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Overlapping commonalities between coronavirus disease of 2019 (COVID-19) and

cardio-oncology regarding cardiovascular toxicities (CVT), pathophysiology, and

pharmacology are special topics emerging during the pandemic. In this perspective,

we consider an array of CVT common to both COVID-19 and cardio-oncology,

including cardiomyopathy, ischemia, conduction abnormalities, myopericarditis,

and right ventricular (RV) failure. We also emphasize the higher risk of severe

COVID-19 illness in patients with cardiovascular disease (CVD) or its risk factors

or cancer. We explore commonalities in the underlying pathophysiology observed

in COVID-19 and cardio-oncology, including inflammation, cytokine release, the

renin-angiotensin-aldosterone-system, coagulopathy, microthrombosis, and endothelial

dysfunction. In addition, we examine common pharmacologic management strategies

that have been elucidated for CVT from COVID-19 and various cancer therapies.

The use of corticosteroids, as well as antibodies and inhibitors of various molecules

mediating inflammation and cytokine release syndrome, are discussed. The impact of

angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers

(ARBs) is also addressed, since these drugs are used in cardio-oncology and

have received considerable attention during the COVID-19 pandemic, since the

culprit virus enters human cells via the angiotensin converting enzyme 2 (ACE2)
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receptor. There are therefore several areas of overlap, similarity, and interaction in the

toxicity, pathophysiology, and pharmacology profiles in COVID-19 and cardio-oncology

syndromes. Learning more about either will likely provide some level of insight into both.

We discuss each of these topics in this viewpoint, as well as what we foresee as evolving

future directions to consider in cardio-oncology during the pandemic and beyond.

Finally, we highlight commonalities in health disparities in COVID-19 and cardio-oncology

and encourage continued development and implementation of innovative solutions to

improve equity in health and healing.

Keywords: cardio-oncology, COVID-19, pandemic, telemedicine, inflammation, cytokine release syndrome, right

ventricle, health disparities

INTRODUCTION

In early 2020, theWorld Health Organization (WHO) designated
the new, highly contagious, and unnervingly fatal disease
COVID-19 caused by the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) a global pandemic. By
June 1, 2020, the WHO reported more than 6 million confirmed
cases and 370,000 deaths across nearly 220 countries and
territories, with the US having the highest number of confirmed
cases (1.7 million) and deaths (100,000) (1).

Although initially thought to be primarily a lung disease,
COVID-19 also involves marked toxicity to the cardiovascular
system. As data has emerged, it has become clear to our cardio-
oncology group (2–7) that much of the cardiovascular toxicity
reported in COVID-19 is also observed in cardio-oncology,
with overlap in underlying pathophysiology. Additionally,
pharmacologic options frequently used or currently being
studied in cardio-oncology are also proving beneficial in COVID-
19. This begs the question of whether evaluating commonalities
in the toxicities, pathophysiology, and pharmacology of COVID-
19 and cardio-oncology would be informative for advancing
understanding and avenues for research in cardio-oncology, as
well as COVID-19. Cardio-oncology is an emerging field in
medicine focused on the prevention, surveillance, detection,
and management of injury to the cardiovascular system from
cancer therapies or from cancer itself. The cardiovascular injuries
are inflicted by an exogenous source, primarily pharmacologic
or radiologic cancer therapy. In COVID-19, the cardiovascular
injuries are also incited by an exogenous source, primarily SARS-
CoV-2. Due to the exogenous nature of the original source of
injury, in addition to pathophysiologymediating the injury, some
authors refer to these cardiovascular injuries in COVID-19 as
“toxicities” (8–10), which is also the term conventionally used
in cardio-oncology (11–13). While cancer therapies and SARS-
CoV-2 are two very different entities, the havoc they both wreak
on the cardiovascular system is thought-provoking.

In this perspective, we share the overarching viewpoint that
these commonalities exist and are intriguing, and consequently,
the dynamic research efforts surrounding COVID-19 may
be able to inform new understanding and avenues for
investigation in cardio-oncology. A clear understanding of
the mechanisms of various forms of CVT in cardio-oncology
remains elusive. Development of novel concepts, paradigms,

and drug utilization trends based on observations identified
in CVT related to COVID-19 may help advance research and
clinical practice in cardio-oncology. To this end, we first present
cardiovascular toxicities common to COVID-19 and cardio-
oncology, then we expound on underlying pathophysiology.
This is followed by description of pharmacologic options being
pursued in both COVID-19 and cardio-oncology. Finally, we
discuss ramifications of these commonalities in the context
of Cardio-Oncologic care and research in the pandemic and
beyond (Table 1).

COMMON TOXICITIES IN COVID-19 AND
CARDIO-ONCOLOGY

CVT in COVID-19 and Cardio-Oncology
In COVID-19, SAR-CoV-2 causes direct and indirect
cardiovascular injury, which typically manifests as
cardiomyopathy, myopericarditis, ischemia, or arrythmia
(14–25). SARS-CoV-2 has been discovered in cardiac tissue
(15, 25), similar to SARS-CoV-1 infection in which 35% of
patients had viral RNA expressed in cardiac tissue (26). Patients
with pre-existing CVD and cancer or CVD risk factors (e.g.,
diabetes mellitus, chronic kidney disease, obesity, and advanced
age) are among those at highest risk of poor outcomes, i.e.,
increased morbidity and mortality from COVID-19 (10, 22, 27–
30). According to a retrospective analysis of 72,314 cases in
China, patients with pre-existing CVD morbidities had a
five-fold increase in mortality, and a COVID-19-related death
rate of 10.5% (22). Indirectly, patients with CVD morbidities
are inherently more susceptible to the adverse effects of viral
infection and the body’s adaptive response. The systemic
effects of COVID-19 causing fever, hypoxia, hypotension,
and tachycardia may not be well-tolerated in patients with
underlying cardiomyopathy or obstructive coronary artery
disease, and this may manifest as further myocardial injury, and
increased incidence of decompensated heart failure and type II
myocardial infarction (20). Evidence of myocardial injury (e.g.,
elevated troponin), is common in patients hospitalized with
COVID-19 (10). When present, elevated cardiac biomarkers
such as brain natriuretic peptide and serum troponin have
been associated with increased mortality in patients with
COVID-19 (18).
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TABLE 1 | Mechanisms, concepts, and paradigms: commonalities in toxicity, pathophysiology, and pharmacology of cardio-oncology and COVID-19.

