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Allelic expression imbalance of PIK3CA mutations is frequent
in breast cancer and prognostically significant
Lizelle Correia 1,10, Ramiro Magno2,10, Joana M. Xavier2, Bernardo P. de Almeida1,8, Isabel Duarte2, Filipa Esteves1,3, Marinella Ghezzo2,
Matthew Eldridge 4, Chong Sun 5,9, Astrid Bosma5, Lorenza Mittempergher5, Ana Marreiros 1, Rene Bernards 5,
Carlos Caldas 4,6,7, Suet-Feung Chin 4,6,11✉ and Ana-Teresa Maia 1,2,11✉

PIK3CA mutations are the most common in breast cancer, particularly in the estrogen receptor-positive cohort, but the benefit of
PI3K inhibitors has had limited success compared with approaches targeting other less common mutations. We found a frequent
allelic expression imbalance between the missense mutant and wild-type PIK3CA alleles in breast tumors from the METABRIC
(70.2%) and the TCGA (60.1%) projects. When considering the mechanisms controlling allelic expression, 27.7% and 11.8% of
tumors showed imbalance due to regulatory variants in cis, in the two studies respectively. Furthermore, preferential expression of
the mutant allele due to cis-regulatory variation is associated with poor prognosis in the METABRIC tumors (P= 0.031). Interestingly,
ER−, PR−, and HER2+ tumors showed significant preferential expression of the mutated allele in both datasets. Our work provides
compelling evidence to support the clinical utility of PIK3CA allelic expression in breast cancer in identifying patients of poorer
prognosis, and those with low expression of the mutated allele, who will unlikely benefit from PI3K inhibitors. Furthermore, our
work proposes a model of differential regulation of a critical cancer-promoting gene in breast cancer.

npj Breast Cancer            (2022) 8:71 ; https://doi.org/10.1038/s41523-022-00435-9

INTRODUCTION
Activating oncogenic mutations are often characterized by gain-
of-function single-base alterations or focal DNA copy-number
amplification, where the gain of just a single copy of a mutant
allele is sufficient for tumorigenesis1. These gains change the
stoichiometric balance between mutant and wild-type alleles and
are selected for in cancers, affecting approximately half of all
oncogenic driver mutations1. Ultimately, they could dictate
prognosis and therapeutic sensitivity.
However, the impact of gene dosage differences of oncogenic

mutations generated at the gene expression level has been largely
unexplored. Genetic variation and mutations regulate gene
expression in an allele-specific manner—known as cis-regulatory
variation2—by altering protein and miRNA binding, for example.
Normal cis-regulatory variation affects most of the human
genome in all tissues and generates the wealth of phenotypic
variation seen in species3–5. Moreover, an extensive contribution
from noncoding variants to RNA alterations was recently observed
in tumors6, including allelic imbalance of somatic mutations7.
Nevertheless, one unsolved aspect is how much each mechan-

ism contributes to generating allelic imbalances in expression and
whether they do it independently or in synergy. In breast tissue,
germline regulatory variation is associated with disease risk8 and
affects frequently mutated genes9. We and others have shown
that variants affecting the expression levels of BRCA1 and BRCA2
modify the risk of breast cancer in germline mutation carriers10,11.
We found that carriers of germline nonsense mutations in the
tumor suppressor gene BRCA2 were at a lower risk of developing

breast cancer when the remaining wild-type allele was highly
expressed11.
Here, we hypothesize that cis-regulatory variation also mod-

ulates the penetrance of oncogenic coding mutations. In the
context of a gene cis-regulated by a genetic variant generating
imbalanced allelic expression, we postulate that an oncogenic
activating mutation in the same gene will have a different clinical
impact depending upon whether it occurs in the preferentially
expressed allele or the less expressed one. We tested this model in
the context of heterozygous mutations in PIK3CA, the most
frequently mutated gene in breast cancer. First, we investigated
whether normal cis-regulatory variation regulated the expression
of PIK3CA in normal breast tissue. Then, we calculated allelic
expression ratios between mutant and wild-type copies in tumors
from two large breast cancer datasets—METABRIC and TCGA—
both normalized for DNA copy number or not. Finally, we
correlated the allelic expression ratios with clinical data. This
approach allows us to distinguish between expression imbalances
generated from cis-regulatory variation alone, altered DNA copy
number, or both mechanisms.

