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Abstract
We investigate the demographic and population health implications of gene–environment interactions (GxE) in the case of body mass 
index (BMI) and obesity. We seek to answer two questions: (a) what is the first-order impact of GxE effects on BMI and probability of 
obesity, e.g. the direct causal effect of G in different E’s? and (b) how large is the impact of GxE effects on second-order health outcomes 
associated with BMI and obesity, such as type 2 diabetes (T2D) and disability? In contrast to most of the literature that focuses on 
estimating GxE effects, we study the implications of GxE effects for population health outcomes that are downstream of a causal 
chain that includes the target phenotype (in this case BMI) as the initial cause. To limit the scope of the paper, we focus on 
environments defined by birth cohorts. However, extensions to other environments (education, socioeconomic status (SES), early 
conditions, and physical settings) are straightforward.
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Significance Statement

Recent studies highlight the gene–environment interactions that may affect the risk of obesity in the US adult population. These stud-
ies show that individuals born after 1950 who have higher genetic propensities to develop higher body mass index (BMI) experience 
elevated risks of obesity than those with a similar genetic profile but born earlier. This paper assesses if and to what extent these ex-
cess risks of obesity translate into increases in the risks of type 2 diabetes (T2D) and disability. We find that the gene–cohort inter-
action effects exert direct impact on the youngest cohorts’ obesity prevalence. Despite the strong relationship between obesity and 
T2D and disability, these additional increases in the risk of obesity do not translate into significant impact on T2D or disability.

Introduction
Increasing rates of obesity prevalence in the 20th century appear 
simultaneously in high-income countries around 1970–19801 and 
spread rapidly to low- and middle-income countries. Since 1975, 
the worldwide prevalence of obesity has trebled but varies widely 
across geographic regions (1). Between 2000 and 2018, the US 
population obesity prevalence grew from 30.5 to 42.4% continuing 
a trend that began in the middle-60s from a level of about 13%, 
clocking a doubling time of about 31 years (2).

More ominous is the rapid increase of obesity among children 
and adolescents. In the 40-year period between 1965–1969 to 
2008, obesity prevalence among children and adolescents spiked 
from 5% to a level about twice as high while it trebled during 
the same period among those aged 6–19. Since then, prevalence 
rates increased to 15 and 20% in each age group respectively (3). 
By virtue of the association between child and parental obesity 
(4), on the one hand, and individuals’ early childhood and adult 
obesity (5), on the other, these trends might lead to intergenera-
tional “transmission” of the phenotype.

Sizeable increases in human girth are not by themselves of im-
mediate concern.2 What preoccupies scientists and health 

1 Throughout we use the WHO definition of obesity and use the term to re-
fer to individuals with BMI, exceeding 30 (https://www.who.int/news-room/ 
fact-sheets/detail/obesity-and-overweight). As long as there is no equivocation, 
we use the expression “effects on obesity” to mean increased risk of obesity as 
well as “effects on BMI” (and vice versa). The same applies to expressions such 
as “obesity-related GxE effects” which we will use as equivalent to “BMI-related 
GxE effects.” We will refer to BMI and obesity as equivalent phenotypes by using 
the awkward “BMI–obesity” expression. Throughout we use “GxE effects” to 
mean gene–environment interaction effects.

2 We do not belittle the personal consequences of obesity. In societies 
where the phenotype is stigmatized, it causes discrimination, maltreatment, 
isolation, and mental illness and imposes an incalculable psychological cost 
to individuals. Furthermore, an important fraction of the economic burden as-
sociated with obesity is borne by the individuals themselves.
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policymakers alike is the evolution of phenotypes related to obes-
ity. Obesity is associated with metabolic syndrome (6, 7), elevated 
risks of chronic conditions such as type 2 diabetes (T2D), cardio-
vascular disease (CVD), cancer, stroke, midlife cognitive perform-
ance, late-life cognitive decline, and increases in fragility and 
disability (8, 9). Although the direct impact of obesity on mortality 
is controversial, its indirect effects through chronic conditions 
and illnesses are strong and undisputable (10–12).

These relations between obesity, chronic illnesses, and disabil-
ity are hugely consequential. It has been estimated, for example, 
that in 2010–2012, the US medical costs of obesity hovered around 
a staggering 150 billion per year (2014 US dollars) (10) and could 
have been as large as 210 billion. Most of this spending is associ-
ated with the treatment of T2D, other closely associated chronic 
conditions, and disability (11).

There is widespread consensus that the root of the post-1950 
increase of obesity is environmental and associated with whole-
sale changes in diet, physical activity, sleeping patterns, and 
stress (12). These “obesogenic environments” are well entrenched 
and unlikely to be dismantled any time soon (13, 14).

