity

as compared to the non-major depression group at the global level (Cohen’s d -1.33). Secondly,

using voxel-based analysis, we identified 5 hypo- and 3 hyper-metabolic clusters above the pre-

set threshold of p< 0.05 (FWE) and greater than 100 voxels in multiple myeloma patients

with major depression. Thirdly, we validated two predictive models with for screening major

depression among multiple myeloma patients using these fingerprinting clusters as classifica-

tion features.

Global hypo-metabolism in multiple myeloma with major depression

Our data revealed a significant global hypo-metabolic change in major depression. Global

hypo-metabolic changes in depression have been previously observed [35, 36]. From our data,

multiple myeloma patients with major depression presented a -1.33 of Cohen’s d, absolute

Fig 3. A map of significantly changed metabolic clusters in patients with major depression as compared to the

control. Statistical parametric maps displayed on transverse sections depicting regions of hyper-metabolic (red) and

hypo-metabolic (blue) changes.

https://doi.org/10.1371/journal.pone.0251026.g003
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value larger than patients with HAM-D scores 22 or above (-0.83) in Kimbrell’s report. Our

data indicated that multiple myeloma might worsen major depression.

The decrease in FDG uptake in major depression indicates less glutamate neurotransmis-

sion through glucose oxidation process, which links to major depression [37–40]. Our data

suggested that multiple myeloma patients with major depression might have extensive inter-

ruption of glutamatergic transmission. It has been estimated that as much as 70% of the energy

derived from glucose oxidation is required to convert glutamate, the major neurotransmitter

in the brain, to glutamine during glutamatergic transmission. Therefore, the FDG PET signal

is proxy for measuring excitatory neurotransmission [37, 41].

Fingerprinting clusters (biomarkers) in multiple myeloma with major

depression

Whole brain voxel-based analysis identified five significant hypo-metabolic and three signifi-

cant hyper-metabolic clusters in multiple myeloma patients with major depression. Our data

showed that the summed volume of hypo-metabolic clusters is much larger than that of the

hyper-metabolic clusters, which logically explains the observed global hypo-metabolic activity

seen.

Table 3. Performance of 25 classification algorithms.

Model ID Model Name 8ROIs_accuracy 8ROIs_AUC Sensitivity Specificity

1 Fine Tree 85.1 0.88 (0.13, 0.79) 79 88

2 Medium Tree 85.1 0.88 (0.13, 0.79) 79 88

3 Coarse Tree 80.6 0.86 (0.19, 0.79) 79 81

4 Linear Discriminant 78.4 0.81 (0.09, 0.47) 47 91

5 Quadratic Discriminant 76.9 0.72 (0.13, 0.5) 50 88

6 Logistic Regression 76.9 0.8 (0.09, 0.42) 42 91

7 Gaussian Naïve Bayes 79.1 0.85 (0.18, 0.71) 71 82

8 Kernel Naïve Bayes 79.1 0.85 (0.18, 0.71) 71 82

9 Linear SVM 82.1 0.82 (0.09, 0.61) 61 91

10 Quadratic SVM 79.1 0.73 (0.09, 0.50) 50 91

11 Cubic SVM 73.9 0.74 (0.17, 0.50) 50 83

12 Fine Gaussian SVM 71.6 0.73 (0.00, 0.00) 0 100

13 Medium Gaussian SVM 80.6 0.80 (0.09, 0.55) 55 91

14 Coarse Gaussian SVM 80.6 0.85 (0.08, 0.53) 53 92

15 Fine KNN 76.9 0.70 (0.14, 0.53) 53 86

16 Medium KNN 79.1 0.81 (0.15, 0.63) 63 85

17 Coarse KNN 71.6 0.78 (0.00, 0.00) 0 100

18 Cosine KNN 76.9 0.82 (0.22, 0.74) 74 78

19 Cubic KNN 81.3 0.81 (0.13, 0.66) 66 88

20 Weighted KNN 77.6 0.82 (0.13, 0.53) 53 88

21 Boosted Trees 71.6 n/a 0 100

22 Bagged Trees 75.4 0.78 (0.16, 0.53) 53 84

23 Subspace Discriminant 80.6 0.82 (0.08, 0.53) 53 92

24 Subspace KNN 76.9 0.80 (0.15, 0.55) 55 85

25 RUSBoosted Trees 77.6 0.83 (0.20, 0.71) 71 80

ROIs: regions of interest. AUC: area under curve.

https://doi.org/10.1371/journal.pone.0251026.t003
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The two largest hypo-metabolic clusters with peak MNI coordinate 44, 32, 28 (x, y, z) and

-46, 24, 26 (x, y, z) predominantly locate in bilateral middle frontal gyrus, contiguously extend-

ing to the adjacent frontal cortex. The hypo-metabolic changes in the frontal lobes were noted

in major depression patients in previous studies [42–48].

The third and fourth hypo-metabolic clusters with peak MNI coordinate 44, -64, 36 (x, y, z)

and -52, -50, 38 (x, y, z) correspond to bilateral angular gyrus and supramarginal cortex, also

involving part of the neighboring occipital and temporal cortices. The reduction of metabolic

activity in these brain regions have previously been reported in major depression patients [44,

48–50].

The fifth hypo-metabolic cluster with peak MNI coordinate 62, -40, -8 (x, y, z) sits in the

right middle and inferior temporal gyri. The right temporal area with less FDG uptake has also

previously been observed in patients with major depression [42, 43, 48].