Common topic of study Cardio-oncology COVID-19

Mechanisms of left ventricular

cardiomyopathy

Elucidate mechanisms and optimal management of left

ventricular systolic dysfunction in Cardio-Oncology

Elucidate mechanisms and optimal management of left

ventricular systolic dysfunction in COVID-19

Immune system activation Analyze pathophysiology and optimal management of

immune response, cytokine release syndrome, and

autoimmune adverse effects from ICIs or CAR-T cell

therapy

Analyze pathophysiology and optimal management of

immune response, cytokine release syndrome, and

related adverse effects in COVID-19

Long-term sequelae of inflammation Investigate long-term implications of inflammation

induced by neoplastic agents

Investigate long-term implications of myocardial

inflammation in COVID-19

Endothelial dysfunction Interrogate role of endothelial dysfunction in ischemic

and cardiomyopathic cardiovascular injuries from cancer

drugs

Interrogate role of endothelial dysfunction in ischemic

and cardiomyopathic cardiovascular injuries from

COVID-19

Coagulopathy and anticoagulation Study the burden, mechanisms, and optimal

management of coagulopathy (arterial or venous) with

need for anticoagulation or antiplatelet therapy in

Cardio-Oncology

Study the burden, mechanisms, and optimal

management of coagulopathy and microthrombosis with

beneficial response to anticoagulation in COVID-19

Role of RV and RVAD Explore significance of RV systolic dysfunction after

anthracycline therapy

Explore significance of RV systolic dysfunction in severe

COVID-19 infection

Prognostic value of RV strain Evaluate utility of RV strain to predict outcomes following

anthracycline therapy

Evaluate utility of RV strain to predict COVID-19

severity/mortality

Utility of steroid therapy and biologics Determine the effectiveness and timing of steroid

treatment and monoclonal antibodies for inflammation-

or immune-related adverse events from ICIs or CAR-T

cells

Determine the effectiveness and timing of steroid

treatment and monoclonal antibodies for

inflammation-related adverse CV events in COVID-19

Neurohormonal therapy Establish cardioprotective contributions of

neurohormonal therapies

Establish whether neurohormonal therapies are

protective in COVID-19

Potential drug Interactions Appraise the extent and impact of potential drug

interactions between Cardiology drugs and Oncology

drugs

Appraise the extent and impact of potential drug

interactions between Cardiology drugs and COVID-19

drugs

Impact of health disparities Assess underlying factors and solutions to address

health disparities in cardiovascular toxicities observed in

Cardio-Oncology

Assess underlying factors and solutions to address

health disparities observed in cardiovascular injuries in

COVID-19

Precision of risk prediction Develop precise methods of predicting cardiovascular

toxicities and prognosis

Develop precise methods of predicting risk and overall

prognosis in COVID-19

CAR-T Cells, Chimeric Antigen Receptor T-Cells; COVID-19, Coronavirus Diseases of 2019; CV, cardiovascular; ICI, Immune Checkpoint Inhibitor; RV, Right Ventricle; RVAD, Right

Ventricular Assist Device.

Similarly, a wide spectrum of cancer therapies has been
associated with CVT, such as cardiomyopathy, myopericarditis,
ischemia, and arrhythmias (11, 31). Radiation therapy can
lead to all of these toxicities in the absence of chemotherapy.
Various chemotherapy and targeted cancer therapy regimens can
also result in CVT. Anthracyclines most commonly associate
with cardiomyopathy, and can also bring about conduction
abnormalities, myocarditis, or pericardial disease. Tyrosine
kinase inhibitors commonly associate with hypertension, and
less commonly with cardiomyopathy or ischemia. Immune
checkpoint inhibitors are most notorious for myocarditis,
and can also prompt pericarditis, cardiomyopathy, conduction
abnormalities, and ischemia. Many other CVT are noted in
cardio-oncology, with a variety of drug classes. In addition,
tachycardia and elevated biomarkers may also portend poor
prognosis in cardio-oncology (32, 33). There is therefore much
overlap of CVT and prognostic factors in cardio-oncology with
CVT and prognostic biomarkers in COVID-19. Furthermore,

some types of cancers and cancer treatments weaken patients’
immune systems and increase risk of any infection. Cancer
patients’ immunosuppression often also associates with blunted
or delayed symptoms, which could in turn delay urgent therapy
and increase mortality in COVID-19.

Interesting to consider is any potential synergistic CVT in
patients on cancer therapies in COVID-19. A prospective cohort
of 800 cancer patients with COVID-19 analyzed in late April
2020 linked COVID-19 mortality with older age, male gender
and comorbidities such as hypertension and cardiovascular
disease (14). There was no association between receipt of
cytotoxic chemotherapy, targeted therapies, radiation therapy, or
other cancer therapies and COVID-19 mortality in this cohort.
Similarly, a retrospective cohort of 928 cancer patients from
the USA, Canada and Spain associated advanced age, smoking,
progressive malignancy and increased comorbidities COVID-19
mortality, but failed to show associations with cancer type and
type of anticancer therapy with COVID-19 mortality (34).Thus,
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the role of chemotherapy and other cancer systemic therapies in
COVID-19 mortality remains uncertain.

Emerging Role of Right Ventricular Failure
Recent studies emerging in parallel in the pandemic and in
cardio-oncology indicate that the RV may play an important role
in the prognosis of patients with COVID-19 or CVT from cancer
therapy; RV failure generally associates with worse outcomes
in a variety of populations, and patients with COVID-19 or
CVT from cancer therapies may be no different (35–38). While
the mechanisms of insult to the RV in COVID-19 are different
from those in cardio-oncology, similar changes are noted in the
ventricle and these may have prognostic value. Importantly, RV
longitudinal strain (RVLS) has emerged as a key player in the
prediction of RV failure in both COVID-19 and cardio-oncology
(36, 38).