Obesogenic environments, however, are not the only game in 
town. Other determinants may either reinforce (or weaken) future 
trends of obesity and associated chronic conditions, even if obesogen-
ic environments remain unchanged. One of these is the genetic make-
up of a population. Family- and kin-based studies estimate that 
additive genetic effects account for about .40 to .70 of the phenotype 
variance (15, 16). More recently, genome-wide association studies 
(GWAS) studies confirm that body mass index (BMI) and other obesity 
markers such as waist–hip ratio (WHR) and waist circumference (WC) 
are polygenic traits involving multiple allelic variants (17–20). 
Estimates of heritability from these studies are within a much lower 
range, between 5 and 15%. Barring shifts in assortative mating and 
sharp differentials in net reproduction rates by body size, it is improb-
able that these additive allelic effects could significantly shift future 
trends of BMI, obesity, or associated health outcomes.3

Enter gene–environment interactions (GxE), and we may have a 
different story. Not only can these have direct, first-order, impacts 
on BMI and obesity but may also have indirect, second-order, im-
pacts on chronic illnesses, disability, and mortality. Were these 
second-order impacts of GxE associated with BMI to be important, 
their population health implications will be significant for current 
and subsequent generations. The goal of this paper is to examine 
jointly first- and second-order effects of GxE. We seek to answer 
two questions: (a) what is the likely range of first-order impacts 
of GxE effects on BMI and obesity, e.g. the direct effect of G in dif-
ferent E? and (b) how large is the second-order impact of GxE ef-
fects, e.g. the effect on health outcomes associated with BMI 
and obesity? Because they have attracted a great deal of recent at-
tention, we focus on environments defined by birth cohorts. Birth 
cohort is one among many “environments” highlighted in social 
research on GxE (22–25). In the case of BMI and obesity, birth co-
hort is a surrogate for “timing of onset of widespread exposure 
to obesogenic environments.” The magnitude of GxE effects esti-
mated with birth cohort as “environment” is among the largest in-
volving obesity and BMI. Extensions of our arguments to other 
environments (education, socioeconomic status [SES], early con-
ditions, physical settings, etc.) are straightforward.

GxE effects: How large are they?
Large GWAS studies have made possible the rapid growth of em-
pirical studies that seek to identify the association between thou-
sands of allelic variants and a growing array of phenotypes. An 
increasing fraction of these studies use polygenic risk scores 
(PRS) to estimate the additive effect of multiple allelic variants 
on a phenotype. Although in most cases the fraction of explained 
variance by PRS is quite small, these findings support the idea that 
knowledge about phenotypes of interest to social scientists could 
be much improved if, alongside other standard determinants, re-
searchers consider the impact of genetic factors (26–32).

An important part of this new research program focuses on 
GxE, that is, variation of phenotypic response of a single genotype 
to changes in environments (33). In social sciences, GxE refer to 
situations in which the additive causal genetic effect on a trait 
or behavior is different among individuals belonging to well- 
characterized subgroups (gender, age, education, and SES) or 
social settings (normative vs. nonnormative and exposed vs. non-
exposed to risks or interventions).4 GxE effects are also of interest 
in evolutionary biology and population genetics for they could in-
fluence the allelic composition of entire populations and drive the 
evolution of phenotypes under selection pressure (34–37).5

GxE have been at the center of heated debates regarding the rele-
vance of heritability of phenotypes, including the relative import-
ance of genes and environments in the production of social and 
economic inequalities (32, 33, 39, 40). Empirical evidence from 
GWAS-based studies that identify GxE in multiple phenotypes 
(education, IQ, noncognitive traits, depression, and onset of sexual 
activity) has recently been invoked to support the formulation of 
policy interventions that are better informed about the role of indi-
viduals’ genotypes (32). A common inference in these studies is that 
identification of GxE effects is not only relevant for theory building 
but might also benefit the design of interventions for they can guide 
identification of subgroups that, by virtue of their genetic makeup, 
are at higher risks of deleterious outcomes in some environments 
(28–30, 41, 42). Although this may be the correct inference, it is 
not always clear what the implications of detected GxE effects 
are, that is, the “so what question”: how large are they? How do 
they stack up against other determinants identified with similar 
or higher precision? If, for example, some phenotypes’ sensitivity 
to genetic risks has indeed increased across US birth cohorts (22), 
what does this mean for subpopulations that express them? How 
consequential are GxE effects involving obesity and relevant envi-
ronments (educational attainment, SES, birth cohort, early condi-
tions, and residential location)? And what do they imply for other 
phenotypes associated with them?

Inferences about GxE effects are usually made at three differ-
ent analytic levels. The first demands quantification of the impact 
of GxE effects on shifts of the average phenotype across genera-
tions. This is the breeders’ concern and is the target of researchers 
interested in selection pressures under which a phenotype may be 
evolving.