RESULTS
Normal cis-regulatory variation affects PIK3CA expression in
healthy breast tissue
To investigate whether cis-regulatory variation modulates the
expression of PIK3CA in normal breast tissue, we analyzed data
from previous allelic expression analysis of normal breast tissue
from 64 healthy donors12. We calculated the ratio of expression of
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one allele by the other in heterozygous variant positions, which is
a robust approach to detect cis-acting variant effects, as it cancels
out the trans effects that act on the same gene and influence both
alleles equally. We found six variants in PIK3CA displaying
differential allelic expression (daeSNPs) (see “Methods”) (Fig. 1).
Of these six, only rs3729679 is not in strong linkage
disequilibrium (LD) with the others (Supplementary Table 1).
rs3960984 showed the largest proportion of heterozygotes
displaying allelic differences (57%), while three other daeSNPs
shared the smallest fraction (14%): rs12488074, rs4855093,
and rs9838411.
In the daeSNPs rs7636454, rs3960984, rs12488074, and

rs9838411, the ratios showed a unilateral distribution, with
samples displaying preferential expression towards the same
allele. These patterns of allelic expression ratios’ distribution
suggest that the daeSNPs at which allelic expression is being
measured and the possible functional regulatory variants (rSNPs)
are in strong, yet incomplete, LD with each other13.
While the mapping analysis carried out to identify candidate

rSNPs did not find a significant association after multiple testing
correction (Supplementary Table 2), one of the variants with
nominal P value ≤ 0.05, rs2699887 (Wilcoxon two-sample test
estimated difference of 0.22, 95% CI = [0.031-Inf]) (Supplementary
Fig. 1A), showed great regulatory potential. Namely, it is an eQTL
(expression quantitative trait locus) for PIK3CA (P= 0.011, Supple-
mentary Fig. 1B) in tumors from METABRIC14, is located at its
promotor region and at a DNAse I hypersensitivity site (Supple-
mentary Fig. 1C), and is bound by POL2 in a breast cancer cell line
(Supplementary Table 3). In-silico functional analysis of this variant
suggested a disruption of the binding motif of the transcription
factor NF-YA (Supplementary Fig. 1D), and in vitro studies revealed
a preferential protein::DNA binding to the minor T allele of

rs2699887, which is associated with higher expression of PIK3CA
in tumors (Supplementary Fig. 1E).

Preferential expression of the PIK3CA mutated alleles is
frequent in breast tumors
Changes in DNA copy number in tumors are associated with
changes in gene expression in cis1,14–17 leading to dosage
imbalances of coding mutations7. However, these differences
can also be due to germline and somatic cis-regulatory variation,
but their effect on mutation dosage imbalance is underexplored.
So, we set out to assess whether PIK3CA somatic mutations would
have their functional effects, or penetrance, modified by
imbalances in allelic expression generated by regulatory variants.
We hypothesized that preferential expression of a gain-of-function
mutation would have a more substantial clinical impact than those
occurring in lowly expressed alleles, thus generating intertumor
clinical heterogeneity (Fig. 2a). To test this, we carried mutant vs.
wild-type allelic expression analysis in breast tumor samples
carrying somatic PIK3CA missense mutations on two independent
sets of data, the METABRIC (n= 94) and the TCGA (n= 178)
projects. Supplementary Table 4 presents a summary description
of the two datasets and Supplementary Fig. 2 shows the number,
location, and amino acid alterations of the mutations across the
two datasets.
Next, we calculated three allelic ratios from DNA-seq and RNA-

seq data for each mutation:

(1) α ¼ log2 (number of mutant RNA-seq reads/number of wild-
type RNA-seq reads), i.e., the net mutant allele expression
imbalance;

(2) β ¼ log2 (number of mutant DNA-seq reads/number of
wild-type DNA-seq reads), i.e., the mutant allele relative
copy-number;
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Fig. 1 Cis-regulatory variation impacts on PIK3CA gene expression in normal breast tissue. AE ratios for six daeSNPs in the PIK3CA gene
region, each dot is a heterozygous individual for the corresponding variant indicated in the x-axis, dotted lines delimit the levels of 1.5-fold
difference for either allele preferential expression ( AEj j ¼ 0:58). Boxplots display the median, the lower and upper hinges corresponding to the
first and third quartiles, and lower and upper whiskers corresponding to the smallest and largest values from the 1.5 * IQR (interquartile
range), respectively.

L. Correia et al.

2

npj Breast Cancer (2022)    71 Published in partnership with the Breast Cancer Research Foundation

1
2
3
4
5
6
7
8
9
0
()
:,;



Fig. 2 Mutant allelic imbalance in gene expression of somatic missense PIK3CA mutations is frequent in breast tumors, particularly for
preferential expression of the mutant allele. a Schematic representation of the hypothesis: cis-acting regulatory variants (rVar), either from
germline or somatically acquired, generate different relative allelic expression ratios of mutant and wild-type alleles, resulting in tumors of
different prognosis. b Top: log ratio α, β, and γ 89% credible intervals (CI) in breast tumors. Bottom: CIs collective posterior distribution split
according to imbalance. A sample is deemed imbalanced if the CI does not cross zero. Samples with significant imbalance are displayed in red.
c Correlation analysis of α vs. β and α vs. γ, showing that both genomic copy-number dosage and allelic expression regulation contribute to
imbalances in the expression of mutated alleles in tumors. Point coordinates are Maximum A Posteriori probability estimates (MAP) of the 89%
CIs. d Comparison of matched γ and β values, showing predominance of tumors with a preferential allelic expression of the mutated allele.
Point coordinates are Maximum A Posteriori probability estimates (MAP) of the 89% CIs.

