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Period multiplication cascade at the order-by-
disorder transition in uniaxial random field XY
magnets
S. Basak 1,2, K. A. Dahmen3 & E. W. Carlson 1,2,4✉

Uniaxial random field disorder induces a spontaneous transverse magnetization in the XY

model. Adding a rotating driving field, we find a critical point attached to the number of

driving cycles needed to complete a limit cycle, the first discovery of this phenomenon in a

magnetic system. Near the critical drive, time crystal behavior emerges, in which the period

of the limit cycles becomes an integer n > 1 multiple of the driving period. The period n can be

engineered via specific disorder patterns. Because n generically increases with system size,

the resulting period multiplication cascade is reminiscent of that occurring in amorphous

solids subject to oscillatory shear near the onset of plastic deformation, and of the period

bifurcation cascade near the onset of chaos in nonlinear systems, suggesting it is part of a

larger class of phenomena in transitions of dynamical systems. Applications include magnets,

electron nematics, and quantum gases.
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The XY model, in which interacting spins are confined to
rotate within a plane, has been a staple of statistical
mechanics and condensed matter studies, having been

applied to a broad range of physical systems, including planar
magnets, superfluids, superconductors, two-dimensional (2D)
melting, nematic liquid crystals, and electron nematics, among
others1–10. In two dimensions, the XY model exhibits a
Berezinskii–Kosterlitz–Thouless transition to a power-law
ordered phase, yet with no long-range order11,12. As such, the
addition of random fields to a 2D XY model is expected to result
in even less order: Imry and Ma argued that a (d ≤ 4)-dimensional
system with continuous order parameter (with O(n) symmetry
with n ≥ 2) in the presence of random fields cannot have long-
range order for any finite disorder strength13.

However, the addition of uniaxial random fields reduces the
global symmetry of the Hamiltonian, and the Imry–Ma argument
no longer applies14. In this case, the low temperature phase has
long-range order via an order-by-disorder transition, in which XY
spins align perpendicular to the random fields14,15. This is a
special case of a more general class of order-by-disorder transi-
tion, where an n-dimensional spin system orders in a (n–k)-
dimensional subspace due to orthogonal k-dimensional random
fields3,9,14,16.

In this paper, we consider the possibility of a nonequilibrium
transition. We use simulations to study the order-by-disorder
transition in the presence of a rotating driving field at zero
temperature. To our knowledge, this is the first time the uniaxial
random field XY model has been studied in the presence of a
rotating driving field. By analyzing the avalanche size distribution
as a function of magnitude of applied driving field, we find evi-
dence that the system undergoes a continuous nonequilibrium
phase transition at a critical amplitude of the driving field. Once a
limit cycle is established, we observe that the period of the hys-
teresis loops become n-fold near a critical applied field strength,
where n is as large as 7 in our largest systems. We present evi-
dence that the period of the subharmonic entrainment is rigid
against perturbations in initial conditions and against perturba-
tions of the drive field, indicating that a classical discrete time
crystal emerges near criticality17,18. We present finite size scaling
evidence that the period of these multi-period limit cycles will
diverge in the thermodynamic limit. An experimental test of this
would be the presence of non-repeatability in the response due to
a rotating driving field near the transition.

As discussed further in the “Discussion” section, there are
several experimental systems corresponding to the XY model into
which uniaxial random field disorder can be incorporated,
whereby these ideas can be tested experimentally. These include
layers of Josephson junctions1, superfluid in a uniaxially stressed
aerogel2, ultracold atoms in the presence of speckle radiation3,
uniaxially stressed 2D Wigner crystals4–7, the half-integer quan-
tum Hall effect8, and possibly the graphene quantum Hall
ferromagnet9,10.