The second level consists of identification of either environ-
ments that modify the contribution of individual genetic risks or 

3 While it is unlikely that vertical genetic transmission alone may become a 
driving force of the phenotype’s trajectory, it is possible that it, in combination 
with vertical cultural transmission, can have nonnegligible impacts (21). In 
addition, to potent vertical cultural transmission, and in the absence of muta-
tions, the key drivers of genotype frequencies associated with BMI and obesity 
and the phenotype trajectories in large populations will be assortative mating 
and differential fertility.

4 The literature distinguishes three main types of GxE, depending on the 
functional form of the relationship between genotype, environment, and out-
comes. These are diathesis stress, differential susceptibility, and social push 
models (26, 30).

5 Throughout, we will focus on the causal effects of gene variants, namely, 
the slopes of phenotypes relative to variables measuring genetic variation. In 
standard linear models, these are not to be equated with heritability (h2). The 
two metrics are indistinguishable only in classic path analysis, e.g. when all 
variables are standardized. When variables are in their natural scales, h2 and 
slopes, though related, can behave differently (38).
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of groups of individuals whose genetic profiles make them more 
(less) vulnerable to express a phenotype under well-defined E’s. 
In studies of individual depression, for example, the phenotype 
under study is the target of interest. In these cases, GxE effects 
may matter a great deal because they could shed light on modifi-
able environmental conditions that exacerbate (attenuate) the 
role of genetic propensities.

These two analytic levels are both about first-order effects. The 
third level of analysis has been little studied. It is about second- 
order effects, e.g. those associated with traits further down a 
causal pathway in which the phenotype under study is either an 
initial condition or a mediator. For example, a researcher may in-
vestigate the genetic determinants of age at first birth (43) or age at 
first sexual intercourse (44) not because these phenotypes are of 
intrinsic interest (though they might be) but because they could 
be consequential for other outcomes such as higher fertility, lower 
female labor force participation, early high school dropout, and 
onset of criminal activity or substance abuse (45).6 The pressing 
concern may be to understand the mechanisms that produce 
these second-order outcomes as a response to changes in the 
phenotype under study. If age at first birth has a causal effect 
on females’ subsequent labor force participation, a GxE associated 
with age at first birth could have large repercussions for aggregate 
female labor supply. For economists, the target quantity is not the 
fraction of total variance in age at first birth or age at first sexual 
encounter explained by G or GxE, but the magnitude of shifts in fe-
male labor supply expected under a set of genetic profiles situated in dif-
ferent environments.

A good illustration is the case of BMI and obesity. We know that 
increases in body size are just the beginning of a chain of physio-
logical changes that lead to metabolic syndrome, prediabetes, 
T2D, circulatory dysfunctions, fragility, disability, and death. If 
risks of increased BMI (or probability of obesity) for individuals 
of a given genetic propensity are higher among those in the lowest 
educated groups (25, 46) or in younger birth cohorts (25), a rele-
vant issue for population health scientists is what the impacts 
of these environmentally enhanced genetic risks are on T2D, kid-
ney and heart disease, and stroke. The concern with the effect of 
GxE on BMI and obesity is ancillary and the more pressing problem 
is the impact of these GxE on chronic conditions, the phenotypes 
at the end of the causal chain.7

It is worth noting (see footnote 3) that GxE effects in one gener-
ation may have lasting impacts on subsequent generations. 
Because parents with a given genetic propensity for BMI (obesity) 
in one environment (in the absence of an obesogenic environ-
ment) may experience added risks of higher BMI (obesity) when 
exposed to a new environment (obesogenic), the genotypic com-
position of the obese population in the parental generation will 
change (its average genetic propensity will decrease). This has 
two consequences: first, due to phenotypic assortative mating, it 
will reduce the average genetic propensity that offspring inherit 
from parents who have higher BMI; second, it may increase the 
penetrance of parental shared environments that are characteris-
tic of couples with higher BMI, even if parents in these couples 
have lower genetic propensity to be obese. Thus, even if the off-
spring generation does not experience additional GxE, its average 
BMI (and probabilities of obesity) may increase but now because of 
nongenetic inheritance.

To assess the magnitude of first- and second-order impacts 
of GxE on BMI, T2D, and disability, we employ a counterfac-
tual approach. We ask, what would the BMI (or probability 
of obesity) be for the cohort that experienced the new 
post-1950 obesogenic environments if they had not been influ-
enced by the estimated GxE? This quantity is the observed 
BMI for individuals belonging to the birth cohort that experi-
enced obesogenic environment minus the estimated inter-
action effect (see Materials and methods section). We then 
use the counterfactual values of BMI and compute quantities 
related to T2D and disability in a hypothetical scenario in 
which those born after 1950 experience the impact of their 
enhanced genetic predisposition to have higher BMI.

