Condon et al. BMC Bioinformatics (2018) 19:31
DOI 10.1186/5s12859-018-2037-1

Defiant: (DMRs: easy, fast, identification and ®

BMC Bioinformatics

CrossMark

ANnoTation) identifies differentially
Methylated regions from iron-deficient rat

hippocampus

David E. Condon', Phu V. Tran?, Yu-Chin Lien®, Jonathan Schug', Michael K. Georgieff?, Rebecca A. Simmons®

and Kyoung-Jae Won'*"

Abstract

Background: Identification of differentially methylated regions (DMRs) is the initial step towards the study of DNA
methylation-mediated gene regulation. Previous approaches to call DMRs suffer from false prediction, use extreme
resources, and/or require library installation and input conversion.

Results: We developed a new approach called Defiant to identify DMRs. Employing Weighted Welch Expansion
(WWE), Defiant showed superior performance to other predictors in the series of benchmarking tests on artificial
and real data. Defiant was subsequently used to investigate DNA methylation changes in iron-deficient rat

hippocampus. Defiant identified DMRs close to genes associated with neuronal development and plasticity, which
were not identified by its competitor. Importantly, Defiant runs between 5 to 479 times faster than currently available
software packages. Also, Defiant accepts 10 different input formats widely used for DNA methylation data.

Conclusions: Defiant effectively identifies DMRs for whole-genome bisulfite sequencing (WGBS), reduced-representation
bisulfite sequencing (RRBS), Tet-assisted bisulfite sequencing (TAB-seq), and Hpall tiny fragment enrichment by
ligation-mediated PCR-tag (HELP) assays.
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Background

DNA methylation plays a critical role in gene regulation
[1]. In human somatic cells, 70-80% of all CpG dinucleo-
tides in the genome are methylated [2]. DNA methylation
represents one type of epigenetic modification which has
been shown to control transcription in mammals [3],
interacting sometimes with DNA binding proteins [4].
DNA methylation regulates many diverse biological
functions, such as embryonic stem cell differentiation [5],
aging [6], gene imprinting [7, 8], and X-chromosome
inactivation [9]. DNA methylation is conserved and
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somatically heritable mark that is generally associated with
transcriptional repression [10]. Aberrant methylation has
been found in multiple diseases such as cancer [11], im-
printing defects [12] and mental disorders such as schizo-
phrenia [13, 14]. Environmental exposures such as
uteroplacental insufficiency [15, 16] or cigarette smoking
[17, 18] have also been observed to alter DNA
methylation.

Recent developments in sequencing technology enabled
genome-wide characterization of DNA methylation.
Whole-genome bisulfite sequencing (WGBS) and reduced
representation bisulfite sequencing (RRBS) have been
widely used to measure DNA methylation at a single CpG
resolution [19]. DMRs are the contiguous genomic regions
whose DNA methylation status differs between two
groups of samples. DMRs have been used to characterize
cell-type or condition specific DNA methylation [20-22].
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Computational approaches have been developed based
on statistical frameworks to identify DMRs. BSmooth
[23] identifies DMRs using a local-likelihood approach
to estimate a sample-specific methylation profile. For a
statistical test between samples, BSmooth uses a Welch’s
t-test [24]. MethylKit identifies DMRs based on logistical
regression if multiple replicates are available, or a Fish-
er's exact test [25] if only one sample is available.
MethylSig [26] uses a beta-binomial approach to identify
DMRs based on read coverage and biological variability,
which showed high sensitivity in comparison with
MethylKit, BSmooth, a standard t-test and the Wilcoxon
rank test. Metilene [27] uses a binary segmentation algo-
rithm combined with a two-dimensional Kolmogorov-
Smirnov test. Genomic regions are pre-segmented, and
gradually reduced in size until the region contains less
than a defined minimum number of CpGs or statistical
significance is not improved. RADMeth [28] employs a
beta-binomial regression and a Stouffer-Liptak test. And
RnBeads [29] calculates p-values for each CpG in the
data set using hierarchical linear models and M-values
[30]. BiSeq uses a smooth-based approach while consid-
ering coverage to call DMRs [31].