L. Correia et al.

3

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)    71 



(3) γ= α− β, i.e., the net mutant allele expression imbalance
normalized for the DNA allelic copy-number imbalances,
which corresponds to a putative mutant allele expression
imbalance due to cis-regulation.

In this way, α reports on the net allelic expression imbalance,
generated by different mechanisms including copy-number
aberrations, cellularity differences, and cis-regulatory variation,
while γ reports specifically on the contribution from cis-regulatory
variation (rVar in Fig. 2a), including normal genetic variation,
somatic noncoding mutations, and allelic epigenetic changes.
Figure 2b displays the distributions of the different ratios.
We found that net mutant allele expression imbalances (α ratio)

are frequent in breast tumors, at 70.2% in METABRIC (66 out of 94)
and 60.1% in TCGA (107 out of 178). The same is true for γ ratios,
at 27.7% for METABRIC (26 out of 94) and 11.8% for TCGA (21 out
of 178), indicating that cis-regulatory effects acting on mutations
are also frequent in breast tumors. In both sets, we found samples
with striking net preferential allelic expression for the mutant
allele (maximum 44.8-fold and 220-fold in METABRIC and TCGA,
respectively), but not so for the preferential expression of the wild-
type allele (fold differences of 5.4 and 29 in METABRIC and TCGA,
respectively) (Fig. 2b). Similarly, the mutant allele’s most
pronounced preferential expression trend was found for the γ
ratio, 10- and 4.2-fold for METABRIC and TCGA, respectively, albeit
with smaller fold differences between alleles.
Interestingly, we observed that within the samples with

significant mutant allele expression imbalance due to cis-
regulatory variation there was a significant prevalence of samples
that preferentially expressed the mutated allele in both datasets
(binomial test Prob.= 1, 89%−CI= [0.89, 1.00], P= 3 × 10−8 for
METABRIC and Prob.= 0.90, 89%−CI= [0.73, 0.98], P= 2 × 10−4

for TCGA).

Cis-regulatory variants contribute significantly to imbalances
in the expression of mutant alleles
Next, hypothesizing that both copy number and cis-regulatory
variants are the major contributors to allelic expression, we set out
to assess the contribution of each mechanism toward the net
mutant allele expression imbalances detected in these tumors.
First, we found positive correlations between net allelic expression

and both copy number and cis-regulatory variation (Fig. 2c), albeit
with an effect for the copy number over the double the size of
that found for cis-regulatory variation (average Pearson correlation
r2= 0.80 and 0.34, respectively). Next, we considered the variance
(Var) of the net allelic expression as the sum of the effects of both
mechanisms, plus the covariance (Cov) accounting for predicted
non-mutual exclusion of mechanisms acting on any given allele:

VarðαÞ ¼ VarðβÞ þ VarðγÞ þ 2 Covðβ; γÞ; (1)

we calculated the contribution of cis-regulatory variation to the
variance of net allelic expression as VarðγÞ þ Covðβ; γÞð Þ=VarðαÞ.
Here, we found that cis-regulatory variants explain 20.6% and
14.4% of the variability of net mutant allelic expression seen in
METABRIC and TCGA, respectively (Supplementary Table 5).
Finally, assessing how the two mechanisms act simultaneously

on each tumor, we found that the majority of samples (70.2% and
54.5% for the METABRIC and TCGA, respectively) had positive γ
and negative β values (Fig. 2d), suggesting that although the
mutant allele was in lower genomic quantity, it was nevertheless
preferentially expressed compared to the wild-type allele. Inter-
estingly, there were 10.6% and 11.2% samples with positive α and
negative β values, in METABRIC and TCGA respectively. This shows
that these tumors overexpress the mutant allele despite this allele
being in lower copy number.
Only a minor fraction of samples displayed co-occurring

preferential allelic expression and a higher allele copy number
of the mutant allele (6.38% and 8.43% for the METABRIC and
TCGA, respectively). These results were independent of the effect
of tumor cellularity (Supplementary Fig. 3).