Results
Results I: First-order effects on BMI and obesity
Table 1 and Fig. 1 display results after computing counterfactual 
(e.g. in the absence of GxE) BMI values using the Health and 
Retirement Study (HRS) estimate of GxE (see Table S6 and 
Fig. S2 for results including other counterfactuals) (47). Figure 1
displays the observed and counterfactual values of BMI by deciles 
of PRS. Table 1 displays the mean BMI and the share of obese indi-
viduals in the observed and counterfactual case. In the observed 
scenario, individuals in all deciles of PRS have higher BMI than 
in the counterfactual case and those with higher PRS experience 
the largest increases in BMI associated with GxE. On average, 
the observed BMI is 28.66, about 2.12 BMI units higher than 
in the counterfactual case. For a person of median height 
(175 cm), this is equivalent to an increase of about 14.3 lb. As ex-
pected, the increase in BMI is more pronounced for individuals 
with higher PRS. For those in the top decile, for example, the coun-
terfactual BMI is 3 units lower than the observed, equivalent to 
20.3 lb. Column (4) of Table 1 displays the impact of GxE on obesity 
prevalence. In the absence of GxE, the prevalence of obesity would 
be 23% or 13 percentage points lower than observed and for indi-
viduals in the top decile of BMI’s PRS, the reduction is as large as 19 
percentage points.

The question we pose next is about the magnitude of second- 
order effects on T2D and disability. To estimate these quantities, 

Table 1. Mean BMI and share of obese individuals by decile of BMI 
PRS, cohorts 1945–1959, with and without GxE (GxE = 0.57).

With GxE (observed) Without GxE 
(counterfactual,  

GxE = 0.57)

Decile BMI 
(1)

% Obese 
(2)

BMI 
(3)

% Obese 
(4)

1 25.71 0.16 24.69 0.11
2 26.93 0.24 25.54 0.14
3 27.49 0.26 25.51 0.17
4 27.99 0.31 25.95 0.21
5 28.56 0.31 25.96 0.21
6 28.83 0.37 26.80 0.24
7 29.32 0.36 26.83 0.25
8 29.86 0.48 27.65 0.31
9 30.48 0.50 27.91 0.31
10 31.58 0.55 28.58 0.36
Total 28.66 0.36 26.54 0.23

Note: Counterfactual BMI/share of obese individuals refers to the BMI/share of 
obese individuals if there were no GxE; the value of GxE effect is as estimated 
using the HRS sample.

6 Second-order phenotypes could be under the influence of additive allelic 
effects that may or may not affect the phenotype under immediate study.

7 Estimates of first-order GxE effects will, of course, always be relevant for 
those interested in the biology of obesity even if no effects are expected on 
second-order phenotypes.
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we concentrate on impacts via obesity (rather than BMI) since the 
bulk of the literature on the subject uses obesity as the main 
predictor.

Results II: Second-order effects
Panels A and B in Fig. 2 display probabilities of never contracting 
T2D after age 50 and never becoming disabled, respectively, 

predicted at each decile of the PRS distribution.8 In each figure, 
there are five lines: one of them (“observed”) plots BMI values 
that include the contribution of GxE. The line labeled CF1 plots 
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8 It is standard practice in demographic studies to gauge the importance of 
an event’s risk by employing the single decrement probability of never (ever) ex-
periencing within the age or duration range within which the event has a non-
zero risk.
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counterfactual values that are obtained after eliminating the GxE 
effect estimated from HRS (CF1). Lines CF2–CF4 do the same for 
each of three remaining alternative estimates of GxE effects. 
Figure 2A shows that, except for the case when the GxE effect is 
as large as 1.2 (CF2), the impact of GxE on the probability of never 
contracting T2D is quite modest, except perhaps in the upper part 
of the PRS distribution. In fact, when the GxE effect is 1.2, the lar-
gest impact is for individuals in the top decile of PRS: if there was 
no GxE, the probability of never contracting T2D increases from 
.18 to .30. A lower increase, from .18 to .24, applies when the esti-
mate of GxE is equivalent to that found in HRS. The magnitude of 
impacts is much smaller around the center of the PRS distribution, 
not larger than .03.

The estimated impacts on disability are even smaller. If the 
true GxE were as high as estimated in HRS (CF1) and we sup-
pressed it, the probability of never becoming disabled would in-
crease from .28 to .33 among those located in the top decile of 
PRS and from .33 to .35 for those in the 5th decile. If the true 
GxE is set to its maximum value (CF2), the change would be 
from .28 to .35 and .33 to .36 for those in the top and 5th decile, 
respectively.