With the exception of Metilene, many well-known
DMR callers require knowledge of the R programming
language [32] or even a specific version of R (MethylKit
& BiSeq). In addition, each DMR caller requires specific
input formats to run it properly. Furthermore, many of
them use extreme computing resources for genome-
scale analysis. Table 1 summarizes the characteristics
and algorithms of the widely used DMR callers we
investigated.

The numerous disadvantages of these programs/statistical
methods prompted the development of a new DMR-identi-
fication program. Defiant is a standalone program following
GNU99 standard, which reduces the issues of portability.
Defiant automatically detects ten different input formats
widely used for DNA methylation. It does not require

Table 1 Comparison of DMR calling software

Program  DMR Identification Execution
Defiant ~ Weighted Welch Expansion Binary
BSmooth  Local-likelihood smoothing with binomial test R

[23]

MethylKit ~ Fisher's exact test [37] or logistic regression with R

[25] tiling

MethylISig beta-binomial [64] R

[26]

Metilene  p-value by beta binomial Binary
[27]

MOABS  beta-binomial Binary
[65]

RADMeth  beta-binomial regression Binary
[28]
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installation of any libraries and runs with a single command
line. We evaluate Defiant’s performance with comprehen-
sive benchmarking tests using both artificial and real
WGBS data. We applied Defiant to analyzing the DNA
methylation changes induced by iron deficiency during the
critical neuro-developmental period (fetus and newborn) in
the rat hippocampus.

Implementation

Animals and Hippocampal dissection

G2 pregnant CD1 Sprague-Dawley rats were purchased
from Charles Rivers Laboratories. The experimental con-
ditions for induction of fetal-neonatal iron deficiency
were following the previously described protocol [33].
All procedures were approved by the Institutional
Animal Care and Use Committee of the University of
Minnesota. Hippocampal dissection and storage from
PND15 rats was performed as previously described [33].
Genomic DNA from PNDI15 rat hippocampi was
isolated using Allprep DNA/RNA mini kit (Qiagen).

WGBS & data processing

WGBS was performed as a published protocol [34].
Briefly, 1 pg of genomic DNA was fragmented into 300 bp
size using M220 Covaris Ultrasonicator. Sequencing
libraries were generated using NEBNext genomic sequen-
cing kit (New England Biolabs) and ligated with Illumina
methylated paired end adaptors. Libraries were bisulfite-
converted using Imprint DNA modification kit (Sigma),
and the size of 300—600 bp was selected using Pippin Prep
DNA size selection system (Sage Science). Libraries were
then amplified using PfuTurbo Cx Hotstart DNA poly-
merase (Agilent Technologies). Samples were sequenced
to 100 bps in either paired-end or single-read formation
on an [llumina HiSeq 2000 with RTA version 1.13.48 and
HiSeq control software version HiSeqCS:1.5.15.1.
Adpaters were trimmed from the reads using a custom C
language program. Trimmed reads were aligned against
the rat genome (rn4) using bs seeker (v1) [35]. The methy-
lation status was then tallied from the bs seeker output.
When reads overlapped at a base, the methylation status
from read 1 was used. Methylation data at the C and G in
a CpG pair was merged to produce the estimate at that
locus. The WGBS data have been deposited in the GEO
repository (GSE98064).

Identification of DMRs using WWE
Defiant defines DMRs based on seven criteria. These
can also be specified by the end-user.

e All nucleotides in all samples are present and meet
minimum coverage (default 10). The user can
specify that some nucleotides can be missing from
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certain replicates, but we recommend against it as it
can introduce false positives.

e Absolute value in the difference of the sum of the
methylation percentages is above a given cutoff %.
The default is 10%, but this will vary in every
individual experiment based on the chemistry [36].
The mean methylation percentage, 7, is weighted
based on coverage, i.e.

C
R mr
c, =
Zr:l Cr — Zf:lmc’" (1)
YCr XAG

where C, is the coverage for replicate r, ,,C, is the
number of 5mC for replicate r, and R is the number of
replicates.

e A 2-tailed p-value, default 0.05

m:

If there is only 1 replicate in either sample, a p-value
between groups A and B is calculated by Fisher’s exact
test [37]

_ (mCa+ mCr)(Ca + Ce)/(mCa + Ca)!(mCp + Cp)!
P wCal wCo!CAICE ((wCa + mCi + Ca + Cp)!