We consider the uniaxial random field XY model on a square
lattice, in the presence of a driving applied field H, with constant
magnitude H= ∣H∣:

H ¼ �J
X

hi;ji
cosðθi � θjÞ �

X
i
hi cosðθiÞ

�H
X

i
cosðθi � ϕÞ;

ð1Þ

where Si � ðcosðθiÞ; sinðθiÞÞ is the XY spin on each site i and J is
the nearest neighbor interaction strength. The second term
arises from the interaction of a local random field along the
x-axis and the XY spins. We choose the random field hi at each
site i from a Gaussian probability distribution of width Rx,
PðhiÞ ¼ exp½�h2i =ð2R2

xÞ�=ð
ffiffiffiffiffiffiffiffiffiffi
2πR2

x

p Þ. The order parameter is the

magnetization per site m ¼ 1
N

PN
i¼1 Si, where N= L × L is the

number of sites.
We study this system at zero temperature under the influence

of a rotating applied driving field whose angle ϕ= ωt advances in
time slowly, in the ω→ 0 limit. The dynamics is quasi-static: after
each small increment of the driving field angle, the energy of the
system is minimized. (See the “Methods” section for details of the
simulation method.) This type of dynamics19 presupposes that
the system is connected to a heat bath, which prevents heating by
the drive.

Symmetry considerations imply that the timescales associated
with barriers to equilibration of this model diverge exponentially
near criticality20, for the following reasons. In the presence of a
uniform applied field H, the symmetry of the XY model is
reduced to that of the Ising model. This means that the system
can have a symmetry-breaking transition, in which a spontaneous
magnetization forms perpendicular to the applied field H. Adding
a uniaxial random field along any axis that is not parallel to H
applies random fields to that Ising variable, placing the critical
behavior in the universality class of the random field Ising model.
It is well known that the timescales to equilibration diverge
exponentially with proximity to criticality in the random field
Ising model20. In fact, at the corresponding critical point, tem-
perature fluctuations are irrelevant in the renormalization group
sense, meaning they are not necessary in order to capture the
essential critical behavior. During a single cycle of the rotating
applied field we consider here, the symmetry of the system
remains in the universality class of the random field Ising model,
except for a set of measure zero (when H is parallel to the random
fields). Therefore, as the applied field is rotated, the system is
forced to traverse regions with enormous energy barriers most of
the time. On long enough length scales, these energy barriers
must be present. For a given rate of dissipation of the heat bath,
the energy barriers can be made to diverge sufficiently to beat the
rate of dissipation by moving closer to criticality. Thus we study
our model at zero temperature, for the same reason that zero
temperature results from the random field Ising model have been
applied to many disparate physical systems, some even at room
temperature21.

Results
Figure 1 shows the rich behavior of the limit cycles in rotating

driving field, as a function of the magnitude of the driving field H
at intermediate disorder strength Rx= 0.5J. Figure 1b shows the
sense of the driving field, which is held at constant magnitude,
but rotated counterclockwise, i.e., ϕ increases in time as ϕ= ωt in
the ω→ 0 limit, starting from ϕ= π/2. Figure 1a shows a plot of
mx vs. the angle ϕ of the applied field. Figure 1d shows a plot of
my vs. the angle ϕ of the applied field. Figure 1c shows the
combined parametric plot of magnetization mx in the x direction,
plotted against the magnetization my in the y direction. The sense
of the parametric plot in Fig. 1c is counterclockwise. In each case,
the system is started from a locally stable configuration in applied
field Hjjŷ at zero temperature, which has been relaxed from an
initially saturated state aligned with the initial applied field. The
transient response before the limit cycle is not shown in this
figure. We return to the transient response later.