We turn to effects on the expected number of years lived (from 
age 50) without T2D or disability using single decrement probabil-
ities (ignoring mortality). Panel A of Fig. 3 shows that individuals in 
the 5th decile of PRS who avoid the impact of GxE are expected to 
live about 1.4 year longer with no T2D compared with those who 
experience GxE of the magnitude found in HRS (33.6 vs. 32.2). 
Among those in the top decile, the difference is about 3 years 
(31.5 vs. 28.5). When the GxE effect rises to the maximum we 
use here (CF2), the differences are 2.8 and 5.4 years of life for 
the 5th and top decile, respectively. In relative terms, these im-
pacts fall in the range of 2–11% of the total lifespan after age 50. 
The bulk of these differences, however, is not larger than 5%. In 
the case of disability (Panel B), the contrasts between predicted 
and counterfactual are again smaller: the maximum value is 2.2 
in the extreme case of the top decile of PRS and the most powerful 
GxE estimate. The range of relative differences is between 1 and 
4% of total life expectancy after age 50, with most of the values 
falling below 2.5%.

We now focus on the quantity that, at least form a health policy 
perspective, is the most important: the expected number of years 
to be lived after age 50 with T2D or with disability. These are key 
numbers for estimating long-term costs associated with the bur-
den of T2D and disability are, by far, the most relevant in the ac-
counting of a nation’s and households’ budget. To compute these 
quantities, we construct multiple decrement tables accounting 
for the joint incidence of T2D and disability, on one hand, and 
mortality risks associated with them, on the other. We estimate 
hazard models for mortality in the same HRS sample and include 
T2D and disability as predictors (plus controls).9 We then 
combine the predicted hazards with the single decrement tables 
for T2D and disability estimated before and, finally, compute ex-
pected duration of life with T2D or with disability (see Section 
SII). Panels A and B of Fig. 4 display the average number of years 
of life after reaching the 50th birthday to be lived with T2D and 
disability, respectively. In both cases, and no matter how extreme 
a PRS decile and the magnitude of the GxE effect are, the differen-
ces are trivial, generally smaller than .5 years.10

Discussion
Summary
Obesity is a phenotype strongly related to important health out-
comes for one and, because of its potential reproduction via verti-
cal genetic and cultural heritability, for several generations. The 
magnitude of GxE affecting the trait matters as it affects the re-
production, health status, and survival of the organism that bears 
it. Even if obesity is not influenced by assortative mating (which it 
is) and had no effects on humans’ net reproduction rate (which, in 
some cases, may have), its association with modern human 
chronic conditions and disability is sufficiently tight to make 
GxE relevant from a public health standpoint. Thus, it is highly 
relevant to assess whether the direct effect of GxE on BMI also 
translates into significant impacts of these chronic conditions 
and disability. If that is not the case, then while the original GxE ef-
fects (PRS for BMI/obesity and cohort) may be relevant as a tool to target 
groups for interventions to reduce obesity, the second-order effects will not 
provide additional helpful clues for interventions aimed at T2D or 
disability.

Our empirical estimates indicate that the magnitude of known 
estimates of GxE has some impacts on the prevalence of obesity. 
However, its aggregate impact on two demographic outcomes of 
importance in population health is small. GxE effects are relevant 
only to the small fraction of individuals in the upper extreme of 
the genetic risk distribution and only when estimates of GxE are 
set to the maximum value we were able to retrieve from past stud-
ies. We also show that the impact on a key parameter for health 
policymaking, namely, the duration of life with a chronic condi-
tion or disability, is very small. If the magnitude of GxE effects is 
as documented in recent research (or less), then GxE effects are 
too small to influence health outcomes that demographers and 
population health scientists are interested in.

Limitations
These findings, however, should be interpreted with caution. It is 
possible that although commonly used in other research, the tools 
we employ are too blunt to detect first- and second-order GxE ef-
fects. First, the PRS, the “G” in our model, has well-known weak-
nesses as an indicator of genetic propensity. The issue of 
“missing heritability” looms large here. If it is due to imperfection 
of estimates of allelic effects, we will underestimate the influence 
of both additive and interaction effects. Furthermore, our esti-
mates are potentially affected by confounding, sample selection, 
insufficient statistical power, model misspecification, and meas-
urement error. These pitfalls may lead to over or underestimation 
of main and interaction effects.

Second, birth cohort defined by discrete periods, the “E” in the 
model, is at best a very coarse indicator. We use it to follow recent 
studies in which birth cohort is a proxy for a “treatment,” namely, 
exposure to obesogenic environments. This may be justified on 
the grounds that it captures transformations (in physical, ideo-
logical, legal, judicial, and health conditions) that regulate the ex-
pression of the phenotype. But it is an extremely vague and crude 
construct for we know next to nothing about the mechanisms 
linking it to the phenotype and genotype of interest.