(2)

where ,,C= number of 5-methyl Cystosine and C =
number of Cytosine.

If there are multiple replicates in both groups, the p-value
is based on Welchs t-test [24] in sum of methylation
percentages is below a given cutoff.

If both samples have multiple replicates, the ¢-test
between groups A and B is calculated thus:

= 3)
S5
Np Ng

where the unbiased sample variance s for any group A is
also weighted based on coverage:

R WA—mr 2
s :Zrzlcr( ) (4)

(Chc)

The Benjamini-Hochberg [38] approach is applied to
the identified DMRs to adjust p-value for multiple
testing.

e a minimum number of CpN constituting
differentially methylated region (default CpN = 5),

e a minimum range of the differentially methylated
nucleotides (default 0)

e a maximum range between CpN (default 20,000
nucleotides).
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e a maximum similar, i.e. non-differentially methylated,
CpG count (default 5). If a DMR is currently
expanding, the DMR expands until one criterion of
differential methylation stops. By allowing a similar
CpG count, DMRs can contain similarly methylated
CpG inside the DMR. Once the similar nucleotide is
broken, the DMR shrinks to the point where
differential methylation stopped.

All criteria are easily set by command-line options.
Defiant is designed to test multiple parameters in parallel,
to make the final decision on each parameter up to the
end user. Defiant has a companion program in Perl,
plot_results.pl, which plots the number of DMRs as a func-
tion of different parameters using GNUPIot if a user has
chosen to test multiple parameters. The effects of the vari-
ation of each parameter on the number of DMRs found in
the rat hippocampus data can be seen in (Additional file 1:
Figures S2-516).

The number of DMR is sensitive to CpN, differen-
tially methylated CpN (d), and p-value, but less sensi-
tive to minimum percent change, minimum coverage.
Minimum CpN =5 is a point where the number of
DMR is large enough and less sensitive to minimum
coverage (Additional file 1: Figure S7). Minimum
coverage determines the number of DMRs. The de-
fault (10) is the point where the number of DMR is
robust to the “Differentially methylated CpN” (Additional
file 1: Figure S8). We set a large number for “Max-
imum range for CpN” (default =20,000). The differ-
ence in the methylation percentage (default 10%) can
further be used to identify subtle but significant
changes. A minimum range between CpN is not used
for the rat data (default 0) but provide a user with
flexibility in defining DMRs.

Comparison with other methods

DMR Overlay is the percent of nucleotides predicted by
the program inside of the artificial DMR. DMR overlay
is measured in two directions, once with respect to the
benchmark DMRs and once with respect to the pre-
dicted DMRs (Fig. 5). For example, in Fig. 1, the overlay
of predicted DMR 1 with respect to Benchmark DMR
“A” is calculated as

length(A) + length(B) 160 + 139

- 0
length (DMR1) 319 = 93.7%

DMR overlay =

while for the reverse, DMRs A and B would each have
their own DMR overlay equal to 100%. This is similar,
but more informative than a Jaccard index, which is
symmetric while DMR overlay depends on direction of
comparison.
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Fig. 1 lllustration of how different DMR results are compared. Artificial (or “Benchmark”) DMRs are depicted in green, while predicted DMRs are
shown in red

e Defiant is run with default minimum coverage of 10, report q =0 with p~ 1, so tiles with q =0 are treated
p =0.05, minimum percent change of 10%, and five as non-DMRs. MethylSig [26] also uses a tiling
CpN (CpG) in each DMR. approach, with a window and step size of 25 nucleo-
e MethylKit [25] scans for DMRs using a tiling tides. As for MethylKit, consecutive windows with q
window of 1000 nucleotides and a step size of 1000 <0.05 are considered as a single DMR.
nucleotides. Consecutive windows that score q < e Metilene [27] is a command-line program, and was
0.05 are considered as a single DMR. Tiles can run according to defaults. Metilene was run with a