The largest hyper-metabolic cluster with peak MNI coordinate -24, 0, -32 (x, y, z) grossly

maps to the left limbic lobe, mainly involving in the left parahippocampal gyrus, and adjacent

areas of amygdala and hippocampus. Patients with major depression without anxiety have

been shown to have significantly increased FDG uptake in left parahippocampal gyrus as com-

pared to normal subjects [50]. Of note, the left amygdala had less FDG uptake in the patients

with a suicide plan [44]. Interestingly, hypometabolic changes in depressed unipolar patients

have previously been reported in the anterior cingulate of limbic lobe, differing from our

Fig 4. Fine tree model ROC-AUC.

https://doi.org/10.1371/journal.pone.0251026.g004
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findings and others’[13, 35, 47, 51]. However, unlike this and other studies, subjects in Kim-

brell et al study performed an auditory continuous performance task (CPT) 30 min during the

FDG uptake period.

The second most significant hyper-metabolic cluster with peak MNI 14, -26, -22 (x, y, z) is

seen in the right sided brainstem and partially involves the adjacent right cerebellum, anterior

lobe and parahippocampal area. The third hyper-metabolic cluster with peak MNI 30, 2, -16

(x, y, z) is visualized in the right amygdala. The last two clusters are close anatomically but sep-

arated under our current threshold. Higher FDG activity in brainstem (global maximum at

Talairach coordinates of 2, −24, −20) was seen in non-remitters of major depression patients

after three-month monoaminergic medication as compared to remitters, suggestive of poten-

tial prognosis for the enhancing anti-depression treatment [52]. In cancer patients, distress

thermometer (DT) and DT problem list positively correlated to FDG activity in brain stem

[53].

We compared our SPM T-maps to previous studies’ T-maps or equivalent maps available.

Based on the literature provided cluster selection criteria, we found that the pattern of meta-

bolic changes showed on Fig 5 was consistent with previous studies [36, 43, 48, 52, 54–56].

Interestingly, hypo-metabolic clusters always presented larger T scores and volume/size than

hyper-metabolic ones. Therefore, if cluster height threshold was set too large, hyper-metabolic

clusters in major depression would not been seen. Milak et al studies reported metabolic

Fig 5. Medium tree model ROC-AUC.

https://doi.org/10.1371/journal.pone.0251026.g005
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correlation with psychopathologic factors derived from the self-rated Beck Depression Inven-

tory (BDI), factors from the clinician-rated Hamilton Depression Rating Scale (HDRS) factors,

and verbal learning deficit in major depressive disorder [52, 57, 58]. There is high degree of

anatomic overlap among clusters, which is consistent with metabolic change directions noted

in our results and Milak et al. reports, suggestive of the metabolic changes correlating to major

depression symptoms in multiple myeloma patients. As noted, the metabolic clusters in our

data are the essential components reported in putative networks related to depression, further

indicating aberrant connectivity of ventral limbic affective, frontal-striatal reward network,

default mode network, and dorsal cognitive control network [59].

Predictive models for screening major depression among multiple

myeloma

This study is first to use machine learning algorithms to identify presence of major depression

in multiple myeloma patients using FDG PET/CT. Among the 25 machine learning methods

tested, the fine tree and medium tree models from our data showed the best performance with

85.1% of accuracy, 79% of sensitivity, and 88% specificity. Comparing to previous resting-state

fMRI and perfusion SPECT machine learning studies with large samples (n > 100) [60–63],

our results are comparable to the better classification performance among the studies (89.2%

of overall accuracy).

Limitations. The present study is a retrospective analysis of patients with diagnoses of

multiple myeloma and major depression. There was no significant difference in demographic

characteristics between the Control and Depression groups regarding age, gender, blood glu-

cose levels, and diabetes. However, potential confounding variables, such as current treatment

regimens, coexisting anxiety disorders or other combidities, and depressive symptoms at the

time of the scan were not taken into account and represent possible biases. Furthermore, no

feasible control group could be utilized as healthy patients do not usually undergo PET/CT.

Additionally, analysis was performed on standard whole-body FDG PET/CT exams without

dedicated imaging of the brain. While this may pose limitations to image quality, the results

demonstrated here are more widely applicable to patients undergoing standard FDG PET/CT

for oncologic evaluation.

Conclusion

In this study, we demonstrate that oncology FDG PET/CT images can provide useful informa-

tion for screening for comorbid major depression in cancer patients without extra dedicated

brain images or increased radiation exposure or cost. This would not replace the need for a

psychological evaluation however this may alert the clinician to metabolic changes in the brain

that have been associated with depression. The patient may have sub-clinical depression or

may have been embarrassed to express their symptoms to their oncologist. This would serve as

a supplemental screening exam to the more traditional questionnaires. The eventual progres-

sion of these methods is to screen all patients undergoing PE/CT for major depression. With

the rapid advancement of AI, there is potential for automated screening of patients during the

staging PET/CT for major depression, and this may increase awareness and identification of

patients needing additional support for depression.

Supporting information

S1 Fig. A Map of significantly changed metabolic clusters (T = 3.15) in patients with major

depression as compared to the control. Statistical parametric maps displayed on transverse
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sections depicting regions of hyper-metabolic (red) and hypo-metabolic (blue) changes.

(TIF)
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