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Purpose: To develop and validate an automated deep learning (DL)-based artificial intelligence (AI) platform
for diagnosing and grading cataracts using slit-lamp and retroillumination lens photographs based on the Lens
Opacities Classification System (LOCS) III.

Design: Cross-sectional study in which a convolutional neural network was trained and tested using pho-
tographs of slit-lamp and retroillumination lens photographs.

Participants: One thousand three hundred thirty-five slit-lamp images and 637 retroillumination lens images
from 596 patients.

Methods: Slit-lamp and retroillumination lens photographs were graded by 2 trained graders using LOCS III.
Image datasets were labeled and divided into training, validation, and test datasets. We trained and validated AI
platforms with 4 key strategies in the AI domain: (1) region detection network for redundant information inside
data, (2) data augmentation and transfer learning for the small dataset size problem, (3) generalized cross-entropy
loss for dataset bias, and (4) class balanced loss for class imbalance problems. The performance of the AI
platform was reinforced with an ensemble of 3 AI algorithms: ResNet18, WideResNet50-2, and ResNext50.

Main Outcome Measures: Diagnostic and LOCS III-based grading prediction performance of AI platforms.
Results: The AI platform showed robust diagnostic performance (area under the receiver operating char-

acteristic curve [AUC], 0.9992 [95% confidence interval (CI), 0.9986e0.9998] and 0.9994 [95% CI,
0.9989e0.9998]; accuracy, 98.82% [95% CI, 97.7%e99.9%] and 98.51% [95% CI, 97.4%e99.6%]) and LOCS
III-based grading prediction performance (AUC, 0.9567 [95% CI, 0.9501e0.9633] and 0.9650 [95% CI,
0.9509e0.9792]; accuracy, 91.22% [95% CI, 89.4%e93.0%] and 90.26% [95% CI, 88.6%e91.9%]) for nuclear
opalescence (NO) and nuclear color (NC) using slit-lamp photographs, respectively. For cortical opacity (CO) and
posterior subcapsular opacity (PSC), the system achieved high diagnostic performance (AUC, 0.9680 [95% CI,
0.9579e0.9781] and 0.9465 [95% CI, 0.9348e0.9582]; accuracy, 96.21% [95% CI, 94.4%e98.0%] and 92.17%
[95% CI, 88.6%e95.8%]) and good LOCS III-based grading prediction performance (AUC, 0.9044 [95% CI,
0.8958e0.9129] and 0.9174 [95% CI, 0.9055e0.9295]; accuracy, 91.33% [95% CI, 89.7%e93.0%] and 87.89%
[95% CI, 85.6%e90.2%]) using retroillumination images.

Conclusions: Our DL-based AI platform successfully yielded accurate and precise detection and grading of
NO and NC in 7-level classification and CO and PSC in 6-level classification, overcoming the limitations of medical
databases such as few training data or biased label distribution. Ophthalmology Science 2022;2:100147 ª 2022 by
the American Academy of Ophthalmology. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material available at www.ophthalmologyscience.org.
Cataract was the leading cause of blindness among the
global population who were blind in 2015.1 As the
population ages, the prevalence and incidence of cataracts
are expected to increase.2 Surgical removal of the lens and
implantation of intraocular lens are the only effective
treatments of a visually significant cataract.

Decision-making for cataract surgery is a major chal-
lenge for clinicians. Cataract classification systems have
ª 2022 by the American Academy of Ophthalmology
This is an open access article under the CC BY-NC-ND license
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been developed to assess the extent of cataracts, and the
Lens Opacities Classification System (LOCS) III is a widely
used subjective cataract classification system for measuring
cataract severity.3 Ophthalmologists determine the grade of
cataract by observing the lens image under the slit lamp
compared with the LOCS III standard lens images. Studies
have reported that LOCS III classification shows good
interobserver agreement compared with other methods of
1https://doi.org/10.1016/j.xops.2022.100147
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grading cataracts.4,5 Although several studies of the LOCS
III showed that practice and meeting to discuss
interpretations improved interobserver agreement, it is
obvious that the experience of the observer may affect the
reliability of the evaluations.6,7 To overcome this matter,
additional detailed clinical histories and formal
questionnaires are used to assess the visual functional
status of patients.8