Weighted Welch Expansion

100 —

—— Group B
e \Neighted Mean

— Group F
e \Neighted Mean

e p-value
== DMR Borders

e CpG Percent
== DMR Borders

Methylation Diff. (%

| |
L L L L U N U Sy
120124 120552 122257 122419

CpG

Fig. 2 Defiant uses WWE for DMR identification. We used artificial data designed for Metilene [27]. Each group is composed of ten replicate DNA
methylation samples. The top two panels show the level of DNA methylation for each CpG (box-and-whisker plots). The mean is weighted based on
coverage. The third panel from the top shows the weighted Welch p-value between the sets for individual CpG. The bottom panel shows differences
between the weighted mean. Defiant calls a DMR when it finds consecutive CpGs with 1) differences in methylation levels, 2) minimum coverage, 3)
p-value. When Defiant finds consecutive CpGs that do not match the above criteria, the expansion of a DMR stops. The third and fourth panels show
the DMR start and end points in red
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minimum CpG count of 5 with the rat data to make
results comparable to Defiant.

RADMeth [28] is run as a series of three commands
to the Linux shell. RADMeth showed itself superior
to ComMet [39] and DSS [40] so we do not
compare these methods here.

RnBeads [29] differentially methylated regions are
defined by 500 nucleotide tiles. Similarly with
MethylKit and MethylSig, consecutive tiles with q <
0.05 are considered as a single DMR.

Results

DMR identification by weighted Welch expansion

Defiant calculates a p-value using a Welch'’s t-test for the
weighted means and variance (Method). A weight is to
give more credence to the replicate with a high coverage.
If there is only one replicate in either set, Welch’s t-test
cannot be used, and thus Defiant uses a Fisher’s exact
test. For accurate detection of the boundary of a DMR,
Defiant detects the start point based on the following
factors: differences in methylation levels, coverage,
p-value, and a minimum number of CpGs. If all of these
criteria are satisfied, the next nucleotide is checked for
constituting differential methylation, ie. the DMR ex-
pands. It terminates when there is a number of consecu-
tive CpGs that do not pass the criteria. We call this
algorithm weighted Welch expansion (WWE).

Figure 2 demonstrates how Defiant identifies DMRs
using WWE. Defiant calculates the weighted mean based
on the coverage. The weighted mean for the two data-
sets (“B” and “F”) are shown on the top two panels. The
p-values were calculated using a Welch’s t-test (on the
third panel). The DMR on the left side starts at 120,124
when the difference in methylation levels is — 88% and
p =7.7%x10"%, The DMR expands as long as it sees
CpGs that pass the criteria. At 120,052, Defiant stops its
expansion when it observes at least 5 consecutive CpGs
that fail the criteria. Defiant does not require setting the

size of a window or “tiles” as is done in MethylKit [25],
so the data determines the size of the differentially
methylated regions. This approach gives much greater
flexibility and power in analyzing the data, as small dif-
ferentially methylated regions can be easily missed when
using a tiling approach.

Datasets
We used two datasets to evaluate Defiant’s performance.

Artificial benchmarking datasets used for Metilene [27]

Metilene [27] simulated RRBS and WGBS datasets using
beta binomial distribution. The dataset are composed of
two different backgrounds, each with four subsets. These
are named 1.1 (strongest methylation differences) through
1.4 (weakest differences) for the first background, and 2.1
through 2.4 for the second (Additional file 1: Figure S1).

Q| —_
—— > —
o | s ‘
o ! :
i °
© |
o
o :
< !
o
o
o
o | L
o
T T T T T T
Defiant MethylKit MethylSig Metilene RADMeth RnBeads
Fig. 4 F1 values of 16 different artificial data sets. Circles indicate mean
values. Both Defiant and Metilene outperformed other predictors

.




