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Abstract

Objective

To investigate whether texture features extracted from dynamic contrast-enhanced mag-
netic resonance imaging (DCE-MRI) are associated with human epidermal growth factor
receptor type 2 (HER2) 2+ status of breast cancer.

Materials and methods

92 MRI cases including 52 HER2 2+ positive and 40 negative patients confirmed by fluores-
cence in situ hybridization were retrospectively selected. The lesion area was semi-auto-
matically delineated, and a total of 488 texture features were respectively extracted from
precontrast, postcontrast, and subtraction images. The Student’s ttest or Mann-Whitney U
test was performed to identify statistically significant features between different HER2 2+
amplification groups. Least absolute shrinkage and selection operator (LASSO) was used to
search for the optimal feature subsets. Three machine learning classifiers, logistic regres-
sion analysis (LRA), quadratic discriminant analysis (QDA), and support vector machine
(SVM), were used with a leave-one-out cross validation method to establish the classifica-
tion models of HER2 2+ status. Classification performance was evaluated by receiver oper-
ating characteristic (ROC) analysis.

Results

Based on the texture analysis with SVM model, the areas under the ROC curve (AUCs)
were 0.890 for subtraction images, 0.736 for postcontrast images, and 0.672 for precontrast
images, respectively. For LRA model, the AUCs were 0.884, 0.733, and 0.623, respectively.
For QDA model, the AUCs were 0.831, 0.726, and 0.568, respectively. LRA and the SVM
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model with subtraction images reached significantly better performance than the QDA
model (P=0.0227 and P = 0.0088, respectively).

Conclusion

Texture features of breast cancer extracted from DCE-MRI are associated with HER2 2+
status. Additional studies are necessary to confirm the present preliminary findings.

Introduction

Breast cancer is a heterogeneous tumor and it is categorized into different molecular subtypes
[luminal A, luminal B, human epidermal growth factor receptor type 2 (HER2)-positive, and
triple negative (basal like)] [1,2]. The prognosis and survival rates differ significantly among
subtypes. HER?2 is an important biomarker for determining the molecular subtype of breast
cancer, and its expression can usually be determined by immunohistochemistry (IHC). For
HER?2 scores 0, 1+, and 3+, IHC is accurate for assessing negative or positive status. However,
for HER2 2+ patients, further fluorescence in situ hybridization (FISH) examination is essen-
tial to confirm the gene status. FISH is costly, time-consuming, and requires specialized equip-
ment. HER2-positive cancers contain more HER2 genes and produce more HER?2 proteins.
Hence, HER2-positive cancers have a tendency to promote rapid growth and division of can-
cer cells, and stimulate cell proliferation and angiogenesis to provide nutrition [3]. Detection
of the amplification status of HER2 2+ by FISH prolongs the time for accurate diagnosis, and
the timeliness and accuracy of diagnosis are extremely important for doctors and patients.
Therefore, identifying a cost- and time-effective alternative method for distinguishing HER2 2
+ positive and negative status would be beneficial [4].

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is currently the
most sensitive modality for the detection of breast cancer [5-8]. MR images contain pixel gray
level variations that cannot be evaluated visually, but can be detected using image analysis
methods [9]. Tumor quantitative characteristics obtained from MR images are important for
differentiating benign from malignant breast lesions [10-12]. Moreover, breast cancers may
present specific features in MR images according to molecular subtype [13-19].

Texture analysis (TA) offers a way to calculate mathematical values for texture features,
which can be used for characterizing the underlying structures of the observed tissues. The
spatial location and signal intensity characteristics of image pixels can evaluated by TA. The
application of TA to breast MR imaging studies shows potential value [20-25]. Sun X et al. [2]
indicated that texture features from T1 weighted and diffusion weighted images provide a
promising approach to predict the molecular subtypes of breast cancer. Chamming’s F et al.
[26] reported that kurtosis derived from TA of pretreatment MR images is independently asso-
ciated with pathological complete response to neoadjuvant chemotherapy in non-triple-nega-
tive breast cancer. Ma W et al. [27] showed that DCE-MRI texture features are associated with
Ki-67 expression in patients with invasive breast cancer.