In COVID-19, RVLS inversely associates with myocardial
injury, mechanical ventilation, acute respiratory distress
syndrome (ARDS), and mortality, as well as signs of systemic
inflammation such as heart rate, D-dimer, and C-reactive
protein, as well as thromboembolism (38). In addition to RVLS,
RV dilation and systolic dysfunction also predict mortality in
COVID19 (39). Abnormalities in RV strain, size, and systolic
function in COVID-19 may result from ARDS, pulmonary
hypertension with increased pulmonary vascular resistance
due to acute lung injury or thromboembolism, in addition to
CO2 retention, positive pressure ventilation, or other causes
of acute myocardial injury (19, 40–46). In one COVID-19
study, of 10 patients with RV dilation, 50% had PE noted on
CTA; and of 21 total deaths in that COVID-19 cohort, 62%
had RV dilation (39). Some patients with apparent ARDS do
not respond as expected to low pressure ventilation strategies
per ARDSNet ventilation protocols (47). Prone positioning in
COVID-19 improves oxygenation and reduces the risk and
need for mechanical ventilation or extracorporeal membrane
oxygenation (ECMO) in patients on mechanical ventilation,
but the maneuver appears to also reduce the risk of RV failure
in ARDS including COVID-19 (48–50). Anecdotally, we
have observed that the typical progression from hypoxemic
respiratory failure to multi-system organ failure with escalating
pressor requirements can be blunted with insertion of a
percutaneous right ventricular assist device (RVAD) connected
to an oxygenator. In all cases, the pressor requirement has been
eliminated upon initiation of RVAD flows. These observations
are consistent with our experiences in using these devices to treat
other forms of RV failure which are frequently misdiagnosed as
distributive shock.

In cardio-oncology, changes are also noted in RV strain,
structure, function, and size in patients with breast cancer
and lymphoma who receive anthracycline chemotherapy (36,
51). Although the left ventricle is more commonly studied,
the RV also shows impairment in contractility, with temporal
changes of decreased RVLS and increased right ventricular
end systolic volume (RVESV) preceding reduction in right
ventricular ejection fraction (RVEF) (36). Additionally, patients
with end-stage heart failure as a result of cardiomyopathy from
anthracycline therapy benefit from RV assist device support

(52). The underlying pathophysiology of RV dysfunction in
anthracycline CVT is likely similar to LV dysfunction. LV
dysfunction results from release of cytokines and inflammatory
markers, related to generation of reactive oxygen species,
disruption of mitochondrial biogenesis, and activation of
apoptosis, and double-stranded DNA breaks (53–55). This is a
recent and novel area of inquiry in cardio-oncology. Additional
studies are needed to determine whether RV size, function, and
longitudinal strain can predict CVT and mortality in cardio-
oncology (36), as has been found in COVID-19.

Health Disparities in CVT
A multi-ethnic study of more than 3,500 individuals with
COVID-19 was published in the New England Journal of
Medicine (NEJM) (56). While <40% of patients in the study
were hospitalized, African Americans composed almost 80%
of inpatients admitted with COVID-19 and associated CVT.
A higher rate of comorbidities associated with the risk for
hospitalization, and African Americans had higher rates of
comorbidities. This is similar to general trends in health
disparities, in which African Americans have higher rates
of CVD, obesity, hypertension, and diabetes than Caucasians
(57), and are therefore at higher risk for CVT related
to COVID-19. These disparities were found to associate
with inequities in socioeconomic demographics in the NEJM
report, as in prior studies (56, 57). Notably, ACE (I/D)
polymorphisms have been implicated in COVID-19 and
related CVT, and vary across racial groups (58). However,
this alone does not explain the disparities observed in
COVID-19. The D/D polymorphism that associates with the
development and severity of sarcoidosis (59), which is more
prevalent, complex, and mortal in African-Americans (60),
is the same polymorphism that is suggested to associate
with protection in COVID-19 (61–63). Nevertheless, African
Americans have had the highest proportions of severe and
fatal illness from COVID-19 and consequent CVT. In the
same way, CVT in cardio-oncology has been reported at
higher rates in African Americans, with similar underlying
reasons (64–68).

Implications of Common Toxicities
It is worth continuing to study shared toxicities in COVID-
19 and cardio-oncology. For example, increased attention to
emerging special topics such as RV strain, function, and
predictive value in COVID-19 may help elucidate sequelae
of commonalities to optimize care and survival of our
patients in COVID-19 and also in cardio-oncology (Figure 1).
Perhaps studying the pathophysiology and host characteristics
in patients with abnormal RV size, function, and longitudinal
strain in COVID-19 could also help us better understand
the pathophysiology of abnormal RV size, function, and
longitudinal strain in some patients after anthracycline therapy.
Further, it will be important to address the disproportionate
percentages of African-Americans with severe and fatal CVT
related to both COVID-19 (69–73) and cancer therapies in
cardio-oncology (64–68).
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FIGURE 1 | A conceptual framework of commonalities in CV toxicities, pathophysiology, and pharmacology common to COVID-19 and cardio-oncology. CV toxicities

common to COVID-19 and cardio-oncology include myocardial injury, cardiomyopathy, myopericarditis, ischemia, conduction abnormalities, and RV failure, in part

mediated by immune system activation, cytokine release syndrome, and arterial and venous coagulopathy. All of these are also examples of oncologic CV toxicities

that can result from pharmacologic or radiation therapies. Indeed, the pathophysiology and modulation of SARS-CoV-2 infection remains under investigation, with

components of viral infection/invasion, macrovascular endothelial dysfunction, cytokine release syndrome/inflammation, microvascular dysfunction/thrombosis,

neurohormonal regulation, coagulopathy, and increased metabolic stress. Several pharmacologic considerations have risen to the surface during the pandemic,

involving steroids, cancer immunotherapy, biologic antibodies and inhibitors, drug repurposing, the role of cyp450 and drug transporters in drug-drug interactions,

anticoagulation, and neurohormonal regulation. ARB, Angiotensin Receptor Blocker; ACEI, Angiotensin Converting Enzyme Inhibitor; CV, Cardiovascular; COVID-19,

Coronavirus Disease of 2019; RV, Right Ventricle; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus.