Condon et al. BMC Bioinformatics (2018) 19:31

Page 6 of 12

[

100
|

80
|

40
|
jo

DMR Overlay of Program w.r.t. Benchmark (% Nucleotides)
20
|

T T
Defiant MethylKit ~MethylSig

Metilene

T
RADMeth  RnBeads

the combined RRBS and WGBS data sets

Fig. 5 Comparison of DMR overlay of program with respect to benchmark in panel (a), and benchmark with respect to program in panel (b) for

b

1T pmT D
m ! ! .
] . ' ' :
k] ' i
2 ‘ !
Q< ' '
S 8 A 3 )
S 3
£ |
© .
Iy '
2 8+ :
2 ;
3 3
b : I
g o | : :
c < |
9 '
< '
o} .
m '
%5 '
> —
Q4
g
(@)
o
% :

o . ? ' ' o]

T T T T T T
Defiant  MethylKit MethylSig Metilene RADMeth RnBeads

In total, there are 16 subsets (eight for RRBS and eight for
WGBS) to test DMR calling for various data configura-
tions. Each subset has ten replicates. We downloaded
them from http://www.bioinf.uni-leipzig.de/Software/
metilene/Downloads/.

WGBS data from postnatal day 15 iron deficient and iron
sufficient rat hippocampi

WGBS data were generated to analyze changes in hippo-
campal DNA methylation due to iron-deficiency during
the fetal and neonatal periods. Pregnant/nursing rat
dams were fed an iron-deficient diet (4 ppm iron) from
gestational day 2 through postnatal day (P) 7, at which
time they were given an iron-sufficient control diet
(200 ppm iron). Iron sufficient control rats were fed an
iron sufficient diet through the entire experimental dur-
ation. At P15, rat pups from both groups were euthanized
and hippocampi were isolated. This diet manipulation in-
duced a 60% iron deficiency in the P15 rat hippocampus
[41, 42]. Three biological replicates of WGBS data were
generated from hippocampi of both groups.

Performance evaluation

We evaluate the DMR-identification programs
Defiant, Metilene, MethylKit, MethylSig, RadMeth,
and RnBeads. We chose not to use BSmooth and
MOABS as they have already shown inferior perform-
ance as compared to Metilene [27] using the same
test set we use in this experiment. Using the DMRs
in the artificial datasets as the gold standard, we de-
fined true positive (TP) when a predicted DMR over-
lapped with a DMR in the benchmark, otherwise it

was defined as a false positive (FP). False negative
(FN) was defined when a DMR in the benchmark
dataset was not predicted. FN, FP, and TP values for
all DMR callers for each artificial dataset are listed in
Additional file 1: Table S1.

For comprehensive evaluation, we compared preci-
sion (TP/(TP + FP)) against FN as well as against re-
call (TP/(TP +FN)) for 8 sets of RRBS and WGBS
data (Fig. 3). In these tests, both Defiant and Meti-
lene showed excellent precision and recall with very
low FNs compared with other DMR callers. They
scored perfect precision because their FP is 0 for all
16 tests. RnBeads also showed FP equal or close to
zero. However, it suffered a high FN (Fig. 3).
MethylKit showed the worst performance in these
tests mainly due to excessive number of FPs. Methyl-
Sig showed high number of FPs for WGBS datasets
(Additional file 1: Table S1). Moreover, MethylSig did
not predict any DMRs for RRBS datasets (TPs and
FPs were 0). RADMeth scored moderately well, but
scored behind both Defiant and Metilene.

To obtain the overall performance we calculated the

F1 score (=2 x Predsionxrecaly "y o £y goore js the har-
precision+recall

monic mean of precision and recall. Both Defiant and
Metilene showed outperforming F1 scores compared
with other predictors (Fig. 4). The performances be-
tween Defiant and Metilene were comparable when we
investigated the statistical differences between the pre-
dictions using a Welch’s t-test [24] (p = 0.81, Additional
file 1: Table S2). Considering that the artificial datasets
were generated using a beta binomial distribution, pro-
viding a favorable environment for Metilene, the
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comparable performance of Defiant is notable. Examin-
ing the results more closely, we found that Defiant out-
performed Metilene especially for background 2, dataset
4 where there were subtle but significant differences in
DNA methylation levels (Fig. 3 and Additional file 1:
Table S1). To examine the DMR calling boundary more
carefully, we calculated the overlapping ratios of DMRs,
quantified as “DMR overlay” (Methods). Compared with
Metilene, Defiant showed better overlay with respect to

the predicted DMRs, suggesting that DMRs that Defiant
calls capture the robust portion of DMRs (Fig. 5).