Third, we use a sample of non-Hispanic White (NHW) elderly 
residents of the United States. The rationale behind this stems 
from our observation that in recent studies consistent empirical 
support for the presence of GxE effects is only found among this 
specific demographic group. Consequently, our inference is con-
fined to this demographic group. Additional research should 

9 The mortality hazard models do not include BMI or obesity since their ef-
fects are statistically insignificant.

10 A better assessment requires to introduce as actual yearly costs of the 
condition as weights. At least in the US health system, even a 5-year difference 
can be the equivalent of a large fraction of an average household’s assets.
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determine the magnitude of GxE effects in other groups and 
whether they have any significant second-order impacts.

Fourth, we study second-order effects manifested during a 
fraction of the total life span within which adult health conditions 
related to obesity may surface. This is especially the case for T2D, 
a disease whose incidence begins to increase at around ages 30 to 
35 and peaks at ages 50 to 55. By starting life tables at age 50, we 
only capture the known GxE effects but only in oldest 70% of the 
relevant age range. However, if one assumes that GxE effects for 
the younger population are the same as for the population older 
than 50, the quantities estimated here would change minimally.

Fifth and finally, we hasten to emphasize that our inferences 
apply only to selected second-order phenotypes, T2D and disabil-
ity, and refer only to effects induced by GxE. The direct impact of 
GxE on BMI and obesity is modest but not trivial and may explain, 
albeit partially, recent increases in rates of obesity prevalence and 
could have an impact on T2D and disability. However, the effects 
of GxE on T2D and disability mediated by BMI and obesity are in-
consequential. It is of course possible that different results are ob-
tained with other health outcomes related to BMI and obesity. 
This remains to be investigated but it is unlikely to be a deal break-
er, as T2D is by far the strongest second-order outcome associated 
with obesity. By the same token, we study only one phenotype, 
BMI (obesity), and conclusions about the relevance of GxE effects 
should be confined only to it. The magnitude of GxE first- and 
second-order impacts could be more significant for other pheno-
types. For example, there are important GxE effects involving 
smoking behavior and changing environments (birth cohort and 
social contexts) (22, 23, 48); might it not be case that second-order 
effects of GxE in the case of smoking (lung and other cancers, 
chronic obstructive pulmonary disease (COPD), and CVD) are 
highly significant? This is certainly possible but, to demonstrate 
it, researchers should abandon the common practice of halting 
their investigation after detecting and estimating only first-order 
impacts of GxE.

Conclusion
Population health scientists should routinely trace GxE effects on 
phenotypes located farther out in a causal chain that begins with 
a target phenotype located at the top of it. A comprehensive as-
sessment of the relevance of GxE effects on human health ought 
not to be limited to first-order effects but should also include 
health-related second-order phenotypes. Until this becomes 
part of standard population research practice, studies of GxE 
will not have as much impact as they might deserve.

Materials and methods
We use HRS data including only the NHW population11 and esti-
mate the magnitude of GxE effects in models predicting BMI as a 
function of birth cohort, BMI’s PRS, and controls (see Section SI
and Table S1 for further details about the HRS sample we 
used).12 Estimates from the main model are displayed in 
Table S2. The predicted BMI by cohort and age is shown in 

Fig. S1. We then evaluate the impact of changes in BMI (and prob-
ability of obesity) induced by GxE effects on probabilities of T2D 
and disability, a secondary consequence of both obesity and T2D.

Estimation of GxE first-order effects on BMI and 
obesity
We estimate a growth curve model (GCM) for BMI:

BMIit = αo + α1cohorti + α2 zPRSi + α3cohorti ∗ zPRSi + β4i ageit

+ β5i age2
it + β′6Xi + μi + εit,

(1) 

where BMIit is an individual’s BMI in year t, zPRSi is the z-score of 
the PRS, cohorti is a categorical variable for the cohort born be-
tween 1945 and 1959, 1935 and 1944, 1925 and 1934, and before 
1925, ageit is median-centered age at year t, and Xi is a vector of 
control variables including education, gender, principal compo-
nents, and an indicator of early conditions. We also include two 
sets of interactions terms: between cohort and all control varia-
bles and between PRSi and all control variables. The coefficients 

of ageit and age2
it vary across individuals, μi is the random intercept 

for each respondent, and εit is the error term.
We are interested in the change in BMI attributable to the inter-

action between PRS and in the youngest HRS birth cohort, namely,

ΔBMIGxE
i = αT

3 ∗ zPRSi, (2) 