COMMON PATHOPHYSIOLOGY IN
COVID-19 AND CARDIO-ONCOLOGY

Pathophysiology of COVID-19 and
Cardio-Oncology
Potential mechanisms of cardiovascular injury in COVID-19
include hemodynamic derangement or hypoxemia, increased
metabolic stress, demand ischemia, microvascular dysfunction or
thrombosis due to hypercoagulability, or systemic inflammation
and cytokine storm, which may also destabilize existing coronary
artery plaques (16, 74–76). Although not yet demonstrated
with SARS-CoV-2, an autopsy study of people who died from
SARS-CoV-1 infection demonstrated that 35% of patients
had viral RNA expressed in cardiac tissue (26). Further, a
recent study illustrated in vitro direct infection of human
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs) by SARS-CoV-2 (77). Microscopy and RNA-sequencing
provided evidence that SARS-CoV-2 enters hiPSC-CMs via
the cell surface receptor ACE2. The study also demonstrated
that in response to SARS-CoV-2 infection, the hiPSC-CMs
upregulated the innate immune response and antiviral
clearance gene pathways, in addition to downregulating
ACE2 expression.

ACE2 receptors are the SARS-CoV-2 entry point into human
cells (10, 78). Patients with pre-existing CVD or CV risk
factors, which associate with heightened systemic inflammation,
have higher levels of ACE2 receptor expression than the
general population (10, 79, 80). In normal physiology, ACE2 is
counter-regulatory and anti-inflammatory (79, 80). Interestingly,
a particular angiotensin converting enzyme (ACE) genetic
polymorphism (D/D), although not a ACE2 polymorphism,
associates with decreased ACE2 levels and has been suggested
to be protective in patients with COVID-19 (61–63). The
physiologic effects of ACE and ACE2 are typically in some degree
of homeostatic equilibrium, with ACE mediating inflammation,
oxidative stress, and vasoconstriction, and ACE2 also being
vasodilatory (81). SARS-CoV-2 may remove ACE2 from this
homeostatic pathway due to both the virus and the receptor being
internalized from the cell surface in COVID-19 (81).

The inflammatory response elicited by SARS-CoV-2 is
implicated in direct suppression of cardiac contractility (75).
Evidence of new contractile dysfunction was reported in
∼30% of patients with critical illness related to COVID-
19, and cardiac or circulatory shock is a common pathway
to fatal outcomes (82, 83). This is reminiscent of CVT in
cardio-oncology, in which increased metabolic stress, cytokine
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release, inflammation, macrovascular endothelial dysfunction,
microvascular dysfunction, thrombosis, and neurohormonal
dysregulation can all result in impairment of cardiac contractility
underlying cardiomyopathy.

Immune System Activation
Two recent studies evaluating immunologic characteristics
of peripheral blood samples from COVID-19 patients have
emerged from China (84, 85). In these studies, severe cases
of COVID-19 were associated with depletion of CD8+ T-cells,
suggesting that upregulation of immune checkpoint molecules
that downregulate T-cells may play an important role in
impairing the immune response to the virus. These early studies
should be interpreted with caution given the small sample sizes,
and continued investigation will shed light on the mechanisms of
immune dysregulation induced by COVID-19.

Immune checkpoint inhibitors (ICIs) are drugs that target
immune checkpoint molecules such as programmed death 1
(PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4). These drugs have
dramatically improved overall survival for patients with a wide
range of malignancies (86). Inflammatory cytokines, such as
interferon-γ and type I interferons, induce PD-L1 expression
on immune and tumor cells (87). Interaction of the PD-L1
and PD-1 proteins leads to T-cell exhaustion, and blockade of
this interaction with PD-1/PD-L1 inhibitors restores effector
function to CD8+ T-cells, allowing for destruction of malignant
cells. Chief among concerns with ICIs during the pandemic
is whether ICIs can increase COVID-19-related complications,
particularly CVT. A retrospective study found patients receiving
ICIs to be at higher risk of hospitalization and severe outcomes
from COVID-19 (88). Strong conclusions are difficult to draw
from this small, retrospective, single-center study in which only
31 patients received ICIs. A prospective observational study
from the UK Coronavirus Center Monitoring Project found
no association between COVID-19 mortality and ICI treatment
in the 44 patients who received ICIs (89). Ongoing large-scale
prospective data may shed further light on this interaction.

Many cancer patients receiving ICIs possess comorbidities
that enhance risk for poor outcomes related to COVID-19.
ICIs and COVID-19 can cause overlapping organ toxicities,
particularly pulmonary and cardiac, which inform risk-benefit
decisions on ICI use during the pandemic. ICIs can induce
immune-mediated cardiotoxicity, including myocarditis,
pericarditis, heart failure, arrhythmias, and MI. These events are
uncommon, occurring in <3% of patients who receive ICIs, but
carry high risk of mortality (90).

The pathophysiology of the immunologic mechanisms
of cardiotoxicity with ICIs and COVID-19 likely differ,
but macrophages may play roles in both pathways, which
could contribute to anecdotal response to glucocorticoid
responsiveness for ICI and COVID-19 toxicities (Table 2).
The renin-angiotensin system has been implicated in the
pathophysiology of both COVID-19 and tumorigenesis,
with data suggesting the RAAS pathway promotes an
immunosuppressive tumor microenvironment (91–93).
However, much like COVID-19, the impact of ACE inhibitors

TABLE 2 | Clinical characteristics of similar CV toxicity in ICI therapy, CAR T-cell

therapy, and COVID-19.

ICI and CV

toxicity

CAR-T cell

and CV

toxicity

COVID-19 and

CV toxicity

Incidence <1% NA/unknown NA/unknown

Pathophysiology T-cell

mediated

Cytokine

storm, high

IL-6

Hypoxia, Cytokine

storm

Risk of VTE High High High

Management Steroid Tocilizumab,

and/or steroid

Supportive

management, +/–

dexamethasone

ACEI/ARB

continue

Yes Yes Yes

Long-term CV

effect

Unknown Unknown Unknown

ACEI, ACE Inhibitor; ARB, Angiotensin Receptor Blocker; CAR-T Cells, Chimeric Antigen

Receptor T-Cells; CRS, Cytokine Release Syndrome; CV, Cardiovascular; COVID-19,

Coronavirus Diseases of 2019; ICI, Immune Checkpoint Inhibitor; IL-6, Interleukin 6; NA,

Not Applicable; VTE, Venous Thromboembolism.

on survival outcomes with ICIs is currently unclear (94). Given
the prevalence of ICI use, it is essential to exert a coordinated
effort to track COVID-19 incidence in patients receiving ICIs, as
well as rates of pulmonary and cardiac sequelae and mortality
to truly understand the long-term impact of the virus on this
large population.