Preferential expression of mutant alleles by cis-regulatory
variation associates with poor prognosis
To investigate the impact of differential cis-regulation of PIK3CA’s
mutations on clinical outcome (overall and disease-specific
survival), we performed univariate survival analysis with γ ratios
categorized in three groups, based on the existence of imbalance
and its direction, i.e. whether there was significant predominance of
expression of the mutated allele γmut, of the wild-type allele γwt, or
balanced allelic expression γbalanced. We uncovered that the group
γmut had a poorer disease-specific survival rate (P= 0.031, Fig. 3a)

Fig. 3 Allelic preferential expression of PIK3CAmutations is associated with survival and clinicopathological parameters in breast cancer.
a Kaplan–Meier curve of disease-specific survival showing the worse prognosis of patients with differential expression of the PIK3CAmutations
(γmut group, shown in blue) compared to those expressing equimolar levels of mutation and wild-type alleles (γbalanced group, shown in red), in
METABRIC. Shown below the graph are the numbers of patients at risk per group throughout time. b Preferential expression of the mutated
allele is associated with ER-negative, PR-negative, and Her2-positive breast tumors. In all graphs, samples were colored according to the
significance of the allelic expression imbalance. q values indicated correspond to the Wilcoxon rank-sum test with continuity correction,
corrected for multiple testing using the Benjamini & Hochberg method. Survival plots indicate the 95%CI as colored shades. Boxplots display
the median, the lower and upper hinges corresponding to the first and third quartiles, and lower and upper whiskers corresponding to the
smallest and largest values from the 1.5 * IQR (interquartile range), respectively.
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than the γbalanced group for METABRIC. The median overall survival
for the γmut group was 5.88 years and for the γbalanced group was
12.46 years (Supplementary Fig. 4B), whereas, in the disease-
specific analysis, the mean survival of the γmut patients was 7.07
years, and 41% of patients died during the length of the follow-up,
in comparison with 25.3% deaths in the γbalanced group (Fig. 3a).
The categorized γ ratios were not significantly associated with

overall survival in the multivariate analysis (Supplementary Fig. 5).
However, some of the variables that are usually independent
prognosis factors, such as PR and HER2 statuses, were not
significantly associated with survival either in this analysis. In the
TCGA set, there was a trend toward a worse disease-specific
survival of those patients whose tumors preferentially express the
mutated allele (Supplementary Fig. 6). However, due to the
relatively shorter follow-up time of this dataset (median ~1 year)
and the fact that tumors were mainly Luminal A (~61.2% of
samples)18, the power to detect significant differences is smaller
than that of METABRIC. Nevertheless, the joint analysis of the two
datasets showed a significantly worse disease-specific survival of
the αmut group of patients, with a concordant trend in the γmut

group (Supplementary Fig. 7).

PIK3CA preferential mutant allele expression associates with
clinicopathological variables
Next, we sought to investigate whether PIK3CA’s differential
mutant allele was associated with known prognostic clinicopatho-
logical variables, namely hormone receptors (ER, PR) and HER2
amplification, which are directly and indirectly connected to gene
expression regulation, respectively.
For both datasets, we observed that preferential mutant allele

expression driven by cis-regulatory variation (γ) was associated
with markers of worse prognosis, namely it was significantly
higher in ER-negative tumors and PR-negative tumors, and in
HER2-positive tumors only in METABRIC (Fig. 3b). When evaluating
the contribution of cis-regulatory variation to this association, we
also found that higher average γ values associated with lower PR
expression (P= 0.040) and HER2-positive tumors (P= 0.025), but
we did not find a significant association with ER expression
(P= 0.129) (Supplementary Fig. 8).
Given these results, we took γ into consideration in the survival

analysis within the expression subgroups of ER, PR, and HER2, but
did not find significant differences in overall and disease-specific
survival in METABRIC (Supplementary Fig. 4).
Considering other known prognostic variables, including

tumor size, grade, and molecular subtypes (PAM5019 and
IntClust14, we found a significant association between γ ratios
and PAM50 subtypes only in METABRIC (q= 0.027) (Supplemen-
tary Table 6 and Supplementary Fig. 9).
Finally, we did not find an association between the candidate

germline regulatory variant rs2699887 and γ or clinical out-
come, suggesting germline variants are unlikely to be involved in
the significant associations described above (data not shown).
However, supporting the involvement of somatic cis-regulatory

variants instead, we found smaller fold changes and less samples
with imbalances measured at common PIK3CA variants in normal-
matched tissue data than those measured at mutations in tumor
tissue (Supplementary Fig. 10).