Recently, artificial intelligence (AI)-assisted cataract
diagnosis has attracted many researchers due to its feasi-
bility and potential. In the early stages of AI applications in
adults with cataract, many research groups have validated
the deep learning (DL) algorithm for cataract diagnosis and
grading using slit-lamp photographs. However, the results
were tentative for application to clinical practice, consid-
ering the limitations of technology at the time. Subse-
quently, researchers shifted the focus to fundus photographs
as an imaging method. Recently, an AI algorithm using slit-
lamp images with a large amount of data was introduced and
showed improved outcomes.9 However, the researchers
established and validated a DL algorithm for cataract
diagnosis and grading based on LOCS II and trained
datasets of slit-lamp or diffuse-beam images, which have
disadvantages in detecting cortical opacity-type or posterior
capsular opacity-type cataracts.

We developed and validated an automated DL-based AI
platform for diagnosing and grading cataracts using 2 types
of lens imagesdslit-lamp photographs and retroillumination
photographsdof patients based on LOCS III. Our deep
convolutional neural network (CNN) was trained with
various slit-lamp and retroillumination images to identify
the presence and severity of cataract and recommend a
proper treatment plan for the patients.
Methods

Study Approval

This study followed all guidelines for experimental investigations
in human subjects. The study was approved by the Samsung
Medical Center Institutional Review Board (IRB file number,
2020-08-035) and adhered to the tenets of the Declaration of
Helsinki. The research protocol was approved by the Samsung
Medical Center Institutional Review Board and ethic committees
and all human participants gave written informed consent.
Participants

This cross-sectional retrospective study included patients 14 to 94
years of age with different types of cataract (nuclear sclerotic,
cortical, and posterior subcapsular) who visited the outpatient
clinic between January 2017 and December 2020 and had available
anterior segment photograph data. Patients with pathologic features
of the cornea, anterior chamber, lens, or iris that interfere with the
detection of lens images (e.g., corneal opacity or edema, uveitis,
and iris defects including aniridia, coloboma, and iridocorneal
endothelial syndrome) and a medical history of previous
ophthalmic surgery (e.g., keratoplasty, implantable Collamer lens,
and cataract surgery) were excluded. The patients with retinal and
vitreal diseases involving visual pathways that could interfere with
visual acuity and final management plan were also excluded.
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Data Collection

The authors reviewed the medical charts of all patients. The
following data were collected: demographic data (age and sex),
visual acuity, anterior segment evaluation, and fundus evaluation.
Two types of lens images were obtained using slit-lamp digital
cameras (SL-D7 [Topcon Medical System, Inc]; and D850 [Nikon,
Inc]) according to the LOCS III protocols. A slit-lamp color
photograph was obtained for each eye at a magnification of �10, a
slit width of 0.2 mm, and a slit-beam orientation of 30�. The ret-
roillumination photograph was obtained with a camera and a flash
brightness of 100 in a dark room (< 15 lux). Two independent
observers (K.Y.S. and S.Y.L.) specifically trained in the use of
LOCS III and masked to the study participants’ clinical informa-
tion reviewed images and performed clinical lens grading of nu-
clear color (NC), nuclear opalescence (NO), cortical opacity (CO),
and posterior subcapsular opacity (PSC) based on standard lens
photographs of LOCS III. Additional lens-grading levels were
established for severe nuclear cataract over LOCS III grade 6
(brunescent/white cataract) to 6 plus grade and for normal slit-
lamp, retroillumination photograph to grade 0 (Supplemental
Figs S1 and S2). To obtain 4 class variables, we divided the lens
grading into 4 categories: normal for grade 0, mild for grades 1
and 2, moderate for grades 3 and 4, and severe for grade 5 or
more in all types of cataract, which was defined as severity-
based grading. In the event of discrepancies between the 2
graders, the senior expert on cataract (D.H.L.) made the final
grading diagnosis.