The objective of the preliminary study was to evaluate whether texture features are associ-
ated with HER2 2+ amplification status in breast cancer. To the best of our knowledge, there
are no reports investigating HER2 2+ amplification status using three different machine learn-
ing methods respectively based on relatively more kinds of texture features respectively derived
from precontrast, postcontrast, and subtraction images of DCE-MRI.
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Materials and methods

This study was approved by the ethics committee of Shengjing Hospital of China Medical Uni-
versity (NO.2019PS175K). The method used in this study was performed in accordance with
the approved guidelines. Because of a retrospective study, the requirement for informed con-
sent was waived by the ethics committee of our hospital that approved this study’s protocols.

Study population

First, two experienced radiologists were employed for the case collection. They were blind to
pathological results during reading the breast MRI images independently. They retrospectively
assembled an image dataset of 163 patients obtained from February 1, 2018 to December 31,
2018 with our picture archiving and communication system (PACS). All patients underwent
breast DCE-MRI examination and had histopathologically confirmed HER2 2+ breast cancer.
Patients without FISH examination (n = 38) were excluded from the dataset. Twenty-seven
patients who received radiotherapy or chemotherapy before MRI examination were also elimi-
nated from the dataset. Whether there is a motion artifact or not is determined by the consen-
sus of the two radiologists’ evaluations. As a result, six patients whose images had substantial
motion artifacts or tumors were not definitely visualized were excluded. The final dataset
included 92 HER2 2+ breast cancer patients for analysis. The amplification status of HER2 2

+ was finally verified using FISH, which is considered as the gold standard in this field.

DCE-MRI technique

All breast DCE-MRI examinations were performed at our institution using a 3.0 Tesla MR
scanner (Signa HDxt, GE Healthcare, USA) with the patient in a prone position and a dedi-
cated eight-channel double-breast coil for signal reception. In each MRI examination, a pre-
contrast series of fat-saturated T1-weighted 3D images based on the VIBRANT-VX technique
was initially acquired. After the intravenous injection of a contrast agent (0.5 mmol/ml, Gado-
diamide, Omniscan, GE Healthcare, USA; Magnevist, Bayer-Shering Pharmaceuticals) at 4
mL/s with a dose of 0.15 mmol per kg body weight, eight postcontrast scans were acquired.
The imaging parameters were as follows: repetition time (TR) = 7.42 ms, echo time (TE) =
4.25 ms, inversion time = 20 ms, flip angle = 15°, slice thickness = 2.20 mm, and spacing
between slices = 2.20 mm. The acquisition matrix was 1,024 x 1,024.

Lesion delineation

The slice image with the lesion of maximum diameter was extracted from each volume image
for subsequent quantitative analysis. The flowchart of our study is shown in Fig 1. As done by
Chang R F et al [22], texture analyses were performed based on axial precontrast T1-weighted
images, axial postcontrast T1-weighted images obtained in the fifth phase after contrast mate-
rial injection, and the subtraction images of these two images. The lesion areas were firstly
delineated semi-automatically in the subtraction images using an in-house software pro-
grammed with MATLAB 2018a (Mathworks, Natick, MA, USA). The specific segmentation
procedures included the following steps [28].

First, a region of interest (ROI) of arbitrary shape was drawn around the lesion area.

Second, the popular segmentation algorithm, Otsu [29], was applied to the ROI pixels.
Meanwhile, the segmented image was converted into a binary image with the objective region
as 1 and background region as 0.

Third, morphological erosion was applied to the acquired binary image, and the unique but
largest eight-connected region was identified.
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Fig 1. Flowchart of semi-automatic texture analysis adopted in our study.

https://doi.org/10.1371/journal.pone.0234800.g001
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Table 1. The features measured with different texture analysis methods.