For moderate disorder strength Rx= 0.5J, we find that, at small
amplitudes of the driving field, the spontaneous magnetization in
the y direction remains robust. This is evident in the small hys-
teresis loops we find for H= 0.02J as shown by the purple trace in
the parametric plot Fig. 1c. This indicates that the system con-
tinues to display spontaneous symmetry breaking in the y
direction, retaining its Ising ferromagnetic character in the pre-
sence of weak rotating driving field.
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As the magnitude of the applied field is increased, there is a
change in behavior from ferromagnetic to paramagnetic response.
This is evident in the large, almost circular hysteresis loop we find
for larger H= 0.15J, as shown by the red trace in the parametric
plot Fig. 1c. This change is consistent with either a crossover in
behavior or a non-equilibrium phase transition at a critical
magnitude of the driving field. Note that the rotating hysteresis
loops at intermediate driving field strengths H= 0.041J and H=
0.07J have rich structure: Numerous avalanches are evident in
these traces. As we discuss later, the avalanche structure provides
further insight into the question of whether the change from
ferromagnetic to paramagnetic response is a crossover or a phase
transition. Perhaps the most intriguing feature of the intermediate

driving field regime is that, in the blue trace (H= 0.041J), the
limit cycle has double the period of the driving field. We find that
limit cycles often become multiperiodic at intermediate field
strength, for large enough system size.

In this section, we focus on the characteristics of the avalanches
that occur near the transition from Ising ferromagnetic to para-
magnetic response. We find a rich avalanche structure at inter-
mediate field strengths, as can be seen in the blue and green
traces in Fig. 1 (H= 0.041J and H= 0.07J, respectively). Notice
that, while the avalanches are apparent in both mx and my, they
are most prominent in my, which serves as the order parameter
in this system. When magnetization is cast as an extensive
quantity, M ¼ PN

i¼1 Si ¼ Nm, then in the thermodynamic limit,
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Fig. 1 Steady-state response to rotating applied field at T= 0. A system of size N= 160 × 160 with Rx= 0.5J is started from an initial applied field in the
y-direction. The initial spin configuration is aligned with the applied field, then relaxed according to Eq. (3) as described in the text, after which the applied
field is rotated counterclockwise as denoted in b. a, c, d show the response once steady state is reached under the driving field. a shows the response of the
magnetization in the x direction, while d shows the response of the magnetization in the y direction. c is a parametric plot of my vs. mx. In all panels, the
arrows denote the state of the system when the driving field is at an angle ϕ= π, i.e., aligned along the x direction. For driving field strength H= 0.041J, the
response of the system has double the period of the driving field. The open arrow on this trace denotes the state of the system at driving field angle ϕ= π
during every other cycle of the driving field.
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avalanches δM of diverging size accompany a second-order phase
transition.

Figure 2a plots the size of the largest avalanche jδMjmax at
each rotating field strength, for a range of system sizes N= L × L.
Results are averaged over several disorder configurations of the
random field at disorder strength Rx= 0.5J, ranging from 75
disorder configurations for system size N= 642 to 30 disorder
configurations for system size N= 1602. (See “Methods.”) Notice
that fluctuations as measured by the largest avalanche diverge
with increasing system size at a critical driving field strength,
Hc(Rx= 0.5J). We estimate the value of Hc at Rx= 0.5J as follows:
For each system size, the peak value based on a 3-point average is
indicated by the vertical bar. The corresponding peak value of the
applied field strength, averaged over all system sizes, is Hc=
(0.0452 ± 0.0015)J.

In Fig. 2b, we plot the second moment of all avalanches in each
limit cycle, <ðδMÞ2> at each rotating driving field strength, for a
range of system sizes. Results are disorder averaged, using the
same number of disorder configurations as in Fig. 2a. Notice that
this alternate measure of fluctuations based on the second
moment of the avalanche size distribution is also consistent with
the system undergoing a second order, nonequilibrium phase
transition at a critical driving field strength, Hc. In this case, we
find that Hc(Rx= 0.5J)= (0.0432 ± 0.0016)J, in agreement with
the value of the critical field strength we find from Fig. 2a.

Figure 3a–c shows how the magnetization responds to a
rotating driving field in the vicinity of the phase transition. There
is a transient response before the system settles into a limit cycle.
A limit cycle is the steadily repeating response in the magnetiza-
tion due to a rotating driving field. While we find that most limit
cycles have the same period as the driving field, we find that near
the transition regime, limit cycles often have a longer period. We
first discuss the behavior of the transient response, before turning
our attention to the behavior of the multiperiodic limit cycles.