DISCUSSION
Our work reveals the role of cis-regulatory variation acting on
PIK3CA somatic mutations as modifiers of mutation penetrance.
We show for the first time that allelic expression imbalance
between PIK3CA’s mutant and wild-type alleles is common and
prognostic in breast cancer.
Particularly, preferential expression of the mutant allele is

significantly more common than that of the wild-type allele, and

considering that PIK3CA is an oncogene, one possibility is that
positive selection could have a role in generating this difference,
which should be further investigated. Furthermore, we also
found that allelic imbalance in expression observed for the
mutant alleles in the tumors was greater than that observed for
single-nucleotide polymorphisms in the normal-matched tissue
of patients. These findings support the hypothesis of somatic
regulatory mutations involvement in generating the imbalances
observed in the tumors. While genomic allelic imbalance remains
the largest determinant of allelic expression dosage (showing the
highest correlation with and contributing the most to the
variability observed in net allelic expression), cis-regulatory
variation is also significantly correlated with net allelic expression
and explains ~16% of its variability across samples in these sets
of tumors.
The analysis of RNA-seq data from two independent cohorts of

tumor samples, the METABRIC and TCGA projects, strongly
supports our findings.
Moreover, we show that preferential expression of the mutant

allele due to cis-variation is associated with poor prognosis
variables, such as ER-negative, PR-negative, and Her2-positive
statuses20,21. In the METABRIC dataset, we also found that
preferential expression of the mutant allele was associated with
worse overall and disease-specific survival. The high stringency
in calling imbalance and the focus on a specific type of mutation
in one gene, limits this study in terms of the sample size
analyzed, but on the other hand it provides the simplest scenario
for testing our hypothesis. Interestingly, the joint analysis of the
datasets revealed some level of association between disease-
specific survival and the preferential expression of the mutant
allele, both net and due to cis-regulation, reaffirming the clinical
importance of the expression level of a mutation commonly
associated with aggressive tumors. In addition, some tumors
presented preferential expression of the wild-type allele of
PIK3CA, suggesting that these mutations are lowly expressed and
possibly passenger events.
Besides the potential use of our findings as a prognosis

biomarker in the clinic, these results may also have therapeutic
implications. Some of the major clinical challenges in cancer
treatment are identifying biomarkers of prognosis and defining
which patients will benefit from a given therapy. Particularly, it is
crucial to identify patients unlikely to respond to specific therapies
to prevent unnecessary drug cytotoxicity without any therapeutic
benefits. Our results reveal the importance of considering allelic
expression in somatic mutation screens in these two aspects of
patient management. Despite the high frequency of PIK3CA
mutations in breast cancers, the response to PI3K inhibitor therapy
has been more challenging than expected, and the prognostic
significance of detecting somatic PIK3CA mutations in breast
tumors is unclear22. Relevant to this discussion, we have
previously shown that the presence of PIK3CA mutations confer
a poorer prognosis in patients with ER-positive breast cancer
only when stratified into copy-number driven subgroups (IntClust
1+, 2+, 9+)23.
In this study, we provide new evidence for the prognostic

significance of these mutations at the expression level in breast
tumors. Particularly for tumors with significant preferential
expression of the wild-type allele, this prognostic significance
has a potential impact on therapy response and clinical manage-
ment since one may hypothesize that little to no benefit would
come from treatment in the cases not expressing the targetable
mutation.
Further studies evaluating the allelic expression of mutant

oncogenes in the tumors of patients enrolled in molecular-driven
trials will clarify this impact.
More challenging is determining which cis-regulatory mechan-

isms are promoting allelic expression imbalances. Both inherited11,24
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and acquired variants6,25–27 can affect gene expression in an allelic
manner28,29.
Here we show that normal cis-regulatory variation regulates

PIK3CA’s expression in normal breast tissue, with the possible
contribution of rs2699887 as a regulatory variant. We also found
that the heterozygotes for “rs2699887” were associated with
higher expression of the PIK3CA gene compared to the common
homozygotes. Although there is published data supporting the
clinical association of rs2699887 with poor prognosis in other
cancers30,31, linked to an increase in PI3K signaling, there is still
some data supporting the opposite association32,33. We did not
find an association between rs2699887 and survival, which
opens the possibility for other mechanisms besides normal cis-
regulatory variation to be considered as contributors to the
preferential allelic expression in these tumors (data not shown).
Double PIK3CA mutations in the same allele are frequent in

breast tumors34, and the impact of noncoding mutations in cancer
is just starting to be explored6. So, a possibility is that the
combination of noncoding and coding mutations in the same
gene might be underlying the allelic expression imbalances we
are detecting.
Further studies on allelic expression imbalances of activating

mutations, and even inactivating ones, should further reveal the
contribution of cis-regulatory mechanisms in tumor develop-
ment and progression. Particularly interesting to determine is
whether the coding mutation originates in an allele predis-
posed with higher expression, or whether a sequence of
somatic events introduces the coding activating mutation and
additional cis-regulatory noncoding mutations. The answers
could have significant repercussions on our understanding of
tumor evolution.
In summary, we show that differential expression between the

mutant and wild-type alleles of PIK3CA is common in breast cancer
and with a significant contribution from allele-specific cis-
regulatory effects. We further show that mutant allele differential
expression is associated with clinical parameters such as ER, PR,
and HER2 statuses and is prognostically significant.
Collectively, our work establishes the prognostic relevance of

allele-specific transcriptional regulation of PIK3CA somatic muta-
tions. It also supports a shift in the mutation testing in patient
management, where the level of expression of these mutations
should be considered, besides the detection at the DNA level.