Methods Texture features Number
Histogram | Mean, variance, skewness, kurtosis 4
GLCM | Autocorrelation (ACOR), contrast (CON), correlation (COR), cluster prominence (CP), 380

cluster shade (CS), dissimilarity (DIS), angular second moment (ASM), entropy (ENT),
inverse difference moment (IDM), maximum probability (MP), sum of squares (SOS), sum
average (SA), sum variance (SV), sum entropy (SE), difference variance (DV), difference
entropy (DE), information measure of correlation (IMC), inverse difference normalized
(IDN), inverse difference moment normalized (IDMN)

GRLM | Run-length non-uniformity (RLN), gray level non-uniformity (GLN), long run emphasis 44
(LRE), short run emphasis (SRE), fraction of image in runs (FIR), low gray level run
emphasis (LGRE), high gray level run emphasis (HGRE), short run low gray level emphasis
(SRLGE), short run high gray level emphasis (SRHGE), long run low gray level emphasis
(LRLGE), long run high gray level emphasis (LRHGE)

DWT Harr parameters 20
Deubechies2 parameters 20
Symlet4 parameters 20
Total 488

GLCM, gray level co-occurrence matrix; GRLM, gray level run-length matrix; DWT, discrete wavelet transformation.

https://doi.org/10.1371/journal.pone.0234800.t001

Finally, morphological dilation was performed in the unique region, and the target region
was considered as the lesion area.

Meanwhile, the contour of segmented lesion area on the subtraction slice image was
co-registered to the corresponding postcontrast and the precontrast slice images. The
results of the semi-automatic segmentation were examined and approved by the two
radiologists.

Texture extraction

TA was only performed for the segmented lesion areas from subtraction, pre- and postcon-
trast images using the MATLAB 2018a programming platform, respectively. For the texture
measurements, the slice images selected from all participants were loaded into the MATLAB
in the ".dem" format. All pixel intensities within the ROI segmented by the semi-automatic
method were normalized between p + 30 (: mean of image intensity within the ROI; o: stan-
dard deviation), and the range was quantized to 8 bits/pixel. A total of 488 texture features
were measured, including histogram-based, gray level co-occurrence matrix (GLCM)-based,
gray level run-length matrix (GRLM)-based and discrete wavelet transform (DWT)-based
features, as shown in Table 1.

Eighteen GLCM-based texture features were calculated with four distances (1 pixel, 2
pixels, 3 pixels, 4 pixels) in four directions (0°, 45°, 90°, 135°). In the following, (d, 0), (0, d),
(d, d), (-d, -d) represent 0°, 45°, 90° and 135°, respectively, and d is the value of distance.
For example, S(0,1) CON represented the contrast feature calculated for a distance of 1 and
direction of 90°. Eleven GRLM-based texture features were calculated with the distance of
one pixel in four directions (0°, 45°, 90° and 135°). DWT-based texture features were calcu-
lated for four layers and three directions (horizontal, vertical, diagonal) to produce low and
high frequency components with harr, deubechies2 and symlet4 wavelet. For example, harr
HD_2 represented the diagonal high frequency component of second layer using harr
wavelet.
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Statistical analysis

Statistical analyses were performed with SPSS (version 19.0, Chicago, IL, USA). For categorical
variables, a Chi-square test or Fisher’s exact test was performed between HER2 2+ positive and
negative groups. A Kolmogorov-Smirnov test for each feature was first performed to confirm
whether the samples obeyed a normal distribution [30]. If the distribution was normal

(P > 0.05), a Student’s t-test was used to compare parameters between HER2 2+ positive and
negative groups. Otherwise, the Mann-Whitney U test was used [30]. P < 0.05 was considered
statistically significant. The features with statistically significant differences were selected for
subsequent analyses. To eliminate the correlations among the significantly different texture
features, least absolute shrinkage and selection operator (LASSO) was performed [31].

Three machine learning methods, logistic regression analysis (LRA), quadratic discrimi-
nant analysis (QDA), and support vector machine (SVM), were used to establish the classifica-
tion models for differentiating HER2 2+ status [32]. A leave-one-out cross validation
(LOOCYV) method, where one sample was used as the test dataset while the remaining samples
were utilized as the training dataset, was used for the statistical models to avoid overfitting of
the classifiers [33]. That procedure was repeated for each sample.