Cytokine Release Syndrome
In COVID-19, the inflammatory cytokine IL-6 has also been
shown to play a role in critically ill patients, in whom
“cytokine release storm” or “cytokine release syndrome”
(CRS) pathophysiology leads to cardiopulmonary complications
and multisystem failure (95). Clinical manifestations of CRS
include fever, chills, fatigue, myalgias, arthralgias, nausea,
vomiting, and diarrhea (96). In the patient with CRS,
cardiovascular manifestations include tachycardia, hypotension,
elevated troponin, heart failure, and in severe cases, cardiogenic
shock (96, 97). IL-6 could possibly mediate cardiac dysfunction
and hemodynamic instability (98). In general, IL-6 elevation
has associated with cardiovascular complications such as
atherosclerosis, MI, and heart failure.

IL-6 and other cytokines are key components of the
human body host defense system against infection, yet high
levels of these cytokines in a hyperinflammatory response can
lead to CRS (99, 100). Cytokine release syndrome can be a
fatal complication due to exaggerated inflammatory response
in COVID-19, partially mediated by immune cells fighting
the viral infection by increasing inflammatory cytokines via
activation of intracellular NF-κB (101), but also in large
part mediated by the ACE2 and AT1 receptors, which are
generally highly expressed on epithelial cells in the lung and
endothelium (20, 102–104). A main function of ACE2 is to
convert angiotensin II (Ang II) into angiotensin-(1-7), a counter-
regulatory peptide that dampens the inflammatory effects of Ang
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II via AT1 (101, 105). After the SARS-CoV-2 S-protein attaches
to ACE2 on respiratory epithelium, ACE2 is down-regulated
(77). The resulting SARS-CoV-2-mediated imbalance of serum
Ang II/angiotensin-(1-7) drives net activation of AT1 signaling
[which is dependent on serum Ang II/angiotensin-(1-7)] in
pulmonary epithelial cells. It is well-established that COVID-19
infection causes hyperactivation of the angiotensin 1 receptor
(AT1), which leads to disproportionate activation of nucleotide-
binding domain-like receptor protein 3 (NLRP3) inflammasome
in lung epithelial cells and endothelium (106, 107), as well as
activation of STAT3 and the NF-κB pathway, producing potent
pro-inflammatory cytokines IL-6, IL-1β, and IL-18 (101, 108–
110). The detrimental pathophysiological consequence of the
hyperinflammatory response includes enhanced activation of
reactive oxygen species (ROS) release, fibrosis, vasoconstriction,
and programmed cell death, that contribute to the CRS
pathophysiology. Interestingly, ACE2 and AT1 are known to be
expressed at extremely low levels on hematopoietic stem cells
(HSC) and endothelial progenitor cells (EPC) (111). A recent
study demonstrated for the first time that ACE2 is expressed on
very small embryonic-like stem cells (VSELs) (112). Pre-clinical
data demonstrated that interaction of ACE2 receptor with the
COVID-19 spike protein activated the NLRP3 inflammasome in
VSELs and HSC leading to programmed cell death (112); the
contribution of this to CRS is yet unclear.

Unlike traditional chemotherapy, CAR-T cell therapy is
a novel form of immunotherapy in cardio-oncology to
treat individuals with refractory hematologic malignancies,
and is commonly associated with toxicity related to CRS.
CAR-T cell therapy utilizes genetically engineered T-cells to
attack cancer cells (113). The activation of CAR-T cells
when engaged with antigen in a malignant cell leads to its
CAR-T cell proliferation, which further activates monocytes
and macrophages, leading to release of proinflammatory
cytokines and chemokines such as IL-6, IL-8, IL-10, interferon-
gamma (INF-y), monocyte chemoattractant protein-1b, and
granulocyte-macrophage colony-stimulating factor (114, 115).
These proinflammatory cytokines are potential mediators for
CRS in patients with cancer, with a similar cascade in patients
with COVID-19.

Coagulopathy
Arterial and venous coagulopathy has emerged as an important
factor in COVID-19 pathophysiology and cardio-oncology,
especially in critically ill patients (116–120), in part related to
underlying endothelial cell dysfunction and inflammation in
patients with COVID-19 or cancer (117, 121, 122).

Severe COVID-19 infection requiring critical care admission
has been associated with increased incidence of venous
thromboembolism (VTE) (117, 123), due to hyperinflammation
and a hypercoagulable state (124, 125). The incidence has been
reported to be 3 to 4-fold greater than in the general population
(117, 123). In critically ill patients in the general population, the
cumulative incidence of VTE is around 9.6% (126, 127), while in
COVID-19 patients it is reported to be between 31 and 42% (117,
123). Thrombotic events in COVID-19 mostly categorize VTE,
but in some patients, a significant number of arterial thrombosis

are also being reported. In one study, 3.7% of the 31% reported
cases had ischemic strokes, while in another study population
two ischemic strokes and one limb ischemia were reported (117,
123). Endotheliitis with underlying hyperinflammation, along
with hypoxia leading to increased blood viscosity, are suspected
to cause increased coagulopathy in severe COVID-19 infection
(128, 129). Excess cytokine release also results in macroscopic or
microscopic endothelial injury, leading to a prothrombotic state
(130). Elevation of D-dimer above normal values on admission
or over time during the disease process has been associated
with poor outcomes in patients with severe COVID-19 (125).
Close monitoring of D-dimer, aPTT/PT, fibrinogen, and platelet
count in hospitalized COVID-19 patients is recommended as
derangement of these coagulation parameters can be an early sign
of disseminated intravascular coagulation (DIC) (125).