METHODS
Subjects
Normal breast and tumor samples were obtained with the written
informed consent from donors and appropriate approval from local
ethical committees, with the detailed information described in the
respective original publications: normal tissue9, METABRIC14, TCGA35.

Differential allelic expression analysis
DNA and total RNA from 64 samples of normal breast tissue were
hybridized onto Illumina Exon510S-Duo arrays (humanexon510s-duo), and
data were analyzed as described before12. In short, after sample filtering
and normalization, variants with average RNA log2 allelic intensity values
greater than 9.5 and heterozygous in five or more samples were kept for
further analysis.
Allelic log ratios were calculated for RNA and DNA intensity data:

log ratio ¼ log2ðAÞ � log2ðBÞ; (2)

for alleles A and B.Next, variants that showed significant differences
between the RNA log ratios between heterozygous (AB) and homozygous
groups (AA and BB) (two-sample Student’s t test, P value < 0.05) were
selected for differential allelic expression analysis.
Allelic expression (AE) ratios were normalized for allelic DNA content:

AE ratio ¼ RNA log - ratio � DNA log - ratio (3)

Differential allelic expression (DAE) at the sample level was defined as ∣AE
ratio∣ ≥ 0.58 (1.5-fold or greater between alleles), based on previous studies
using microarray data3,36. Variants with at least 10% and three hetero-
zygous samples displaying DAE were further classified as daeSNPs.
Linkage disequilibrium (LD) between daeSNPs was evaluated using the

genetic variant-centered annotation browser SNiPA37.

Genotype imputation analysis on normal breast tissue
samples
Illumina Exon 510 Duo germline genotype data from the 64 samples that
passed microarrays quality control, were filtered to keep variants with call
rates ≥85%, minor allele frequency >0.01, and Hardy–Weinberg equili-
brium with P > 1 × 10−5. Next, genotypes were imputed with MACH1.038

for all additional known variants on chromosome 3, using as reference
panel the phased CEU panel haplotypes from the HapMap3 release
(HapMap3 NCBI Build39, CEU panel —Utah residents with Northern and
Western European ancestry), and the recommended two-step imputation
process: model parameters (crossover and error rates) were estimated
before imputation using all haplotypes from the study subjects and
running 100 Hidden Markov Model (HMM) iterations; then genotypes were
imputed using the model parameter estimates from the previous round.
Imputation results were filtered based on an rq score � 0:338, a platform-
specific measurement of variant imputation uncertainty.

Differential allelic expression (DAE) mapping analysis on
normal breast tissue samples
Differential allelic expression mapping analysis was performed by
stratifying AE ratios at each PIK3CA daeSNP according to the genotype
at variants located within ±250 Kb.
A Mann–Whitney test was applied to test if the mean of the absolute AE

ratios of the heterozygous samples was greater than those of the
combined reference and alternative allele homozygous samples. Correc-
tion for multiple testing was performed using BH method (p.adjust, R stats
4.0.3 package40) and limiting the significance to q values ≤0.05.

Functional annotation of DAE mapping associated variants
Variants in LD with SNPs with DAE mapping nominal-p-value ≤0.05 were
retrieved using the function get_ld_variants_by_window from the
ensemblr R package (https://github.com/ramiromagno/ensemblr) using
the 1000 GENOMES project data (phase_3) for the EUR population and an
r2 > 0.95. These proxy SNPs were assessed for overlap with epigenetic
marks derived from the Encyclopedia of DNA Elements (ENCODE) and NIH
Roadmap Epigenomics projects, such as chromatin states (chromHMM)
annotation, regions of DNase I hypersensitivity, transcription factor binding
sites, and histone modifications of epigenetic markers (H3K4Me1,
H3K4Me3, and H3K27Ac) (http://genome.ucsc.edu/ENCODE/) for normal
human mammary epithelial cells (HMECs), human mammary fibroblasts
(HMFs), BR.MYO (breast myoepithelial cells) and BR.H35 (breast vHMEC)
and two breast cancer cell lines MCF-7 and T47D. We prioritized variants
located on either active promoter or enhancer regions in mammary cell
lines, and for which ChIP-Seq data indicated protein binding or position
weight matrix (PWM) scores predicted differential protein binding for
different alleles. Two publicly available tools, RegulomeDB and HaploReg
v4.1, and the MotifBreakR Bioconductor package, were also used to
evaluate those candidate functional variants39,41,42.