The receiver operating characteristic (ROC) curve was used to evaluate the classification
performance, and the method of DeLong et al. (1988) and binomial exact confidence interval
were selected to draw the curves and calculate the areas under the ROC curves (AUC) by the
professional statistics software, MedCalc (version 14.10.20, http://www.medcalc.org/). The
AUCs were regarded as the indicators of the diagnostic performance. The sensitivity, specific-
ity, and accuracy were provided correspondingly. The z-test was applied to measure the statis-
tical significance between the AUCs.

Results
Study population

Ninety-two patients with a median age of 48.5 years (range, 29-69 years) were included in the
study group. Patient characteristics are presented in Table 2. Of the 92 HER2 2+ breast can-
cers, 52 (56.5%) were HER2 2+ positive and 40 (43.5%) were HER2 2+ negative. Fig 2 shows a
randomly selected example, where the subtraction image, lesion area on the subtraction image,
lesion area on the precontrast image, lesion area on the postcontrast image, histopathological
result, and FISH result are presented in sequence.

Texture analysis

For subtraction images, thirty-seven features presenting statistical difference between HER2 2
+ positive and negative patients were selected and illustrated in a heat map (Fig 3). The corre-
sponding details are presented in Table 3. The ROCs reflecting the diagnostic performance of
three classification models based on optimal features selected by LASSO are shown in Fig 4.
The same analyses were performed for pre- and postcontrast images to discriminate HER2 2
+ positive from negative cases. The AUCs from the three types of machine classification based
on three kinds of MRI images are listed in Table 4. As shown in the table, three classification
models based on the subtraction images achieved the highest performance. The AUCs are
0.884, 0.890 and 0.831, respectively. It can be found that the LRA and the SVM model with
subtraction images reached significantly better performance than the QDA model (P = 0.0227
and P = 0.0088, respectively) (Table 5). There is no significant difference between the AUCs
from the LRA and the SVM model. But the SVM model with subtraction images achieved the
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Table 2. Characteristics of 92 patients with HER2 2+ breast cancer.

Characteristics

Age
> 40 years at diagnosis
< 40 years at diagnosis
Maximum tumor diameter
< 20 mm
> 20 mm
Gland density
Dense type
Intermediate type
Estrogen receptor
Positive
Negative
Progesterone receptor
Positive
Negative
Ki-67
> 14%
< 14%
Tumor type
Ductal carcinoma in situ
Invasive carcinoma of no special type

Invasive micropapillary carcinoma

Variable are expressed as frequencies (percentage).
? Variables were tested using the y test.

® Variables were tested using Fisher’s exact test.

https://doi.org/10.1371/journal.pone.0234800.t002

FISH Results P-Value
Positive (n = 52; 56.5%) Negative (n = 40; 43.5%)

0.667%

41 (58.6%) 30 (41.4%)

11 (52.4%) 10 (47.6%)
0.736"

18 (56.3%) 14 (43.7%)

34 (56.7%) 26 (43.3%)
0.874°

49 (56.3%) 38 (43.7%)

3 (60.0%) 2 (40.0%)
<0.001°

24 (40.7%) 35 (59.3%)

28 (84.8%) 5(15.2%)
0.001%

26 (44.1%) 33 (55.9%)

26 (78.8%) 7 (21.2%)
0.337%

41 (59.4%) 28 (40.6%)

11 (47.8%) 12 (52.2%)
0.515°

1 (50%) 1 (50%)
50 (56.2%) 39 (43.8%)
1 (100%) 0

highest performance with an AUC of 0.890, sensitivity of 80.77%, specificity of 85.00% and
accuracy of 82.61%.

Discussion

HER? plays a role in the development and progression of several types of human cancer. It has
been reported that HER2 positive was associated with favorable pathological features including
lower T and N stage and better tumor differentiation in patients with esophageal adenocarci-
noma [34]. Jeong ] H et al. [35] showed that HER2 amplification is predictive of shorter pro-
gression-free survival after cetuximab treatment in patients with metastatic colorectal cancer
harboring wild-type RAS and BRAF gene. In fact, the international consensus has been
reached that determination of HER2 amplification status is really important not only for treat-
ment options but also for therapeutic efficacy evaluation of breast cancer [36-39].