A similar phenomenon is observed in cancer patients
(131). Similar factors are associated with thrombosis, with
circulating microparticles, procoagulants, and endothelial
dysfunction contributing to disruption of normal blood flow
and hyperviscosity (120, 132, 133). Cancer also poses a 4 times
increased risk of VTE as compared to general population while
chemotherapy increases the risk to 6.5 times (134). Patients who
receive CAR-T cell therapy are also at increased risk for venous
thromboembolism, potentially mediated by CRS and high levels
of IL-6 (135, 136), in the setting of underlying hypercoagulability
due to the presence of the cancer itself. Other pharmacologic
cancer therapies can also associate with thrombosis. Cisplatin
and tyrosine kinases often lead to coronary or peripheral arterial
thrombosis related to endothelial injury, thromboxane synthesis,
and platelet activation and aggregation, placing patients at 1.5-
to 1.7-fold or as high as 6-fold increased risk of acute coronary
syndromes [see review in expert consensus statement (137)].

Endothelial Dysfunction
Furthermore, many chemotherapeutics associate with
endothelial dysfunction and consequent ischemia in the absence
of thrombosis. In these cases, ischemia is due to vasospasm.
This phenomenon can be caused by 5-fluorouracil (5-FU),
capecitabine (5-FU pro-drug), paclitaxel, docetaxel, cisplatin
(especially when combined with bleomycin or vincristine),
cyclophosphamide, and tyrosine kinase inhibitors (e.g., sorafenib
and sunitinib) [see review in expert consensus statement
(137)]. Undiagnosed underlying coronary artery disease is
thought to be a likely pre-disposing condition. Likewise,
endothelial dysfunction and consequent ischemia in the
absence of thrombosis are also suspected in some patients with
COVID-19 who present with ACS and non-obstructed coronary
arteries; severe hypoxia, CRS, plaque rupture, vasospasm, and
microthromboembolism are also on the differential in these
patients (25, 138, 139).

Implications of Common Pathophysiology
Shared pathophysiology in COVID-19 and cardio-oncology also
have important implications. For example, ICIs and CAR-T
cells used as cancer therapy can lead to excessive activation
of the immune system and inflammation and subsequently
autoimmune and inflammatory adverse CV effects. Despite the
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favorable responses from CAR-T cell and ICI therapy in cardio-
oncology, we still have limited evidence and understanding of
CVT from these immunotherapies or their long-term impact.
We can potentially fill our knowledge gap on CVT due to CRS
related to CAR-T cell therapy, or supranormal activation of the
immune system related to ICIs, in cardio-oncology by pursuing
a better understanding of the inflammatory pathophysiology
from the ongoing COVID-19 pandemic. The reverse is also true,
and long-term sequelae of CRS on the cardiovascular system
should be investigated and addressed in patients who have had
COVID-19 or in cancer patients who have received CAR-T cell
therapy. Similarly, coagulopathy in COVID-19 is an emerging
topic with the majority of evidence stemming from observational
studies and autopsies (128). The hypercoagulability of cancer,
which is often treated by cardio-oncologists, can be informative
for COVID-19, given a role for anticoagulation to address
thromboembolism in these hypercoagulable states. Additionally,
the role of endothelial dysfunction can be further elucidated in
both COVID-19 and cardio-oncology with anticipated shared
vascular pathophysiology, albeit with different mechanisms of
endothelial injury.

COMMON PHARMACOLOGY IN COVID-19
AND CARDIO-ONCOLOGY

Corticosteroids
Given the robust inflammatory response induced by COVID-
19, corticosteroids are under investigation and have been
demonstrating promising efficacy for treating the disease.
Dexamethasone has recently garnered significant international
attention for the treatment of COVID-19 with the pre-print
publication (not yet peer reviewed) of the phase 3 RECOVERY
trial. Patients were randomized to dexamethasone at 6mg daily
for up to 10 days vs. standard care. Dexamethasone significantly
reduced deaths in patients who required supplemental oxygen or
mechanical ventilation (140). Notably, the pre-print manuscript
does not quantify the number of patients with cancer included
in the analysis and may be difficult to generalize to an oncology
population with COVID-19.

Corticosteroids have been mainstays of treatment for
immune-related adverse events (irAEs) induced by ICIs and
CAR-T cells in cancer patients, owing to their ability to
rapidly dampen inflammation and quickly reverse irAEs (141,
142). In the widely utilized, evidence-based irAE management
guidelines published by the American Society of Clinical
Oncology (ASCO), high-dose corticosteroids are recommended
as first-line management of most grade 2 or higher irAEs (143).
For cardiovascular irAEs, including myocarditis, pericarditis,
heart failure, and vasculitis, high-dose corticosteroids are
recommended for any grade of toxicity (141, 142, 144). Thus,
steroids may be helpful to quell activated immune responses
leading to CVT due to various endogenous sources, whether
cancer therapy or COVID-19.

Biologic Antibodies and Inhibitors
Tocilizumab is an IL-6 receptor antagonist and is indicated
as the first-line agent for the management of CRS in cancer

patients (145–148). The use of tocilizumab in COVID-19 is
an extrapolation based on the evidence of promising outcomes
from using the drug to treat CRS from CAR-T cell therapy
in cancer patients. Off-label use of tocilizumab is an option
used in the management of severe cases of COVID-19 on
compassionate grounds, supported by a case series from China
(149) and a pilot open, single-arm multicenter study from
Italy (150), particularly if tocilizumab is administered within 6
days of admission (HR 2.2, 95% CI 1.3–6.7, p < 0.05) (150).
Additionally, a large retrospective cohort study demonstrated
that tocilizumab decreased risk of death or minimized risk for
invasive mechanical ventilation in patients with severe COVID-
19 (adjusted HR 0.61, 95% CI 0.40–0.92; p = 0.020) (151). A
smaller, retrospective cohort study demonstrated a significantly
shorter need for vasopressor support in severely ill COVID-19
patients who received tocilizumab (152).

Cardiac dysfunction due to CRS is largely reversible, and in
severe cases mitigated by tocilizumab (153). In some severe cases
not responding to tocilizumab, the corticosteroid is added. In
rare cases, when the patient does not respond to tocilizumab
or steroid, other agents such as anakinra (IL-1R inhibitor)
and etanercept (anti-TNFα) are potential options to hinder
inflammatory pathways (114, 154). Siltuximab is a chimeric
monoclonal antibody that also binds IL-6; however, no studies
have been published on its use in the management of CRS in
cancer patients to date (96).