Development of Deep Learning Algorithm

In this study, the DL algorithm predicted cataract grades from slit-
lamp and retroillumination images (NO and NC grades for
slit-lamp images and CO and PSC grades for retroillumination
images) by performing severity prediction as a multiclass classifi-
cation task. Previous state-of-the-art studies9 have demonstrated
the effectiveness of the DL algorithm in this direction, but with
relatively unrealistic settings (e.g., large training data, balanced
label distribution, etc.). However, most medical images consist of
a small amount of data or skewed label distribution. Therefore,
our system aimed to achieve data-efficient and robust learning of
the DL algorithm by focusing on 4 problems that exist in cataract
images:
1. Redundant information inside data: Because only limited
constituent parts of cataract images have discriminative
information for diagnosing the disease, other unimportant
constituent parts may hinder the algorithm from correctly
classifying images.

2. Dataset size: Because the amount of data is small, the
network is easy to overfit to the training dataset of specific
patients and shows poor performance during the test
procedure.

3. Dataset bias: Because different experts can diagnose the
same image as different grades, we cannot expect an
absolutely objective diagnosis of the trained network.

4. Class imbalance: The number of images of normal patients
is much larger than that of patients with diseases.
To remedy the problems in grading cataract images, our
framework adopted 2 networks each for constraining salient re-
gions, classifying images, and learning methods for empowering
generalization ability on unseen data. In contrast to previous
methods9 that require a large amount of data to be trained, our
algorithm achieved robust and data-efficient learning by adapting
the following strategy. Specifically, our system chose the following
recent DL techniques to overcome the problems: (1) a region
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detection network (RDN) was used to classify the core region of an
image by cropping unnecessary parts out (Supplemental Fig S3);
(2) data augmentation was used to provide generalization ability
to DL algorithms and transfer learning and to accelerate the
training procedure and avoid algorithm overfitting in the training
data (for specific techniques and their hyperparameters, see
Supplemental Table 1); (3) generalized cross-entropy (GCE) loss
was used to enable the DL algorithm to be less prone to the dataset
bias problem; and (4) class balanced (CB) loss was used to prevent
the DL algorithm from yielding skewed predictions when trained
on data with a long tail. We describe the details of our strategies in
the Appendixes 1 and 2. Furthermore, we applied the model
ensemble technique, which combines multiple models to reduce
the high variance and bias of a single model and to obtain a
higher test performance. In our work, we combined 3 AI
algorithms for the model ensembledResNet18, WideResNet50-
2, and ResNext50dand compared the accuracy of each of the 3
single networks and their ensembles.

Logic Flow Chart for Cataract Diagnosis and
Management

The DL algorithm was designed to perform the following steps. In
step 1, image data from slit-lamp or retroillumination photography
and visual acuity data are collected from the instrument and
medical chart. In step 2, the DL algorithm agent analyzes the lens
images as showing a normal lens or showing the presence of any
type of cataract. In step 3, the DL algorithm agent determines the
severity of cataract based on the lens-grading system. The visual
acuity of the participants was not used in step 3 of the DL algo-
rithm, but rather in step 4, where the visual acuity was considered
to suggest an optimal management plan for each participant. If the
participant showed a normal lens and best-corrected visual acuity
(BCVA) of better than 20/32, the DL algorithm agent automati-
cally suggested routine observation for the management plan. For
participants with a normal lens with decreased BCVA (worse than
20/32) or mild grade of any type of cataract or moderate grade of
any type of cataract with BCVA of better than 20/32, the DL al-
gorithm agent automatically refers the patient to an ophthalmolo-
gist. If participants show severe or moderate grade of any type of
cataract with decreased BCVA (worse than 20/32), the participants
are informed that consultation with an ophthalmologist for
consideration for cataract surgery will be recommended on the
screening report (Fig 1).