The transient response in Fig. 3a–c is marked in black. In
Fig. 3d, we plot the duration of the transient response, as a
function of H, for various system sizes. The results shown have
been averaged over several disorder configurations. (See “Meth-
ods” for details.). At high and low strengths of the driving field,

the transient response becomes so negligible as to be smaller than
the symbol size on this graph. However, at intermediate driving
field strength, the transient response grows with increasing sys-
tem size. The fact that the transient response grows with
increasing system size is further corroboration that the system is
undergoing a second-order phase transition. In Fig. 3, the
mean of each transient distribution function is denoted by a
vertical line, color coded to the system size. The average of the
mean value of H from these vertical lines is hHtriN ¼
ð0:0430 ± 0:0014ÞJ , consistent with our previous estimates of
Hc(Rx= 0.5J).

We now turn our attention to the behavior of the limit cycles at
intermediate driving field strength. One of the most fascinating
features of the limit cycles in this regime is that some of them
have a longer period than that of the driving field. Figure 3 shows
some representative cases of this behavior. Figure 4 visualizes how
the spin configurations respond to the driving field during one of
the period-2 limit cycles. Domain walls have dramatically dif-
ferent configurations during the second cycle as opposed to the
first cycle of the driving field, suggesting a prominent role for
domain wall pinning and domain wall creep. More examples of
such behavior can be found in Fig. 1 of the Supplementary
Information and in our videos22 of the simulation results.

In order to explore this behavior quantitatively, we studied
several disorder configurations near the transition, as a function of
system size. Figure 5 shows a histogram of the likelihood of mul-
tiperiod limit cycles. For a given magnitude of the driving field H
and a given system size N, we plot the number of disorder con-
figurations whose limit cycle has a period greater than that of the
driving field divided by the number of all disorder configurations
studied at that H and N. Starting from the bottom panel on the left-
hand side of Fig. 5e, the system size increases as one moves to the
next panel up the page, up to Fig. 5a that shows the largest system
we studied, N= 160 × 160. Different color bars indicate the period
of the multiperiod behavior: pink indicates period doubling; blue
shows period tripling; period-4 limit cycles are denoted in green;
yellow is for period-5, and orange is for period-7. We did not
observe any period-6 limit cycles, although presumably these
would appear at certain disorder configurations as well.
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Fig. 2 Avalanche statistics for disorder strength Rx= 0.5J from zero temperature simulations. The response of the magnetization to rotating driving
field often proceeds via avalanches, in which there is a discontinuous jump in the magnetization δM in response to a small change δϕ of the driving field
angle. a Statistics of largest avalanches. In a, we plot the size of the largest avalanche jδMjmax per limit cycle at each rotating field strength, disorder
averaged, for a range of system sizes. b Statistics of second moment of avalanches. b shows the disorder average of the second moment δM of the
avalanche size distribution where the error bars are the standard deviation over the disorder average as described in the text. The brackets < > denote an
average over the limit cycle, and the overbar denotes a disorder average. By both of these measures, the size of the avalanches grows with system size
implying divergent fluctuations at a critical field strength in the thermodynamic limit. The vertical bars in both panels mark the peak value from a running 3-
point average. Within the resolution of the plot in a, these values are coincident for sizes N= 80 × 80 and N= 100 × 100, and for sizes N= 128 × 128 and
N= 160 × 160. In b, the peak values are coincident for sizes N= 64 × 64 and N= 160 × 160.
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The vertical blue bars mark the mean of the distributions in
Fig. 5a–e, hHlciN . In Fig. 5f, we plot hHlciN vs. 1/N on a log–log
plot, in order to determine the limiting value hHlciN!1. Fits of
the finite size scaling in Fig. 5f for all system sizes, the four largest
system sizes, and the three largest system sizes yield a consistent
value for hHlciN!1 within error bars. The average of these three
methods yields hHlciN!1 ¼ ð0:0434 ± 0:0020ÞJ .