In most previous studies, lesion areas were manually drawn to be as large as possible around
the entire visible tumor by one or two experienced radiologist [40-42]. In this work, a semi-
automatic analysis for HER2 2+ status determination was proposed to reduce inter- and intra-
operator differences associated with manual methods. The lesion areas were identified by the
segmentation algorithm, and texture features reflecting the heterogeneity of the DCE-MRI
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Fig 2. Results obtained from a randomly-selected case with HER2 2+ gene expression. (a) Axial T1-weighted fat-saturated subtraction MR image
(regular mass and BI-RADS 4C). (b) Semi-automatic segmentation result of the lesion based on the proposed method by which the color was set to blue
for the ROI margin and red for the lesion area margin. (c) Precontrast image covering the same lesion area shown in sub-Figure b. (d) Postcontrast
image covering the same lesion area. (e) Histopathological result showing invasive carcinoma of no special type. (f) FISH result showing HER2 negative
[HER2/chromosome enumeration probe 17 (CEP17) < 2.0 with the average HER2 signals per cell < 4.0] where red represented HER2 fluorescence
signals and green represented CEP17 fluorescence signals.

https://doi.org/10.1371/journal.pone.0234800.9002

signal were measured to predict HER2 2+ status in breast cancer. The experimental results
demonstrated the diagnostic performance derived from precontrast images was very low for
each kind of classifiers. All AUCs (0.623 for LRA, 0.672 for SVM, and 0.568 for QDA) were
lower than 0.7. That meant the texture features from precontrast TITWI images presented
unsatisfactory effectiveness and were not applicable to determine HER2 2+ status. The diag-
nostic efficiency from the postcontrast images was moderate, and the AUC values representing
diagnostic effectiveness from the three classification methods were also similar (0.733 for LRA,
0.736 for SVM, and 0.726 for QDA). The optimal performances were achieved based on sub-
traction images, and all AUC values were larger than 0.8. For the three classifiers, SVM is the
best, the corresponding AUC was as high as 0.890 which resulted in the highest diagnostic
accuracy of 82.61%. In addition, the significant difference was achieved between AUCs respec-
tively derived from QDA and SVM. The above results indicated that the hidden information
on the subtracted image was most helpful in identifying the expression status of HER2 2+.
That was a very interesting and important finding that was not reported in previous studies.
Our findings suggest that texture features may be helpful for determining the molecular sub-
types of breast cancer, which is important for predicting prognosis, survival analysis, and deci-
sion-making regarding treatment options.
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Fig 3. Clustering analysis of the significant features extracted from subtraction images. In the heat map, all 37 significant texture features (presented
in different rows) from all 92 patients (presented in each column) were correlated with HER2 2+ status (color coded in the bottom). All features were

standardized between zero and one.

https://doi.org/10.1371/journal.pone.0234800.9003

We analyzed the histogram features, GLCM features, GRLM features, and DWT features,
which have previously been applied in other oncology fields [43-45]. Features extracted from
GLCM characterize the relationship between voxels and their neighborhoods, and reflect the
uniformity of the distribution for the image and the heterogeneity of the tumors. The above
texture features, such as difference variance, angular second moment, inverse difference

moment, difference entropy,

and correlation could be applied to differentiate HER2 2+ positive

and negative status. These features, which cannot be accurately and reliably evaluated using
visual or subjective evaluation methods, can be used as candidate imaging biomarkers for the
clinical analysis of breast cancer.

The present study differed from those published previously in several aspects. Most studies
investigate texture features using postcontrast T1-weighted MR images, whereas we evaluated
both precontrast and subtraction images [46, 47]. Features from subtraction images provided
the best results regarding the association with HER2 2+ status. Our study used a semi-auto-
matic segmentation algorithm for lesion area extraction based on subtraction images with
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Table 3. Texture features with statistically significant differences between HER2 2+ positive and negative patients for subtraction images.