Statistical Analysis

To evaluate our system, we presented the receiver operating
characteristic curve and calculated the area under the receiver
operating characteristic curve (AUC), sensitivity, specificity, and
accuracy for the cases of slit-lamp and retroillumination images in
2 ways: (1) LOCS III-based grading, which is classified into 7
grades for NO and NC and into 6 grades for CO and PSC and (2)
severity-based grading, which classifies all NO, NC, CO, and PSC
into normal, mild, moderate, or severe. We used the Python scikit-
learn package (https://scikit-learn.org/stable/_sources/about.rst.txt)
to compute the performance metrics (AUC, sensitivity, specificity,
and accuracy) and Python matplotlib package (https://matplotli-
b.org/stable/users/license.html) to generate plots. The performance
metricsdtrue positive (TP), true negative (TN), false positive (FP),
and false negative (FN)dwere calculated using the following
formulas: sensitivity ¼ TP / (TP þ FN), specificity ¼ TN / (TN þ
FP), and Accuracy ¼ (TP þ TN) / (TP þ TN þ FP þ FN).
Bootstrapping was used to estimate the 95% confidence intervals
(CIs) of the performance metrics.
Visualization

Heatmaps are provided for visual explanations of predictions using
gradient-weighted class activation mapping (Grad-CAM).10,11 This
visualization technique, and Grad-CAMþþ, are designed for
interpreting the output of black-box neural networks; the heatmaps
visualize important regions in cataract images where the network is
considered a critical aspect for grading. Supplemental Figure S4
shows the heatmaps from the fourth layer of classification
networks; the semantically important regions for cataract
classification are highlighted in the heatmaps.

Ablation Study

We conducted ablation studies to confirm that each component of
the algorithm independently contributed to the success of the
model. The 4 components of the algorithm were designed to
resolve key problems in cataract image classification: (1) redundant
information inside data, (2) dataset size, (3) dataset bias, and (4)
class imbalance. Supplemental Figure S5 depicts the ablation
experimental results, where each row represents grading criterion
(NO, NC, CO, and PSC from top to bottom) and the column
refers to the components of the algorithm (region detection, data
augmentation and transfer learning, GCE loss, and CB loss from
left to right). Therefore, 16 instances were tested by applying 4
components, 1 for each problem. Specifically, for each
component, we obtained 8 instances in which the component
was turned on or off. For brevity, we averaged the results of the
8 instances for each metric and grade and illustrated them using
a bar plot. Because our focus is on the behaviors of each
component of our system, we used ResNet18 for the ablation
study on behalf of the algorithms.

To address point 1, we hypothesized that if the CNN is trained
using the original images without any preprocessing, the network
might reflect unnecessary visual information, consequently leading
to lower classification ability. Therefore, we used the RDN to crop
the image first, resulting in a cropped image that contains salient
visual information only. To address point 2, we used data
augmentation and transfer learning techniques to enhance the
generalization ability of our algorithm (Supplemental Fig S6). To
address points 3 and 4, we designed a CB and GCE loss by
fusing the GCE and CB losses to train the classification network
of our algorithm.

Results

Image Dataset Demographics

A total of 1335 slit-lamp photograph images and 637 ret-
roillumination images were obtained from 596 patients (887
eyes). Among the 1335 slit-lamp and 637 retroillumination
images, 918 (68.8%) and 435 (68.3%) images were in the
training datasets, 152 (11.4%) and 71 (11.1%) images were
in the validation datasets, and 265 (19.9%) and 131 (20.6%)
images were in the test datasets (Table 1).