We find that, at small system size, multiperiod behavior is rare.
However, as the system size is increased, and the disorder con-
figurations can become correspondingly more rich, the likelihood
of multiperiod behavior increases. In Fig. 6a, we plot the max-
imum observed period of a limit cycle vs. 1/N. The maximum
period increases with increasing system size, in a manner con-
sistent with diverging period in the thermodynamic limit.

Notice also that the distribution in Fig. 5a–e grows in height
with increasing system size. For N= 160 × 160, we find that
20–30% of disorder configurations in the range H= (0.04−
0.046)J display multiperiodic behavior. To quantify these
effects, we plot the maximum height of the distributions in
Fig. 5a–e in Fig. 6b. This measure also shows sharp increase
with increasing system size. The fact that both the likelihood of
multiperiod behavior and the period of limit cycles steadily
increase with increasing system size points toward a thermo-
dynamic limit in which the period of limit cycles goes to infi-
nity. If the period of a system diverges in the thermodynamic
limit, then the system has effectively entered a regime of non-
repeatability. We discuss further implications of this finding in
the next section.
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Fig. 3 Transient response and multiperiod limit cycles at T= 0 near the transition field strength for disorder strength Rx= 0.5J. a–c show the initial
transient response (black curves), followed by multiperiodic limit cycles (rainbow curves). a H= 0.058J; N= 64 × 64. Transient response and
multiperiodic limit cycle for one disorder configuration at N= 642. Here the transient response lasts roughly half a cycle before a period-2 limit cycle is
established. b H= 0.048J; N= 100 × 100. Transient response and multiperiodic limit cycle for one disorder configuration at a larger system size N= 1002.
Here the transient response lasts roughly one cycle before a period-2 limit cycle appears. c H= 0.046J; N= 160 × 160. Transient response and
multiperiodic limit cycle for one disorder configuration at an even larger system size N= 1602. Here the transient response lasts almost 1.5 cycles before a
period-3 limit cycle is established. d Statistics of transient response. The disorder-averaged duration of the transient response, as a function of H. The error
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Discussion
Using four different methods to quantify the fluctuations in
the system (see Table 1), we find evidence for a second-order
nonequilibrium phase transition from spontaneous Ising ferro-
magnetism at low driving field strength to XY paramagnetism at

high driving field strength. The critical field strength at which this
transition occurs is consistent across all the methods we
employed, yielding an average value of Hc= (0.0437 ± 0.0009)J,
as denoted in the phase diagram in Fig. 7.

We furthermore find that, far from being irrelevant, disorder
plays a prominent role at the transition. Because the disordered
energy landscape makes the system highly susceptible to spatial
fluctuations near the transition, there is both a longer transient
response and a longer period of limit cycles near Hc. Remarkably,
both the likelihood of multiperiod behavior and the period of the
limit cycles increases with no sign of saturation as system size is
increased. The trend we find is toward a thermodynamic limit in
which limit cycles never repeat. A large enough physical system at
this critical point should therefore display a regime of non-
repeatability. As shown in Fig. 7, the regime of non-repeatability
in the thermodynamic limit coincides with the nonequilibrium
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Fig. 4 Example of spin configurations during a period-2 limit cycle at zero temperature. Spin configurations a and c are for the same angle ϕ of the
driving field, but the spin configuration is different the second time through the driving cycle. Likewise, spin configurations b and d are for the same angle ϕ
of the driving field, but the spin configuration is different the second time through the driving cycle. For this particular disorder configuration and system
size, the spin configurations repeat every 2 periods of the driving cycle. Here the driving field strength is H= 0.04J, and the system size is 160 × 160. See
Fig. 1 of Supplementary Information and videos22 of simulation results for further examples.
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hHlciN!1 ¼ ð0:0434±0:0020ÞJ.

Table 1 Critical field strength.