Texture features FISH Results P-Value
Positive Negative

Histogram Variance 22.532 (19.379-25.709) 16.609 (15.511-18.950) < 0.001*
GLCM S(1,0) DV 8.675+3.621 10.416+3.395 0.021°
S(1,-1) DV 12.676£5.512 14.940+4.638 0.039°
S(2,0) DV 16.823£6.138 20.192+6.314 0.011°
S(0,2) DV 16.928+6.204 19.571+£5.423 0.035°
S(2,-2) DV 20.575£5.522 23.722+6.478 0.014°
S(1,0) ASM 4.835+£2.738 6.111+£2.593 0.026°
S(2,0) ASM 11.201+4.994 13.961+£5.214 0.016°
S(0,2) ASM 11.291+5.110 13.435+4.472 0.038°
S(2,-2) ASM 14.243+4.553 16.873+£5.405 0.013°

S(1, 0) IDM 0.472+0.088 0.424+0.726 0.007°

S(1, 1) IDM 0.390%0.069 0.360+0.060 0.031°

S(0, 1) IDM 0.466%0.070 0.431+0.568 0.013°

S(1, -1) IDM 0.389+0.072 0.352+0.059 0.016°
S(2,0) IDM 0.331+0.071 0.302+0.057 0.038°

S(0, 2) IDM 0.332+0.060 0.305+0.048 0.025°
S(1,0) DE 1.642 (1.337-1.759) 1.710 (1.619-1.842) 0.020°
S(1,1) DE 1.826 (1.584-1.925) 1.890 (1.786-2.013) 0.029°

S(0, 1) DE 1.586+0.207 1.686+0.148 0.011°
S(1,-1) DE 1.795+£0.214 1.902+0.165 0.011°
S(2,0) DE 1.957+0.203 2.072+0.171 0.005°
S(0,2) DE 1.969+0.185 2.060+0.145 0.013°
S(3,0) DE 2.087+0.144 2.162+0.147 0.017°

S(0, 3) DE 2.085%0.159 2.158+0.138 0.024°
S(1,1) COR 0.069%0.026 0.058+0.020 0.029°

S(1, -1) COR 0.068+0.027 0.057+0.023 0.032°
S(2,0) COR 0.048+0.027 0.035+0.022 0.013°
S(0,2) COR 0.048+0.023 0.037+0.018 0.013°

S(0, 3) COR 0.030+0.020 0.021+0016 0.026°
DWT Harr HH_1 1.619+0.821 2.041+£0.923 0.021°
Harr DH_1 0.295+0.124 0.374+0.166 0.011°
Harr DH_2 0.651+0.355 0.811+0.321 0.028°
Deubechies2 HH_1 1.019+0.531 1.312+0.555 0.012°
Deubechies2 HH_4 5.427+5.393 8.184+5.791 0.021°
Deubechies2 DH_1 0.212+0.085 0.258+0.100 0.019°
Symlet4 HH_1 0.814+0.435 1.043+0.474 0.018"
Symlet4 DH_2 0.473 (0.303-0.816) 0.743 (0.512-0.856) 0.024*

GLCM, gray level co-occurrence matrix; DWT, discrete wavelet transformation; DV, difference variance; ASM, angular second moment; IDM, inverse difference
moment; DE, difference entropy; COR, correlation.

* Variables were tested using Mann-Whitney U test, data are median (interquartile range).

® Variables were tested using Student’s -test, data are mean+standard deviation.

https://doi.org/10.1371/journal.pone.0234800.t003
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Fig 4. ROC curves of three different classification models based on the subtraction images.

https://doi.org/10.1371/journal.pone.0234800.g004

MATLAB, whereas most studies draw the ROI manually, which is time-consuming and labor-
intensive.

To improve the classification performance, three machine learning methods, LRA, QDA,
and SVM, were used in this study independently. The leave-one-out cross validation provided
reliable and superior results. Because of the establishment of these models, TA has the poten-
tial to be a valuable clinical tool for identifying HER2 2+ status. However, different artificial
intelligence methods may achieve better results when the deep learning algorithm is used to
investigate the association between texture features and HER2 2+ status in future studies.