Classification Performance in the Test Dataset

The overall diagnostic performance showed an AUC of
0.9992 and 0.9994, sensitivity of 98.82% and 98.51%,
specificity of 96.02% and 92.31%, and accuracies of
98.82% and 98.51% for the experiments on slit-lamp images
(NO and NC), respectively. The system showed high diag-
nostic performance for the retroillumination images of CO
3
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Figure 1. Logic flowchart for cataract diagnosis and management. The deep learning (DL) algorithm agent was designed to perform the following steps. In
step 1, the patient’s lens slit-lamp and retroillumination photograph images and visual acuity are collected. In step 2, the DL algorithm agent analyzes the
lens images to determine whether they are normal or if any type of cataract is present. In step 3, the DL algorithm agent determines the patient’s cataract
severity based on grading by the network. The visual acuity of the subjects was not used in step 3 of the Dl algorithm but rather in step 4, where the visual
acuity was considered to suggest an optimal management plan for each subject. BCVA ¼ best-corrected visual acuity; CO ¼ cortical opacity; NC ¼ nuclear
color; NO ¼ nuclear opalescence; PSC ¼ posterior subcapsular opacity.
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and PSC (AUC, 0.9680 and 0.9465; sensitivity, 96.94% and
92.13%; specificity, 96.78% and 89.36%; and accuracy,
96.21% and 92.17% for CO and PSC, respectively;
Table 2). The model ensemble of the 3 AI algorithms
enabled an increase in the diagnostic performance of the
system. The detailed diagnostic performances of each
algorithm are listed in Supplemental Tables S2, S3, S4,
and S5.

The system achieved excellent LOCS III-based grading
prediction performance: AUC of 0.9567 and 0.9650;
sensitivity of 81.71% and 75.69%; specificity of 93.10%
and 93.71%; and accuracy of 91.22% and 90.26% for NO
and NC, respectively. Additionally, for the experiments on
retroillumination images (CO and PSC), the system
4

achieved good LOCS III-based grading prediction perfor-
mance (AUC, 0.9044 and 0.9174; sensitivity, 78.02% and
71.49%; specificity, 94.05% and 91.64%; and accuracy,
91.33% and 87.89% for CO and PSC, respectively).
Figure 2 (top) and Supplemental Tables S6, S7, S8, and S9
show the LOCS III-based grading prediction performance of
the algorithm for NO, NC, CO, and PSC in detail.

Additionally, we confirmed that the system achieved
excellent severity-based grading prediction performance in
the 4-level classification (normal, mild, moderate, and se-
vere): AUC of 0.9789 and 0.9842; sensitivity of 91.10% and
88.44%; specificity of 94.69% and 93.21%; and accuracy of
93.51% and 91.70% for NO and NC, respectively. Addi-
tionally, for experiments on retroillumination images (CO



Table 1. Summary of Training, Validation, and Test Datasets

Lens Type

Grade

0 1 2 3 4 5 6 Total

Training datasets: slit-Lamp (NO, NC) and retroillumination (CO, PSC) images
NO 144 98 261 255 72 49 39 918
NC 140 123 226 194 113 76 46 918
CO 193 71 72 58 30 11 d 435
PSC 296 53 31 29 24 2 d 435

Validation datasets: slit-Lamp (NO, NC) and retroillumination (CO, PSC) images
NO 24 16 43 43 12 8 6 152
NC 23 21 37 32 18 13 8 152
CO 32 12 11 9 5 2 d 71
PSC 49 9 4 4 4 1 d 71

Test datasets: slit-Lamp (NO, NC) and retroillumination (CO, PSC) images
NO 41 29 65 77 35 13 5 265
NC 41 33 69 63 35 10 14 265
CO 53 16 22 23 14 3 d 131
PSC 83 17 12 11 7 1 d 131

CO ¼ cortical opacity; NC ¼ nuclear color; NO ¼ nuclear opalescence; PSC ¼ posterior subcapsular opacity; d ¼ not available.
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and PSC), the system achieved high performance (AUC,
0.9395 and 0.9102; sensitivity, 88.06% and 81.32%; spec-
ificity, 94.26% and 92.30%; and accuracy, 93.30% and
88.82% for CO and PSC, respectively). Figure 2 (bottom)
and Supplemental Tables S10, S11, S12, and S13 show
the severity-based grading prediction performance of the
algorithm for grading cataract in detail.