Method Value of Hc/J

Largest avalanche of limit cycle 0.0452 ± 0.0015
Second moment of avalanches in limit cycle 0.0432 ± 0.0016
Duration of transient response 0.043 ± 0.0014
Finite size scaling of multiperiodic behavior 0.0434 ± 0.0020
Overall average of the above methods 0.0437 ± 0.0009
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phase transition. The dependence of this simple model upon
history implies that experiments on XY systems in uniaxial ran-
dom field are particularly sensitive to disorder. Conflicting
experimental results could arise if hysteresis protocols are not
closely monitored.

Similar behavior is predicted to occur in models of amorphous
solids under periodic shear stress19,23,24. In these systems,
simulations revealed that under periodic shear the response of the
system becomes multiperiodic, in a way that is consistent with
chaotic behavior at a critical shear amplitude. More work would
be needed to determine whether the multiperiodic cascade
observed here is indicative of chaotic behavior in the thermo-
dynamic limit. Similar multiperiod cascades signal the onset of

chaos in nonlinear systems, suggesting that the multiperiod cas-
cades observed here and in periodically driven models of amor-
phous solids are characteristic of a larger class of transitions in
dynamical systems.

While the discussion above points toward non-repeatability in
the thermodynamic limit, there is a way to take the thermo-
dynamic limit on this model such that n remains finite. A finite
system of size L × L with a particular disorder pattern at the
critical point has a finite period n with respect to the driving
period. Now tile space by making k copies of this system
(including the particular disorder pattern), and let k→∞. With
this method of taking the thermodynamic limit, the period n
remains finite, even for increasing system size. We have verified
that when a disorder pattern is tiled into a 2 × 2 superlattice of the
original disorder pattern (i.e., k= 4) then the spin response in the
limit cycle is also a superlattice of the original spin configuration,
and n is unchanged from the case k= 1.

By this second method of taking the thermodynamic limit, in the
vicinity of the nonequilibrium transition, the system should display
the characteristics of a classical17,18 discrete time crystal25–27, in
which the discrete time translation symmetry imposed by the
periodic drive is spontaneously broken in a way that leads to rigid
subharmonic entrainment. While some authors are willing to apply
the label time crystal to an open system, where energy from the
drive moves through the system into a heat bath (as in the present
case)17,26,28, others prefer a more restrictive use of the term time
crystal, reserving it for closed, conservative systems29. We are using
the term time crystal in the former, broader sense.

We find that the period of the response remains stable against
perturbations in the initial conditions and stable against low
temperature fluctuations (see Section B in Supplementary Infor-
mation), indicating that the spontaneous breaking of the discrete
time symmetry is rigid. Yao et al.17 find that the critical endpoint
between a classical discrete time crystal and the disordered phase
of a dissipative, coupled chain of classical nonlinear pendula
terminates in a critical point that is not in an Ising universality
class. Because the nonequilibrium transition we find here is in an
Ising universality class, this indicates that there is more than one
classical discrete time crystal universality class. The results here
further underscore the fact that long-range interactions are not a
necessary ingredient to stabilize a time crystal30.

While our results point to rigidity of n with respect to very low
temperature fluctuations, more analysis would be needed to
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Fig. 7 This figure shows the zero temperature phase diagram as a
function of the strength of the rotating field in a uniaxial random field.
The region where the number of multiperiodic loops and the maximum
periodicity increases with system size is labeled as the expected region of
non-repeatability for infinitely large systems. This region coincides with the
region where the largest avalanche occurs is this system where 〈Hc〉=
(0.0437 ± 0.0009)J, which is marked by the vertical blue line. The line
plots shows that the disorder average of the second moment δM of the
avalanche size distribution where the error bars are the standard deviation
over the disorder average as described in the text. The brackets < > denote
an average over the limit cycle, and the overbar denotes a disorder average.
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establish whether the n is truly long-range ordered in time.
However, what we observe is a promising avenue toward time
crystal behavior in a new system, as can be seen in Fig. 4. The
figure shows a period-2 limit cycle. Two types of domain walls are
evident in the figure: single domain walls that are either white or
black, and double domain walls that are white and black. Com-
paring Fig. 4a and Fig. 4c, it is evident that, on the second time
through the driving cycle, the domain walls are in a very different
configuration as compared to the first time through the drive cycle.
The same is true comparing Fig. 4b and Fig. 4d. Furthermore, the
single (white) domain wall in the lower left of Fig. 4b has no
counterpart in Fig. 4d and is topologically distinct from it. These
are all indications that (i) the domain walls are pinned by the
random fields, and therefore that (ii) spin configurations in the
second cycle likely have high energy barriers to spin configurations
at the same phase of the drive during the first cycle. In random
field models, the timescales to equilibration grow exponentially
near criticality20. This combination of topological differences,
domain wall pinning, and high barriers to equilibration is the
physical origin of the stability of the period of these multiperiod
cycles against low temperature fluctuations and likely leads to true
time crystalline rigidity of n if care is taken in how the thermo-
dynamic limit is approached and how dissipation is handled.