Electrophoretic mobility shift assay (EMSA)
MCF-7 (ER-positive) and HCC1954 (ER-negative) breast cancer cell lines were
cultured in DMEM and RPMI culture media, respectively, supplemented with
10% FBS and 1% PS (penicillin and streptomycin). Nuclear protein extracts
were prepared using the Thermo Scientific PierceTM NER kit, according to
the manufacturer’s instructions. Oligonucleotide sequences corresponding
to the C (common) and T (minor) alleles of rs2699887 (5’-AGCGTGAGT
AGAGCGCGGA[C/T]TGGCCGGTAGCGGGTGCGGTG-3’) were labeled using
the Thermo Scientific Pierce Biotin 3’ End DNA Labelling Kit, according to the
manufacturer’s instructions. Oligonucleotides with known binding motifs for
NF-YA43 and E2F144 were used in competition assays. Undiluted antibodies
used for supershift competition assays were NF-YA (H-209) (Santa Cruz
Biotechnology, SC-10779X) and HMGA1a/HMGA1b (Abcam, ab4078). EMSA
experiments were performed using the Thermo Scientific LightShiftTM
Chemiluminescent EMSA Kit, using the buffer and binding reaction
conditions previously described8. Each EMSA was repeated at least twice
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for all combinations of cell extract and oligonucleotide, which were also
tested in serial dilution amounts.

Breast tumor samples
The METABRIC dataset of tumor samples included 2433 samples from the
METABRIC project14 with DNA sequencing data, among which 480 were
subjected to a capture-based RNA sequencing study23. Sequencing
libraries were generated as previously described. In brief, sequencing
libraries using total RNA generated from frozen tissues with a TruSeq
mRNA Library Preparation Kit using poly-A-enriched RNA (Illumina, San
Diego, CA, USA) and enriched with the human kinome DNA capture baits
(Agilent Technologies, Santa Clara, CA, USA). Six libraries were pooled for
each capture reaction, with 100 ng of each library, and sequenced (paired-
end 51bp) on an Illumina HiSeq2000 platform. We selected a subset of
samples with DNA and RNA sequencing data and PIK3CA missense
mutations for further analysis.
The TCGA dataset comprised 695 samples from TCGA breast cancers35,

from which we selected a subset of 289 samples with PIK3CA missense
mutations for further analysis. Supplementary Table 3 summarizes the
demographic features and disease characteristics of the two datasets.

DNA-seq and RNA-seq variants calling in tumors
Alignment and preprocessing. Sequence data (FASTQ) mapped to the
reference genome (hg19) were aligned using STAR v2.4.145. A two-pass
alignment was carried out: splice junctions detected in the first alignment
run are used to guide the final alignment. Duplicates were marked with
Picard v1.131 (http://picard.sourceforge.net). Genome Analysis Toolkit
(GATK) was used for indel realignment and base quality score recalibration46.

Variant calling and annotations. SNV and indel variants were called using
GATK Haplotype Caller. Hard filters using GATK VariantFiltration were
applied to variants46. Variants were annotated with Ensembl Variant Effect
Predictor (VEP)47. Heterozygous genotypes were called from DNA data to
avoid RNA editing and other RNA-related variants because true allelic
imbalance can lead to heterozygous sites being called homozygous in
RNA-based genotype calling.

Analysis of allelic expression imbalances in tumors
Before the analysis, a set of filtering steps was performed to select samples:
(1) presence of missense mutations; (2) and a minimum of 30 reads for
RNA-seq and DNA-seq data48–50.
Clinical data for METABRIC were updated from the original studies with

the latest available records. Clinical data for TCGA were imported from
https://portal.gdc.cancer.gov/ on November 26, 2018.

Filtering of tumor samples. For both datasets —METABRIC and TCGA—, a
set of quality control criteria were applied to filter the DNA-seq and RNA-
seq samples, namely:

a. Keep only samples containing PIK3CA missense mutations;
b. Keep samples whose coverage at mutated loci is, all together in both

alleles, at least 30 reads for both RNA-seq and DNA-seq data48–50.

Clinical data of METABRIC patients were updated from the original
studies with the latest available records. The TCGA clinical dataset was
obtained from cBioPortal51,52 on 28 November 2021 by programmatic
access with the R package cgdsr.

Allelic expression imbalances in tumor data. Allelic expression imbalances
are calculated as follows. For each mutated loci, the pair of read counts (X,
Y), for wild-type (X) and mutant (Y) alleles, respectively, measured either by
DNA-seq or RNAseq, are transformed using the log ratios β, α, and γ, which
are defined as follows:

β ¼ log2ðYDNA=XDNAÞ; (4)

the DNA mutant allele ratio, which served to control for sequencing
artifacts from heterozygous genotypes and to account for differences in
variant frequencies in DNA;

α ¼ log2ðYRNA=XRNAÞ; (5)

that served as a measure of the net allelic expression imbalance in tumors;

γ ¼ α� β; (6)

the normalized mutant allele expression ratio, a proxy for the mutant allelic
expression imbalance due to cis-regulation alone.