Furthermore, we found that the model ensemble of the 3
AI algorithms is an effective technique to achieve higher
performance. The ensemble model showed the best perfor-
mance metrics for NO, NC, CO, and PSC compared with
each of the 3 single networks in terms of accuracy (see
Supplemental Tables S2eS13 for the summary statistics of
each grade).

Results of Ablation Study

Regardless of the dataset and grading criteria, we found that
all instances equipped with the algorithm components
outperform those without them. That is, the network with
RDN, data augmentation and transfer learning, and CB and
GCE loss consistently improved model performance across
all metrics. For example, all components of the systems
enhanced performance on NO gradingdAUC of 0.8458 and
Table 2. Summary Statistics for the Diagnostic Performance of the D
Nuclear Opalescence) and Retroillumination images (Cortical Op

Area under the Receiver Operating Characteristic Curve Se

Slit-lamp image
NO 0.9992 (0.9986e0.9998) 98.82% (9
NC 0.9994 (0.9989e0.9998) 98.51% (9

Retroillumination image
CO 0.9680 (0.9579e0.9781) 96.94% (9
PSC 0.9465 (0.9348e0.9582) 92.13% (8

CO ¼ cortical opacity; NC ¼ nuclear color; NO ¼ nuclear opalescence; PSC
Microaveraged area under the receiver operating characteristic curve, sensitivit
0.9182; sensitivity of 46.68% and 71.23%; specificity of
86.36% and 89.77%; and accuracy of 79.36% and
85.70%dwithout and with RDN, respectively. Similar
trends were observed when comparing the effects of other
components (RDN, data augmentation and transfer learning,
and CB and GCE loss) on other domains (NO, NC, and
PSC). The detailed results are shown in Supplemental
Figure S5.

Discussion

This study was designed to establish and validate an auto-
mated cataract diagnosis and grading system based on
LOCS III using DL algorithms. The key factors that
contributed to the system were 4 strategies in the AI domain:
(1) RDN for redundant information within the data, (2) data
augmentation and transfer learning for the small dataset size
problem, (3) GCE loss for dataset bias, and (4) CB loss for a
class imbalance problem. To demonstrate that the 4 com-
ponents of our system independently contribute to the suc-
cessful classification of cataract images, an ablation study
was conducted, and all 4 components independently
enhanced the performance, especially RDN, which
eep Learning System on Slit-Lamp Images (Nuclear Color and
acity and Posterior Subcapsular Opacity) on the Test Dataset

nsitivity Specificity Accuracy

7.69%e99.94%) 96.02% (91.36%e100.0%) 98.82% (97.69%e99.94%)
7.39%e99.62%) 92.31% (86.27%e98.35%) 98.51% (97.39%e99.62%)

5.53%e98.35%) 96.78% (94.83%e98.74%) 96.21% (94.43%e97.99%)
8.65%e95.61%) 89.36% (84.44%e94.29%) 92.17% (88.56%e95.78%)

¼ posterior subcapsular opacity.
y, specificity, and accuracy are reported.
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Figure 2. Receiver operating characteristic (ROC) curves and areas under the ROC curve for the grading prediction performance of the deep learning
system. A, B, Seven class grades for nuclear opalescence (NO) and nuclear color (NC) and 6 class grades for cortical opacity (CO) and posterior subcapsular
opacity (PSC) based on Lens Opacities Classification System III grading (top), and 4 class grades based on severity (bottom), evaluated on (A) slit-lamp and
(B) retroillumination images on the test dataset.
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contributed the most to the enhancement of the algorithm.
Furthermore, because our algorithm was highly robust and
data efficient under the images obtained from slit-lamp
digital camera and augmentation technique conditions, the
ensemble of 3 AI algorithms (ResNet18, WideResNet50-2,
and ResNext50) showed outstanding performance in diag-
nosing and differentiating clinical cataract grading for all
types of cataract.