The work in this paper was done at uniaxial random field
strength Rx= 0.5J, with zero random field strength in the y-
direction. Further work is needed to obtain the full phase diagram
as a function of random field strengths Rx and Ry.

The uniaxial random field XY model has been applied to many
systems, including layers of Josephson junctions,1 superfluid in a
uniaxially stressed aerogel,2 ultracold atoms in the presence of
speckle radiation,3 uniaxially stressed 2D Wigner crystals,4–7 and
the half-integer quantum Hall effect8. Uniaxial random field-
induced order has also been discussed in connection with the
graphene quantum Hall ferromagnet9,10. We discuss below a few
of these systems in which there is also a clear way to drive the
system with a rotating field.

An electron nematic occurs when the electronic degrees of
freedom spontaneously break the rotational symmetry of the host
crystal. Electron nematics have been observed or proposed in
several material systems, including transition metal oxides like
cuprate superconductors, manganites, nickelates, and cobaltites
and valley symmetry breaking systems like single and bilayer
graphene, elemental bismuth, and AlGaAs 2D electron gases, as
well as strontium ruthenates and iron pnictides31,32. For electron
nematics with XY symmetry33, there is a factor of two between
the physical angle of the nematic in the plane and the natural
angles in an XY model. This is because a nematic is symmetric
under 180° rotation, whereas the XY spins change sign under the
same operation. The uniaxial random fields we discuss in this
paper can arise in these systems if random orienting fields are
strong only along the major crystalline axes. Note that, in this
case, the order-by-disorder transition would induce the electron
nematic to orient along a direction that is diagonal to the major
crystalline axes.

Several external perturbations can be used as a driving field on
an electron nematic, including magnetic field, electric field, high
currents, and uniaxial stress34,35. Note that similar symmetry
considerations apply to the driving field in these systems. For
example, a rotating applied magnetic field B ¼ ½Bx;By� ¼
B½cosðωtÞÞ; sinðωtÞ� can be used to exert the rotating driving field
of Eq. (1) for the case of a nematic, with the caveat that rotating
the applied field by 90° changes the sign of the driving field:

H ¼ ½Hx;Hy� ¼ H½cosð2ωtÞ; sinð2ωtÞ� : ð2Þ

Random field-induced order has been proposed to happen in
coupled Bose–Einstein condensate systems3. Theoretical and
numerical results on two-component Bose gases predict that, by
using a Raman field to couple two internal states, uniaxial ran-
dom field disorder can be produced. The uniaxial nature is
achieved by a Raman coupling with constant phase, while the
randomness is achieved through random strength of the Raman
field36,37. Similarly, a rotating driving field can be applied by a
Raman coupling with uniform strength, but rotating phase.

While the mapping of a magnetic system with XY symmetry
to Eq. (1) is clear, the realization of a uniaxial random field in
these systems is less clear. It may be possible to design a system
in which epitaxial strain from a substrate exerts random
uniaxial fields on a 2D XY ferromagnet through magnetoelastic
coupling.