Comparison using real WGBS data

We applied Defiant to identify DMRs in the iron-
deficient rat hippocampus using the same parameters
as were used with the artificial data. Fetal-neonatal
iron deficiency, which is one of the most common
nutritional deficiencies in the world [43], affecting as
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many as 2 billion people and approximately 30% of
pregnancies [44, 45], causing long-term cognitive defi-
cits despite iron treatment [46, 47]. Because these
changes persist into adulthood even in the face of
normal iron levels, and the known link between fetal
exposures and long-term outcomes after birth, we
investigated whether DNA methylation is altered in
the developing rat hippocampus induced by fetal-
neonatal iron-deficiency using WGBS datasets. The
methods used to induce fetal-neonatal iron-deficiency
have been previously described [48]. We investigated
if DNA methylation is affected by iron-deficiency dur-
ing fetal-neonatal periods using WGBS datasets with
three iron-deficient rats and three iron sufficient rats.

We compared performance of Defiant to that of Meti-
lene because they showed comparable performances based
on the benchmarking test. Between the iron-deficient and
iron-sufficient groups, Defiant identified 229 DMRs, while
Metilene identified only 80 DMRs, with ten regions show-
ing overlap between the two approaches. Figure 6 showed
the DNA methylation status of the DMRs identified both
by Defiant and Metilene.

We found that the DMRs identified by Metilene but
not by Defiant were mostly in low coverage areas.
When methylation levels were weighted by the

coverage, they showed non-significant p-values (Fig. 7a
and b). Indeed, compared with the artificial datasets
which have the distribution of coverage in a short
range, the WGBS data in rat hippocampus were with
a wider range of coverage (Fig. 7c). These results in-
dicate a superior performance of Defiant when ap-
plied to real WGBS data. Figure 8 shows the
examples of DMRs detected by Defiant but not by
Metilene. The DNA methylation profiles showed clear
differences in DNA methylation between the iron suf-
ficient and the iron deficient groups for regions near
genes such as Pde6c, Chd2, Mobp, and Pckl. The dif-
ferences between Defiant’s and Metilene’s predictions
are due to Defiant’s use of coverage-weighted means.
The coverage-weighted means used in WWE allow
Defiant to avoid artifacts such as Simpson’s paradox
[49].

Defiant identifies DMRs close to genes potentially
affected by iron-deficiency in fetal-neonatal periods

The 229 DMRs that Defiant identified mapped within
15 Kbps of 108 genes (Additional file 1: Table S3).
Among the 108 genes, 45 showed hypomethylated
and 63 showed hypermethylated regions (Additional
file 1: Tables S4 and S5, respectively). We identified
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Fig. 8 The DMRs identified by Defiant but missed by Metilene. DMRs on a. Pde6c gene body b. Cdh2 gene body, c¢. Mobp gene gody, and d.

that considerable portion of them (37 out of 43 hypo-
methylated and 31 out of 62 hypermethylated DMRs)
were associated with neuronal function or develop-
ment (Additional file 1: Tables S4 and S5), corrobor-
ating a previous finding [50]. Gene ontology (GO)
analysis using Enrichr [51, 52] identified “abnormal
nervous system” in Mouse Genome Informatics [53]
mammalian phenotype level 3 (p-value = 0.005). Genes
associated with this term were Camk2b, Fkrp, Ncfl,
St8sial, Itsnl, Cacnalc, Usf2, Mibl, Fig4, Jph3, Mobp,

Ushlg, Prkarlb, Tall, and Pde6c. We also observed
terms “Rho GTPase cycle” (p-value: 0.0005), and
“Axon guidance” (p-value =0.001). In total, 7 out of
43 and 12 out of 62 genes were associated with
GTPase activity for gain and loss of DNA methylation
levels, respectively. The rho family of GTPases [54,
55], one of the G-protein coupled receptors, regulates
neuronal morphogenesis [56], dendritogenesis [57],
and spinogenesis [58]. We also found terms “synapse
part” (p-value =0.017; Arfl, Tenm2, Pde2a, Cacnalc,