In our study, the Grad-CAM and Grad-CAMþþ results
reflected the regions that most affected CNN model pre-
dictions of cataracts. In our CNN model, we inferred that the
transition zone between dense and minimal cataracts may be
the key region that most affected CNN prediction of cata-
racts. However, although our CNN model generated a
heatmap on the transition zone, the heatmap in the trained
CNN model with a large sample size could be different.
Further studies with large sample sizes will be needed to
elucidate the key regions in the CNN model of cataract
grading.

For nuclear sclerotic cataracts, the diagnostic perfor-
mance of NO and NC showed excellent results (AUC of
0.9992 and 0.9994 and accuracy of 98.82% and 98.51%,
respectively). Performance on NO and NC 7-level classifi-
cation showed excellent results in our study (AUC of 0.9567
and 0.9650 and accuracy of 91.22% and 90.26%, respec-
tively). The AUC ranged from 0.89 to 1.00 for all grades,
proving the effectiveness of the system. Previous studies
reported that the accuracy of cataract diagnosis, primarily
6

nuclear cataract using AI agents, ranged from 88.8% to
93.3%.9,12e15 However, most studies reporting the out-
comes of cataract detection used fundus photography as an
imaging method for training AI algorithms. Using fundus
photography images to diagnose and grade cataract is sim-
ple; however, the obtained fundus image is not a direct lens
image. The blurriness of fundus images was used to assess
cataract severity, which is not a standard classification in
clinical practice. It could be influenced by any opacity along
the visual axis, resulting in an incorrect diagnosis and
grading of cataracts. In our study, the DL network was
trained using various silt-lamp images used in a real clinical
setting. These datasets are suitable for accurate evaluation of
nuclear sclerotic cataracts because slit-lamp images reflect
actual lens configurations.

However, 3 imaging techniques using the slit lamp,
including slit-beam photography, broad-beam photography,
and retroillumination, make it difficult to obtain uniform
data, to process images, and to train AI agents. Thus, the
performance of the previous AI algorithms was not of the
highest quality. Xu et al16 and Gao et al17 reported that the
accuracy of cataract grading with an AI agent using slit-
lamp images as imaging methods was 69.0% and 70.7%,
respectively. Recently, Wu et al9 reported the accuracy of
the AI algorithm (ResNet) for robust diagnostic
performance in 3-step tasks: capture mode recognition
(AUC, > 0.99), cataract diagnosis (AUC, > 0.99), and
detection of referable cataracts (AUC, > 0.91) using
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slit-lamp and diffuse-beam photography based on large
datasets. However, cataracts were divided into 3 classesd
normal, mild, and severedand were not graded by the
standard LOCS III grading system. In our study, by
applying the standard LOCS III image and adopting the 4
strategies, especially RDN with an ensemble of 3 AI algo-
rithms (ResNet18, WideResNet50-2, and ResNext50), our
results showed a more precise diagnosis and grading of
cataracts, even in the 7-level classification of NO and NC
with AUCs of 0.9567 and 0.9650, respectively.