Next generation novel immunotherapeutics could also affect
COVID-19-related incidence and outcomes. For instance,
AXL is a receptor tyrosine kinase which mediates tumor
invasion, metastasis, and epithelial-mesenchymal transition.
AXL also negatively modulates cancer immune responses
through signaling pathways involving dendritic cells, natural
killer cells and macrophages (155). Given its role in cancer
metastasis and immune function, numerous AXL inhibitors are
being used in clinical trials to treat advanced malignancies.
AXL mediates viral entry into cells and modulates inflammatory
responses induced by viral infections (156, 157). AXL is
also overexpressed on myocardial cells in patients with heart
failure and in patients who experience LV remodeling after
STEMI (158). It is conceivable that through immune and
cardiovascular impacts, investigational drugs that target AXL
may impact outcomes of cancer patients with COVID-19
infection, and clinical trial sponsors and investigators should
be encouraged to track and study COVID-19-infected trial
patients to better understand these complex interactions. To this
end, bemcentinib, an oral AXL inhibitor under investigation
as a cancer immunotherapeutic, has recently been repurposed
to combat COVID-19 as part of the Accelerating COVID-
19 Research & Development (ACCORD) platform in the
United Kingdom.

Interestingly, human antibodies have been isolated from the
convalescent serum of COVID-19 survivors and when coupled
have been shown to be protective. Perhaps the use of these
emerging dual antibodies may be as efficacious for COVID-19
patients as the dual antibodies trastuzumab and pertuzumab
have been for breast cancer patients. Developing therapeutics
from antibodies such as these may help provide safer effective

Frontiers in Cardiovascular Medicine | www.frontiersin.org 8 December 2020 | Volume 7 | Article 568720

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Brown et al. Emerging Commonalities Between COVID-19 and Cardio-Oncology

options for COVID-19 patients and facilitate avoiding potential
or proven drug-drug interactions.

Role of CYP450 and Drug Transporters
The antiviral drug remdesivir is an investigational drug being
used to treat COVID-19, and concomitant use with drugs
that are strong CYP3A4 inducers is not recommended (159).
The CYP450 enzyme system (which includes CYP3A4) forms
the backbone for metabolism of multiple drugs and plays
a vital role in metabolism of numerous cardio-oncologic
drugs including beta blockers, calcium channel blockers,
statins, cyclophosphamide, docetaxel, cisplatin, and tyrosine
kinase inhibitors (160). In particular, the antiandrogen drugs
apalutamide and enzalutamide used to treat prostate cancer
are strong CYP3A4 inducers (161–163). Both agents can
associate with CVT, such as atrial fibrillation, hypertension,
and ischemic heart disease, especially in individuals with pre-
existing cardiovascular diseases (161–164). Concurrent use
of remdesivir with these drugs should be avoided at the
interface of COVID-19 and cardio-oncology. Of note, in cardio-
oncology, the calcium channel blockers diltiazem and verapamil
are moderate inhibitors of CYP3A4, which also metabolizes
cancer pharmacologic drugs such as doxorubicin, imatinib, and
ibrutinib (160). In vitro, remdesivir is a substrate for CYP2C8,
CYP2D6, and CYP3A4, and an inhibitor of CYP3A4, as well as
a substrate for p-glycoprotein and organic anion transporting
polypeptides 1B1 (OATP1B1) and an inhibitor of OATP1B1
(165). P-glycoprotein and OATP1B1 are membrane transporters
known to help mediate drug-drug interactions. However,
remdesivir generally has a low potential for clinically significant
drug-drug interactions mediated by the CYP450 system or
drug transporters (165–167), since remdesivir functions as a
prodrug that is rapidly metabolized to the active bioavailable
form (165, 168).

Anticoagulation
Empiric therapeutic anticoagulation associates with better
prognosis in severe COVID-19 cases, with improved in-hospital
mortality in retrospective analyses (129, 169). While practice
has varied across centers during the pandemic, anticoagulation
should be considered based on COVID-19 patient factors and
risk stratification (119).

Empiric prophylactic anticoagulation also associates with
better outcomes in cancer patients who are hospitalized and have
reduced mobility, or are ambulatory and have (170, 171):

• advanced or metastatic pancreatic cancer,
• intermediate-high VTE risk based on cancer type or

Khorana score,
• or treatment with immunomodulatory drugs and steroids or

other systemic antineoplastic therapies.

Neurohormonal Drugs: ACEIs and ARBs
It has been suggested that ACE inhibitors may counteract
resulting unopposed ACE-mediated effects in COVID-19 (81).
Thus, the influence of these vasoactive and cardiovascular
remodeling drugs on the risk and severity of COVID-19 has
been under investigation, with some studies suggesting benefit,

juxtaposed with initial speculations about harm (28, 172–181). It
is unknown whether polymorphisms in ACE, or polymorphisms
in ACE2 that may contribute to COVID-19 prognosis [see pre-
prints (182, 183)], also determine the prognosis of patients in
cardio-oncology treated with RAAS regulators, such as ACE
inhibitors and ARBs.

It is important to note that ACEIs and ARBs have established
benefits in protecting the myocardium. They are among first-line
therapy for various CVT (e.g., cardiomyopathy, hypertension,
and myocardial infarction) in cancer patients and survivors,
along with beta blockers, to mitigate symptoms and prolong
survival (184). Withdrawal of these agents instigates clinical
decompensation in high-risk patients, such as rapid relapse of
dilated cardiomyopathy in cancer patients with CVT due to
neoplastic agents (28, 172, 185). Consequently, patients receiving
ACEIs or ARBs should continue ACEI/ARB therapy during
the COVID-19 pandemic (172, 186, 187). Taken together, these
findings suggest overlapping utility of these drugs in both cardio-
oncology and COVID-19.