Statistical inference of allelic expression imbalances. According to these
log-ratio definitions, a positive value indicates an imbalance toward the
mutant allele, and a negative value an imbalance favoring the wild-type
allele. However, the statistical significance of each log ratio depends on the
read coverage of each allele, e.g., low read-coverage values are subject to
greater random variation, and hence less reliable log ratios and imbalances
estimation. To assign a measuring of uncertainty to our imbalances’
estimates, we assumed that the read counts are well modeled by a Beta-
Binomial distribution, and following Bayesian reasoning, we estimated 89%
credible intervals (CI) and Maximum A Posteriori probability estimates
(MAP) for the log ratios β, α, and γ (reported in Fig. 2).

Allelic expression imbalances in normal-matched tissue data. Solid normal
breast tissue from breast cancer female patients was obtained from TCGA-
BRCA. We selected 112 samples with RNA-Seq data, obtained in bam file
format. Sequence data were converted to fastq format (samtools53),
underwent initial quality control (FastQC54), and trimming (Trimmo-
matic55). Following QC, six samples were removed from analysis. The
remaining sequence data was mapped to the reference genome (hg38)
using STAR aligner (v.2.7.7a45). Otherwise, alignment, preprocessing and
variant calling was performed as described below. RNA data was filtered to
contain only heterozygous variants at the DNA level, circumscribed to
PIK3CA’s genomic location. DNA data was accessed from TCGA-BRCA’s
microarray raw data for 111 of the 112 initial RNA-Seq samples. Genotypes
were obtained using the CRLMM algorithm (‘crlmm’ R Bioconductor
package,56) and quality controlled for HWE, major allele frequency and
10% missing genotypes (‘SNPassoc’ R package57). Genotypes were lifted
over from hg38 to hg37 (‘rtracklayer’ R Bioconductor package58),
harmonized (‘GenotypeHarmonizer’59), and imputed (Michigan Imputation
Server60). Obtained genotypes were quality controlled using PLINK61 and
lifted over back to hg38. Allelic expression imbalances, equivalent to α
ratios in tumors, were inferred for heterozygous germline variants as
described above.

Two-sample tests of imbalance ratios with clinical covariates. Association
between allelic expression imbalance ratios and clinical data was achieved
by bivariate analysis Wilcoxon rank-sum test with continuity correction or
Kruskal–Wallis rank-sum test, as indicated in tables and figures. P values
were adjusted per study using the Benjamini & Hochberg correction and
were considered significant when ≤ 0.05.

Correlation analysis. Correlation analysis α vs β and α vs γ ratios for both
sets of samples were performed using a Pearson’s test. All statistical
analysis and data visualization were performed using R.

Survival analyses
Kaplan–Meier plots and multivariate Cox proportional hazard models were
used to examine the association between alpha and gamma allelic
expression ratios and survival using the survival package from R62,63. Death
due to all causes was used as the endpoint, and all alive subjects were
censored at the date of the last contact. Kaplan–Meier survival curves were
compared using the log-rank test.
For the multivariate analysis, Cox proportional hazard model was used

to assess the effect of γ on the overall survival. Hazard ratios (HRs) and
95% confidence intervals (CI) were estimated by fitting the Cox model
while adjusting for age and tumor characteristics, such as size,
Scarff–Bloom–Richardson histological grade, clinical stage and estrogen
receptor (ER), progesterone (PR), and human epidermal growth factor 2
(HER2) statuses.
For the bivariate analysis, Wilcoxon rank-sum two-sample tests were

used to compare α and γ between different hormone receptor statuses
and q ≤ 0.05, calculated using the Benjamini & Hochberg method, were
considered statistically significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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DATA AVAILABILITY
Microarray raw data are deposited in the Gene Expression Omnibus under accession
number GSE35023. Primary data (BAM files) for DNA-seq are deposited at the
European Genome-phenome Archive (EGA) under study accession number
EGAS00001001753 and may be downloaded upon request and authorization by
the METABRIC Data Access Committee. Primary data (BAM files) for RNAseq are
available from the authors upon reasonable request. Primary data (BAM files) for
DNA-seq and RNAseq from TCGA are deposited in the database of Genotypes and
Phenotypes (dbGaP) under the study accession number phs000178.

CODE AVAILABILITY
The filtered data and code for the analysis of mutant allele expression imbalances
and the survival analysis can be publicly accessed at https://github.com/maialab/
npjbcPIK3CA.
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