where ΔBMIGxE
i is the excess BMI attributable to GxE among those 

born between 1945 and 1959, αT
3 is the true interaction effect (esti-

mated from the model), and zPRSi is the PRS’ z-score. There is, 
however, a minor problem with (2) because the scale of the meas-
ure of genetic predisposition is relevant when evaluating the size 
of the impact of GxE. By construction, zPRS has a mean of 0 and a 
standard deviation of 1 and using it in equation (2) implies to set 
the impact of GxE to be 0 for individuals with average PRS. 
Because α3 > 0, those with PRS below average would have higher 
BMI if they were not exposed to the obesogenic environment. 
This is counterintuitive and a result of an arbitrary decision that 
assigns null effects at the mean of PRS. It is also inconsistent 
with empirical evidence suggesting that the impact of PRS on 
BMI follows a pattern predicted by a diathesis–stress model 
(DSM) (22, 25). Under this model, increased genetic penetrance is 
expected only in obesogenic environments (26). To circumvent 
the problem, we use a rescaled value, rsPRS, with a lowest 
value of 0

rsPRSi = zPRSi − min(zPRSi), 

where min(zPRS) is the minimum of the PRS’s z-cores. This trans-
formation sets the impact of gene to zero for individuals with the 
lowest zPRS but does not change the coefficient on the interaction 
term, α3 in equation (1). Its only advantage is interpretational as 
the rescaled variable has a “natural” zero, i.e. a value of the genetic 
risk score that is inconsequential for the phenotype.13

To assess the first-order impact of GxE effects on BMI, we com-
pute the counterfactual value BMI−GxE

i

BMI−GxE
it = BMIit − ΔBMIGxE

it = BMIit − αT
3 ∗ rsPRSi, (3) 

where BMIit is the observed BMI, rsPRSi is the rescaled PRS, and αT
3 is 

the true (unobserved but estimated) interaction effect. BMI−GxE
it is 

the value of BMI that individuals born in 1945–1959 would have 

11 We restrict analysis to NHW on account of the nature of population an-
cestry composition of the GWAS studies on which the HRS PRS is computed. We 
also estimated separate models for the African American (AA) samples in HRS 
and obtained lower (and statistically insignificant) effects. Furthermore, the 
additive allelic effects on BMI computed from GWAS studies that include re-
presentation of populations with African ancestry are about half the size as 
those for NHW in HRS (49).

12 These are unadjusted estimates. Adjustments for survival selection and 
sample weights lead to virtually indistinguishable estimates for the parameters 
of interest to us.

13 Although the rescaling is consistent with the DSM, it can also be consist-
ent with other models. We use it here not as a consequence of assuming ex ante 
that the DSM is true but rather of pragmatic considerations to improve 
interpretability.
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attained if GxE effects were suppressed (see description in Section 
SI). Note that the counterfactual value is a function of the ob-
served value of an individual’s BMI and the unobserved (but esti-

mated) GxE effect, αT
3. It does not depend on other parameters of 

the model and is not affected by the rescaling of PRS. Since the val-
ues we use for the interaction effects are all positive, the observed 
value of BMI will always be larger than the counterfactual values.

Because the parameter αT
3 is unknown, computations of first- 

and second-order impacts, must account, at least partially, for 
the uncertainty of the estimate we choose. With the HRS data, 
we could generate multiple estimates depending on variable def-
initions and model specification. For example, our model includes 
a control for interaction between the PRS and education. 
Estimates are different in a model that ignores such interactions. 
Similarly, different estimates are produced by different defini-
tions of E, e.g. birth cohorts. For our purposes at least, a conserva-
tive solution is to select the largest estimate from a handful of 
justifiable birth cohort definitions and model specifications. We 
choose αT

3, the estimate associated with the youngest birth cohort 
when contrasted with the oldest. This choice will yield an upper 
bound for first- and second-order effects.

There are, however, two additional sources of uncertainty. 
First, the HRS is one of many data sets that could generate esti-
mates of GxE effects. Second, even if one uses the HRS data, the 
value of the PRS score employed depends on the model specifica-
tion to retrieve single nucleotide polymorphism (SNP)’s weights. 
The number of SNPs included in the PRS we use here is significant-
ly larger than the number of SNPs than enter the definition of PRS 
employed by other studies based on HRS.

To partially account for this class of uncertainty, we conducted 
a thorough search of recent empirical studies and identified a 
small set of estimates comparable with ours (see Section SIII 
and Table S5). We chose three of these values spanning an interval 
that includes our HRS-based estimate as its (approximately) mid- 
point. Altogether, we use four alternative estimates of values of 
αT

3, αJ
3 ( j = 1, ..4).