Implications of Common Pharmacology
It is also important to study shared pharmacologic
management opportunities in COVID-19 and cardio-
oncology. Corticosteroids and immunomodulatory drugs
such as tocilizumab and bemcentinib and other analogous
therapies are being used or studied in cardio-oncology
and have also been repurposed during the pandemic to
temper the inflammation milieu initiated by SARS-CoV-2.
Further, thousands of cancer patients are currently enrolled
in clinical trials combining ICIs with investigational novel
therapeutics across the world, accounting for another special
risk population in the COVID-19 pandemic. Ongoing clinical
trials on anti-interleukins in COVID-19 patients (188, 189)
(NCT04330638, NCT04317092) will also help us to elucidate
benefits and outcomes. Accordingly, an algorithm has been
proposed to incorporate anti-inflammatory agents such as
tocilizumab, canakinumab (IL-1β monoclonal antibody),
anakinra, etanercept, and infliximab (TNFα monoclonal
antibody) to curb CRS in acute COVID-19 infection (190).
The antiviral remdesivir carries a low risk of modulating the
membrane drug transporter p-glycoprotein and the cytochrome
protein 450 family of enzymes and potentially interacting
with CV and cardio-oncology drugs. Nevertheless, caution
is recommended with the combined use of any drugs that
modulate p-glycoprotein or CYP450, due to their potential for
drug-drug interactions and resultant effects on the CV system
in cardio-oncology and COVID-19. Therapeutic anticoagulants
are another class of medications found to be useful in both
COVID-19 and cardio-oncology, due to their beneficial effects
on thromboembolism. Clinical studies are being pursued to
determine the impact of direct oral anticoagulants or aspirin and
statin to limit arterial or venous thrombotic risk in cancer (120).
Regulators of the RAAS (primarily ACEI/ARB) have also taken
centerstage, as many patients are on these medications to treat
hypertension or other common comorbidities that increase the
risk of a more severe course in those with COVID-19. There
has been debate about whether these RAAS modulator drugs
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augment the risk of COVID-19 infection, given the virus’ use
of the ACE receptor to enter host cells. ACE receptor gene
polymorphisms have also been implicated in the prediction of
disease severity, with questionable regulation by the ACEI/ARB
drug class. Pursuit of observational studies and clinical trials
continues to help elucidate the impact of ACEIs and ARBs
in the pandemic (27). Further study should also define the
interplay between SARS-CoV-2 and RAAS and explore any
differential effects of ACEI vs. ARB therapy and tumor specific
responses (91, 93, 94, 185). Future collaboration among basic and
clinical scientists should focus on the biological rationale for the
treatment of COVID-19 patients as well as limited understanding
with respect to the interaction of RAAS inhibitors, ACE2 levels
and SARS CoV-2 infectivity in humans (27).

DISCUSSION

As we recover from the COVID-19 pandemic, we should not
let opportunities for learning surreptitiously slip from our grasp.
The myriad of overlap of CV toxicities, pathophysiology, and
innovative management in COVID-19 and cardio-oncology
provide multiple paths for exploration that could lead to greater
understanding of both COVID-19 and CVT noted in cardio-
oncology (Figure 1). It would behoove us in cardio-oncology
to continue to closely study these toxicities, pathophysiology,
and pharmacologic options in COVID-19 to help update our
understanding in cardio-oncology. Cardio-oncology continues to
expand as a relatively new medical subspecialty. Knowledge gaps
in CVT toxicity, pathophysiology, and pharmacology in cardio-
oncology may benefit from the application of novel concepts,
paradigms, and drug use from overlapping forms of CVT in
COVID-19 (Table 1).

In addition to short-term morbidity and mortality, patients
who recover from COVID-19 infection may be at increased risk
of future incident CVD and CVD-related complications (191,
192). Severe acute respiratory syndrome coronavirus (SARS-
CoV-1) and Middle East respiratory syndrome coronavirus
(MERS-CoV) infection have been implicated in causing diabetes,
hypertension and altered lipid metabolism (193–195). The
increase in CVD risk profile combined with the possibility
of viral-mediated impairment in cardiac and/or pulmonary
functionmay combine to further increase the risk and complexity
of future CVD events. Aggressive risk factor modification and
prophylactic therapy may prove important in mitigating long-
term CVT. Optimal prevention and management of CVT will
require a multidisciplinary approach with close collaborations
among various medical specialties and researchers.

As our current practices change and new questions arise,
future studies in cardio-oncology should focus on studying the
emerging cardiovascular epidemiology of COVID-19, as well
as the impact of changed practices on the health of patients
with cancer and CVD. To reduce the rate of transmission
while providing safe and timely care for patients with cancer
and CVD, temporary recommendations favored telehealth visits
in telecardio-oncology and deferral of non-urgent procedures,

similar to the rest of the population (10, 196). Cardiac
imaging surveillance was limited to patients who were more
likely to have abnormal testing or at higher risk for cancer-
related CVT, particularly if test results would guide initiation
of cardioprotective medications or impact cancer therapy
delivery (197).

Of utmost importance is ensuring equity in our distribution
of hope, health, and healing in the midst of and beyond the
pandemic, as we extend lessons learned from COVID-19 to
cardio-oncology. Ethnic health disparities during the pandemic
have amplified a pre-existing broken healthcare structure, with
disproportionate percentages of African-Americans severely and
fatally affected by COVID-19 (69–73). The pandemic has been
set on a backdrop of inequity, in which African-American cancer
patients are known to be more susceptible to CVT following
cancer therapies (64–68). The higher risk for African Americans
in both COVID-19 and cardio-oncology is of multifactorial
etiology, including higher rates of CVD and CVD risk factors,
which are often also underdiagnosed and undertreated (57,
69, 198–206). Underlying causes of the plethora of inequalities
in healthcare are largely structural and socioeconomic and
reflect our imperfections as a society, with socioeconomic status
being a risk factor for CVD, CVT, and COVID-19 (198, 207,
208). We must recognize the imbalance of comorbidities and
sociodemographics in ethnic populations, in order to make
equitable progress in the post-pandemic era. The lasting impact
of COVID-19 in cardio-oncology need not be the challenges we
faced while caring for our patients during the pandemic. The
long-term sequelae should be steps we have taken to optimize
quality and quantity of life for all.

Thus, there are several areas of overlap, similarity, and
interaction in the toxicity, pathophysiology, and pharmacology
profiles in COVID-19 and cardio-oncology syndromes. Learning
more about either will likely provide some level of insight
into both, with further illumination of CVT mechanisms and
new paradigms of drug utilization to help guide research and
clinical practice in both COVID-19 and cardio-oncology. Such
an approach can be informative peri-pandemic, and should
perhaps be pursued long after the pandemic, to assess for
evidence of long-term independent or synergistic CV effects in
survivors of COVID-19 and cancer, with equity at the forefront of
our efforts.
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