In conclusion, we have shown that the order-by-disorder
transition of the 2D XY model in the presence of a uniaxial
random field persists up to a critical strength of the rotating
driving field. Near the critical driving field strength, the response
of the system has a period that is an integer multiple n > 1 of the
driving field period. The trend with increasing system size is
toward increasing period n, suggesting the onset of what is
effectively non-repeatability as n→ large in the thermodynamic
limit. Similar multiperiod cascades signal the onset of chaos in
nonlinear systems and signal the onset of irreversibility in peri-
odically driven models of plastic deformation, suggesting that
multiperiod cascades are characteristic of a larger class of tran-
sitions in dynamical systems. Our results further indicate that the
period n can be engineered to remain finite if the thermodynamic
limit is taken by tiling a particular disorder pattern into a
superlattice. In this case, behavior reminiscent of classical discrete
time crystals emerges near criticality.

Methods
Hysteresis protocol. The magnetization my in the y-direction at intermediate
disorder strength Rx= 0.5J remains ordered even in the presence of weak applied
transverse field Hx. (See Section D in Supplementary Information.). Therefore, to
begin the hysteresis studies, we first initialize the system in a y-magnetized state, by
starting from the fully saturated y magnetization, with the driving field aligned
along y, H∣∣y, then allow the system to relax38 at that applied field. We take the
angle ϕ of the applied field to be ϕ=Arctan(Hy/Hx), so the initial direction of the
applied field is ϕ= π/2. After rotating the applied field by an amount δϕ(H), the
spin configuration is updated successively so as to minimize the energy, in the ω→
0 limit. After a transient response, the response of the system then settles into a
limit cycle. Each time the applied field direction is updated, the energy is mini-
mized on each site by aligning the spin on each site with its effective field, heffi .
Hence, the following update strategy is repeated until the spin configuration
converges to the nearest energy minimum:

heffi ðtÞ ¼ J
X

j2hi;jiSjðtÞ þ hi þH;

Siðt þ 1Þ ¼ heffi ðtÞ
jheffi ðtÞj :

ð3Þ

This update mechanism is similar to Eq. (2) of ref. 39; however, the effective on-
site field in our case includes only the instantaneous influence of nearest neighbors,
whereas ref. 39 is working in a mean-field limit. The update algorithm we employ is
described in more detail below, in the next section.

We continue to allow spins to relax under the influence of Eq. (3) until a limit
cycle is reached, defined by {Si}(ϕ+ 2πn)= {Si}(ϕ). We use the following
parameters in our simulations: δmcutoff= 10−4, δϕmax ¼ 2π ´ 10�4,
δϕmin ¼ 2�14 ´ δϕmax. Hence the avalanches (δm) are only well defined within the
precision of the driving field angle, δϕmin ¼ 2π ´ 6:1 ´ 10�9.

Spin relaxation method. The rotation of the driving field and subsequent
relaxation of the spin configuration is performed as follows. Starting from an initial
spin state {Si}(ϕ) for a given applied field direction ϕ=Arctan(Hy/Hx) and with δϕ
initially set to δϕ= δϕmax:

● Update ϕ→ ϕ+ δϕ.
● Use Eq. (3) to relax the spin configuration.
● If δm > δmcutoff, then:

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18270-6

8 NATURE COMMUNICATIONS |         (2020) 11:4665 | https://doi.org/10.1038/s41467-020-18270-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


If δϕ= δϕmin, accept the new spin configuration and the new ϕ and proceed
to Step 1.
Else reject the changes. Set δϕ→ δϕ/2 and proceed to Step 1.

● Else accept the new spin configuration and the new ϕ and:

If δϕ ¼ δϕmax or δm≥ δmcutoff
2 , proceed to Step 1.

Else, set δϕ→ 2 × δϕ and proceed to Step 1.

Disorder averages. Table 2 reports the number of disorder configurations used
in Figs. 2, 3, and 5.

Data availability
The numerical results that support the findings of this study are available from the
corresponding author upon reasonable request.

Code availability
The custom code used to generate the simulation results in the current study is available
from the corresponding author upon reasonable request.
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