We use these alternative estimates to compute BMI−GxE
it and 

then modify an individual’s obesity status according to the coun-
terfactual value. This will only change the obesity status of those 
whose observed BMI is larger but relatively close to 30 and, there-
fore, the population’s prevalence of obesity. The difference be-
tween the counterfactual and observed prevalence is the 
first-order impact of the GxE on obesity.14

Estimation of GxE second-order effects on T2D 
and disability
To assess the magnitude of second-order effects on T2D and dis-
ability, we proceed in two steps. First, we use the HRS data to es-
timate hazard models for T2D and disability for ages 50–99 as 
defined in equations (4a) and (4b). The models include a vector 
of controls, Z, and a dummy variable O valued 1 for BMI ≥ 30 using 
parameters calculated from equations (4a) and (4b). We then 
compute two sets of predicted hazards for T2D and two for disabil-
ity for each decile i of the zPRS distribution. The first sets are val-
ues for T2D computed from expression (4a) by replacing the 
dummy variable for obesity with the observed fraction of individu-
als who are obese in the ith decile of the PRS distribution and 

the average values of Zi’s in the corresponding decile. These are 
the observed T2D’s hazards for an average individual in those dec-
iles and, of course, include the impact of the GxE effect postulated 
by our model for BMI. The second sets of rates for T2D are the coun-
terfactual values. These are computed from expression (4a) by in-
serting the fraction of individuals in the corresponding decile 
that would be obese according to the counterfactual values, BMI−GxE

i . 
These rates are those we would observe at each PRS’s decile if there 
were no GxE effects. Analogous calculations using equation (4b) 
lead to observed and counterfactual values for the disability haz-
ards. The two expressions we use are as follows:

μT2D
i (t, Oi, Zi) = μT2D

o (t) exp (κOi + τZi), (4a) 

μDisab
i (t, Oi, Zi) = μDisab

o (t) exp (κ′Oi + τ′Zi), (4b) 

where μT2D
i (t, Oi, Zi) and μDisab

i (t, Oi, Zi) are the T2D and disability 

hazards at age t and decile i, μT2D
o (t) and μT2Disab

o (t) are the corre-
sponding baseline hazards, Zi is a vector of covariates, Oi is the ob-
served or counterfactual fraction of obese individuals in decile i, 
and finally, κ, τ, κ′, and τ′ are parameters. Estimates from these 
models are displayed in Table S3.

A key quantity for health policy is duration of life after 50 that 
individuals will live with (or without) T2D and disability. To esti-
mate this parameter, we compute multiple decrement life tables 
that simultaneously consider both the hazard of the event of 
interest (T2D or disability) and the competing event, mortality. 
We first estimate a hazard model for the mortality experienced 
by the HRS sample. This model includes dummy variables for 
T2D in expression (5a) and disability in expression (5b). Once the 
parameters are estimated, we compute mortality hazards for indi-
viduals with and without T2D/disability by including and exclud-
ing dummies for T2D/disability. The hazard models to estimate 
mortality hazard are as follows:

μdeath
j (t, T2Dj, Zj) = μdeath

o (t) exp (θT2Dj + γZj), (5a) 

μdeath
j (t, disabj, Zj) = μdeath

o (t) exp (θ′disabj + γ′Zj), (5b) 

where μdeath
j (t, T2Dj, Zj) and μdeath

j (t, disabj, Zj) are the mortality 

hazard for individual j in the presence of T2D and disability, 
T2Dj and disabj are 0/1 dummy variables, Zj is a vector of covari-
ates, and θ, γ, θ′, and γ′ are parameters. We use quantities com-
puted with expressions (4a) and (4b) and standard life table 
procedures to construct single decrement life tables for T2D/dis-
ability that yield single decrement probabilities of surviving to 
age x > 50 without contracting T2D/disability. Estimates from 
these models are displayed in Table S4.

Second, we combine the hazards computed with expressions 
(4a) and (4b) and those from expressions (5a) and (5b) to construct 
standard multiple decrement life tables. From these, we retrieve 
statistics such as the probability of never contracting T2D/disabil-
ity in the presence of mortality, the mean number of years lived 
with noT2D/disability in the presence of mortality, and the 
mean number of years lived after contracting T2D or becoming 
disable.15

14 To avoid cluttering and throughout presentation of results, we compute 
counterfactuals using effects associated with only the youngest birth cohort, 
the only one exhibiting a significant increase in effects at given values of PRS.

15 An important caveat is needed here. The total impact of BMI (obesity) on 
the risk of T2D may well implicate components we are not including here. For 
example, if obese individuals with a higher genetic propensity to be obese are 
exposed to higher (lower) T2D risks than individuals with the same genetic pro-
pensity who are not obese, then there is an added second-order component we 
are not accounting for. Some literatures suggest that the sign of this component 
is negative, not positive (50, 51) and, consequently, it would reduce the total se-
cond order effects of the original GxE effects. Furthermore, and at least in the 
HRS, its magnitude is close to 0 (we thank a reviewer for pointing this possibility 
to us).
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