Condon et al. BMC Bioinformatics (2018) 19:31

Page 10 of 12

Time Use

a 100000

10000

1000

Time (s)

100

10
Defiant Metilene  RADMeth ~ RnBeads

MethylKit ~ MethylSig

b 10000

Fig. 9 Resources used by DMR callers in time used (panel a) and RAM (panel b). We used eight artificial WGBS data sets. All evaluation was done
on a computer with Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz with 32 GB RAM

Max. Resident RAM Use

1000

RAM (MB)

100
Defiant Metilene  RADMeth ~ RnBeads

MethylKit ~ MethylSig

Srgap2, and Mibl). Collectively, Defiant identified
DMRs close to the genes critical for neuronal synap-
togenesis and plasticity.

Defiant showed best performance based on the running
time

Running time is important for genome-scale analysis. We
evaluated the performance based on resource use. Using
the benchmarking datasets, all pertinent DMR callers were
run on the same system (Intel Xeon CPU 2.1GHz with
32GB RAM). For fair comparison, we converted the format
of the benchmarking datasets into the format preferred by
each DMR caller before evaluation. Therefore, mapping
and input format conversion were not needed for this
benchmarking. We observed dynamic range of running
time and memory use. Defiant showed much faster per-
formance compared with other methods: 5x faster than
Metilene, 10x faster than MethylKit and MethylSig, and >
300x faster than RADMeth and RnBeads. When we applied
Defiant to our WGBS rat datasets on the same system, it
took less than 2 min to obtain the DMR results for the en-
tire genome. Defiant's memory usage is light, about 1GB
for genome-wide WGBS data. Compared to the memory
usages of the DMR callers, Defiant used slightly more
memory than Metilene because Defiant is designed to run
in a single step.

Conclusions

We developed Defiant a new method to identify DMRs.
Defiant is designed to provide easy and fast implementation
of DMR calling while guaranteeing the prediction perform-
ance. We also put more credence to the CpGs with high
coverage. For a rigorous test while weighing DNA methyla-
tion based on coverage, we used a Welch’s t-test. A Welch’s
t-test does not assume equal variation between the sets and
simplifies the incorporation of the weight information.

One of the widely used approaches for modeling
DNA methylation is a beta binomial distribution. In
our benchmarking tests, Defiant showed superior per-
formance to other beta binomial distribution based

predictors such MethylSig, MOABS, and RADMeth. It is
noteworthy that the artificial data we used were generated
by the developers of Metilene using a beta binomial distri-
bution. Despite the potential bias against it, Defiant
showed comparable performance with Metilene. Our re-
sults indicate that using a Welch’s t-test is appropriate for
DMR identification. Close examination found that Defiant
performed better then Metilene when modest but signifi-
cant differences were observed (Fig. 3). More importantly,
Defiant identified more DMRs in the rat hippocampus
datasets which showed clear DMRs (Fig. 8). The DMRs
uniquely observed by Metilene were in very low coverage
areas (Fig. 7). Together, these suggest that Defiant per-
forms better than Metilene for analysis of real data.

For genome-scale analysis, reduced running time is
highly desirable. In our test, Defiant ran remarkably fas-
ter than other competitors using memory less than 1GB
(Fig. 9). When applied to the whole-genome data in rats,
it took less than 2 min for DMR calling for the entire
genome. Defiant accepts diverse formats for DNA
methylation including the format for Bismark coverage,
and Bismark cytosine [59], BisSNP [60], MethylKit &
MethylSig input, UCSC ENCODE, and EPP [61]. Defiant
also runs as a standalone software.

For convenient analysis, Defiant provides annotation
about the genes located around DMRs. Additional file 1:
Table S3 shows the example of output of Defiant.
Defiant is applicable to bisulfite-sequencing data, RRBS
[19], Hpall tiny fragment enrichment by ligation-
mediated PCR-tag (HELP-Tag) data [62], and Tet-assisted
bisulfite sequencing (TAB-Seq) [63]. The source code is
available on http://github.com/hhg7/defiant.

Additional file

[ Additional file 1: Supplementary document. (PDF 475 kb) }
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