The diagnostic performance of CO and PSC showed
excellent results (AUC of 0.9680 and 0.9465 and accuracy
of 96.21% and 92.17%, respectively). Performance on CO
and PSC 6-level classification showed good results in our
study (AUC of 0.9044 and 0.9174 and accuracy of 91.33%
and 87.89%, respectively). Methods for detecting CO and
PSC have evolved for many years. In 1991, Nidek devel-
oped a global thresholding method to detect opacity on
retroillumination images.18 Since then, various improved
methods such as contrast-based thresholding, local thresh-
olding, texture analysis, watershed, and Markov random
fields were introduced.19e23 Li et al20 reported automatic
detection and grading outcomes of CO with 85.6%
accuracy. The researchers also reported 82.6% sensitivity
and 80.0% specificity for automatic detection of PSC
opacity.21 Gao et al24 proposed the enhanced texture
features method on 2 retroillumination lens images
(anterior and posterior images) for CO and PSC grading
and reported a good diagnostic performance (accuracy of
84.8%, sensitivity of 78.5%, and specificity of 87.8%)
based on the Wisconsin grading system (3-class classifica-
tion for CO and PSC, respectively). Recently, Zhang and
Li23 reported improved outcomes with 91.2% sensitivity
and 90.1% specificity of PSC screening on
retroillumination images using a combination of Markov
random fields and mean gradient comparison methods
based on the Wisconsin grading system. In contrast to
previous studies, we adopted a 6-level image classification
(grades 0e5) for CO and PSC severity evaluation based on
the LOCS III and achieved good diagnostic and grading
prediction performance. The performance of detecting and
grading CO and PSC using the ensemble method was
comparable with that of nuclear cataracts. Interestingly, the
AUC of CO and PSC tended to be of a higher grade (grades
3, 4, and 5), which means that the DL system predicted CO
and PSC grading more precisely when opacities covered
large areas in retroillumination images. We postulate that
Grad-CAM and Grad-CAMþþ may regard key regions as
noise and could not generate a heatmap correctly on early
CO and PSC images. It is difficult to differentiate between
early PSC and CO, even for trained ophthalmologists.
Additionally, these results are consistent with previous re-
ports. Gao et al24 reported that the proposed computer-aided
cataract detection with enhanced texture extraction method
based on the Wisconsin grading system achieved good
diagnostic performance for severe CO, PSC, or noncataract
images. However, the diagnostic performance of early CO
and PSC was unsatisfactory. Zhang and Li23 reported that
the watershed and Markov random fields methods showed
that the accuracy of PSC grading based on the Wisconsin
grading system was 91.7% and 91.3% for grades 1 and 3,
respectively, but the accuracy of grading for PSC grade 2
was 83.8% using the proposed method. Furthermore,
previous studies did not report the AUC and sensitivity of
the DL system in early CO and PSC. In our results, the
accuracy of detecting and grading early CO and PSC was
superior to that of previous reports. Considering data
imbalance in medical data, the AUC may reflect the actual
performance of DL algorithms, and the performance of
DL systems on early CO and PSC previously reported
might have been overestimated. Therefore, further studies
must develop methods for detecting and discriminating
early CO and PSC from noise on retroillumination images
to improve the diagnostic and grading prediction
performance.

The application of the slit-lamp and retroillumination
image classification for automated cataract grading enables
accurate objective evaluation of 3 types of cataracts with
only lens images. Furthermore, the AI algorithm can detect
referable cases by combining information on cataract diag-
nosis with visual acuity. The incidence of cataracts has
increased in the elderly, most of whom live in medically
vulnerable areas. This AI-based cataract diagnostic platform
can be used in rural areas where ophthalmologists are
scarce, and it can improve health care services in underde-
veloped poverty areas.

This study has several limitations, the first of which
stems from its relatively small dataset size compared with
other studies. However, our DL algorithm achieved higher
accuracy in classifying the 3 types of cataracts (nuclear
sclerotic, cortical, and posterior subcapsular) for 6 to 7
grades with limited data. The second is the result of varying
quality of lens images obtained from various ophthalmic
examination instruments; external validation is required for
use in factual clinical practice. In this study, our model
showed robust performance under specific conditions, such
as images obtained from the slit-lamp digital camera and
augmentation technique. As a preliminary study, further
studies with large sample sizes and external validation are
planned to evaluate these AI algorithms.

We have proposed an ensemble DL algorithm for nuclear
sclerotic cataract, CO, and PSC diagnosis and grading based
on LOCS III. This DL-based system successfully yielded
accurate and precise cataract detection and grading mea-
surements. This preliminary research showed the potential
for accurate detection and grading in 6- and 7-level classi-
fications for all types of cataracts. The future direction of
this study will be to provide more robust diagnostic and
grading prediction performance and to evaluate the effi-
ciency in factual clinical practice.
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