PLOS ONE | https://doi.org/10.1371/journal.pone.0234800 June 17, 2020 11/16


https://doi.org/10.1371/journal.pone.0234800.g004
https://doi.org/10.1371/journal.pone.0234800

PLOS ONE Identifying HER2 2+ status with DCE-MRI texture analysis

Table 4. Performance of different classifiers with significant features extracted from MR images.

Classifiers AUC SE 95%CI Sensitivity Specificity Accuracy

Precontrast images

LRA 0.623 0.061 (0.516, 0.722) 84.62% 45.00% 67.39%

SVM 0.672 0.058 (0.566, 0.766) 86.54% 45.00% 68.48%

QDA 0.568 0.064 (0.461, 0.671) 80.77% 47.50% 66.30%
Postcontrast images

LRA 0.733 0.052 (0.631, 0.820) 55.77% 82.50% 67.39%

SVM 0.736 0.051 (0.634, 0.823) 84.62% 52.50% 70.65%

QDA 0.726 0.054 (0.623,0.814) 61.54% 80.00% 69.57%
Subtraction images

LRA 0.884 0.034 (0.800, 0.941) 80.77% 80.00% 80.43%

SVM 0.890 0.032 (0.808, 0.946) 80.77% 85.00% 82.61%

QDA 0.831 0.042 (0.738,0.901) 55.77% 95.00% 72.83%

AUGC, Area of under the ROC curve; SE, Standard error; CI, Confidence interval; LRA, Logistic regression analysis; SVM, Support vector machine; QDA, Quadratic

discriminant analysis.

https://doi.org/10.1371/journal.pone.0234800.t004

Additionally, establishing relationships between texture features and the expression of other
receptors may be useful.

The present study had several limitations. First, the sample size was relatively small. A large
number of extracted texture features and a relatively small sample size may cause classifier
overfitting and limit the generalizability of the results. Additional validation studies are neces-
sary. Second, because this study was a single-center study with standardized and uniform MR
imaging parameters, the results may not be applicable to other institutions, especially those
that use different MR imaging techniques. Moreover, only texture features from tumour ROI
were used for predicting HER2 2+ status. In fact, some additional clinical factors, such as ROI/
tumour volume, enhanced morphology, time intensity type of contrast agent, quantitative
information from diffusion-weighted MR imaging, might also be good predictors in determin-
ing the molecular type (estrogen receptor, progesterone receptor, Ki-67, HER2) of breast can-
cer. Therefore, it is reasonable to believe that the combination of texture features and clinical
variables would improve the diagnostic accuracy of HER2 2+. Fourth, TA was only performed
with two-dimensional images of the tumors with maximum diameter. Therefore, representa-
tion of the entire tumor volume may be limited compared with that in three-dimensional
images. Further studies are needed to investigate software programs devoted to TA of three-
dimensional volume images. Finally, an important table in radiomics field, radiomics quality
score (RQS), was not investigated, which meant that our study might not strictly comply with
the requirements of the radiomics workflow [48-50]. As reported by Schick U et al [51], radio-
mics involves the following execution chain: image acquisition and/or collection, images

Table 5. P-values of z-test for three classifiers’ AUCs with subtraction images.

Classifiers LRA SVM QDA
LRA / 0.4860 0.0227
SVM 0.4860 / 0.0088
QDA 0.0227 0.0088 /

LRA, Logistic regression analysis; SVM, Support vector machine; QDA, Quadratic discriminant analysis.

https://doi.org/10.1371/journal.pone.0234800.t005
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preprocessing (filtering, registration of sequences, inhomogeneity correction, interpolation,
etc.), determination of the volume of interest (manual or semi-automatic), calculation of fea-
tures (potentially several variants), and finally training and validation of models through statis-
tical analysis (machine learning). In our study, some important steps were lacked, including,
external data validation, reproducibility evaluation, and so on, which were also considered to
be major challenges for the radiomics field in the previous studies [52].

Conclusions

In conclusion, the results of this study demonstrated that analysis of texture features extracted
from breast MR images is useful for determining HER2 2+ status. More factors such as larger
sample size, deep learning algorithms and quantitative MR parameters should be considered
to integrate into further studies.
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