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1  | INTRODUC TION

Seasonal variation in temperature is a major force on host–pathogen 
interactions (Altizer et al., 2006). In temperate regions, winter is often 
considered a time when many host–pathogen dynamics slow or stop 
altogether, but many pathogens remain active (Dawson et al., 2007; 
Hosseini et al., 2004). Due to energetic costs of pathogen infection, 
disease may impede a host's physical functions necessary for win-
ter survival, such as fall migrations or cold tolerance (Cunjak, 1986). 
Thus, an organism's thermal tolerance limits, the temperature ranges 
where an organism can maintain normal locomotor function, can be 
affected by pathogens (Greenspan et al., 2017; Hayman et al., 2016). 

For many organisms, compressed thermal tolerance limits (both 
lower and upper limits) can be lethal if they are unable to cool or 
heat as needed (Lutterschmidt & Hutchison, 1997).

Thermal tolerance limits are commonly measured to identify the 
thermal requirements of an individual to perform a particular func-
tion (Sunday et al., 2011). The critical thermal maximum (CTmax) and 
critical thermal minimum (CTmin) are the highest and lowest tem-
peratures that an individual can function, respectively (Catenazzi 
et al., 2011; Hector et al., 2019; Lutterschmidt & Hutchison, 1997; 
Sunday et al., 2011). Previous work has investigated the effects of 
pathogens on host CTmax (Taylor et  al.,  2020). For organisms that 
thermoregulate to avoid thermal limits, the CTmax is often a cutoff for 
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mortality.

K E Y W O R D S

amphibians, Batrachochytrium dendrobatidis, chytrid, chytridiomycosis, Hyla versicolor, 
Lithobates palustris

http://www.ecolevol.org
mailto:﻿￼
https://orcid.org/0000-0003-0314-773X
https://orcid.org/0000-0002-6607-2299
http://creativecommons.org/licenses/by/4.0/
mailto:ssiddon@purdue.edu


9590  |     SIDDONS and SEARLE

when mortality is observed, while the CTmin does not typically cause 
death, but is an endpoint for the ability to perform a given function 
(Layne & Roman, 1985). However, the upper thermal tolerance limits 
garner much of the work on host thermal limits, while relatively little 
is known regarding how pathogens affect host CTmin. The potential 
change in CTmin due to pathogen infection is important to under-
stand when evaluating performance and survival of hosts in winter.

Many hosts experience extreme physiological challenges in 
colder seasons that increase their susceptibility to disease, poten-
tially intensifying the negative effects of infection in winter. For ex-
ample, hosts may experience suppressed immune functions due to 
limited resources and altered weather conditions, such as decreasing 
temperatures (Dowell,  2001). Simultaneously, pathogens typically 
have a wide thermal performance breadth (Martiny et  al.,  2006), 
which can make them more tolerant to colder conditions than their 
hosts. Altered host CTmin of individuals in winter could have dras-
tic effects on population viability, which may go unnoticed due to 
cryptic overwintering habits of many species, and the lack of disease 
sampling in winter.

In recent decades, multiple fungal pathogens with substantial 
tolerance or preference for cold conditions have been documented 
in temperate regions (e.g., white-nose syndrome, snake fungal dis-
ease; Blehert et  al., 2009; Allender et  al., 2015). One such patho-
gen is the chytrid fungus, Batrachochytrium dendrobatidis (Bd), the 
causative agent of chytridiomycosis, which has been responsible 
for ongoing global amphibian declines and extinctions (Lips, 2016; 
Longcore et  al.,  1999). Infection with Bd occurs in the epidermis 
of frogs, disrupting osmoregulation, damaging tissue, and causing 
metabolic dysregulation (Grogan et  al.,  2018; Voyles et  al.,  2009). 
The optimal temperature range for Bd maturation and reproduction 
in vitro is between 17 and 25°C, but this pathogen can reproduce 
and transmit in water at temperatures as low as 4–5°C (Piotrowski 
et al., 2004; Voyles et al., 2017). Because optimal Bd growth occurs 
in temperatures that are cooler than many temperate regions in 
the summer, Bd infection prevalence and burdens are often high-
est in cooler months (Fernández-Beaskoetxea et al., 2015; Longcore 
et al., 2007; Siddons et al., 2020), can increase through the winter 
(Kinney et al., 2011), and can increase mortality risk in overwinter-
ing juvenile frogs (Rumschlag & Boone, 2018). Mounting an immune 
response to Bd exposure in the form of resistance can be costly to 
growth, development, and survival, and alter corticosterone levels 
for amphibian hosts (Luquet et al., 2012; Murone et al., 2016; Savage 
et al., 2016). Therefore, the cost of Bd resistance on energetic stores 
can limit other physiological activities. Because it is unlikely that 
Bd infection dynamics cease completely during the winter, a time 
when hosts are highly susceptible to Bd, it is necessary to identify 
host responses to Bd exposure in cold conditions (Rachowicz & 
Briggs, 2007; Zapata et al., 1992).

The upper thermal limits of amphibians can be altered by 
Bd, but little is known about how Bd affects lower thermal limits. 
Frogs infected with Bd can experience a reduction in CTmax, likely 
due to the effects of chytridiomycosis, such as inhibition of cuta-
neous processes and metabolic dysregulation (Fernández-Loras 

et al., 2019; Greenspan et al., 2017; Grogan, Skerratt, et al., 2018). 
The subsequent effects of an altered CTmax can reduce fitness of 
individuals and alter population transmission dynamics if hosts con-
gregate within a more narrow microclimate to maintain homeostasis 
(Duarte et al., 2012; Greenspan et al., 2017). The understanding of 
Bd-induced changes to thermal tolerances in amphibians focuses on 
CTmax, likely because this threshold generally results in rapid mortal-
ity (Taylor et al., 2020). However, it is vital to identify the impact of 
Bd on CTmin of amphibians that experience cold or near-freezing tem-
peratures. Colder conditions reduce amphibian immunocompetence 
and energetic stores necessary to combat Bd and survive winter 
(Auer et al., 2015; Podhajský & Gvoždík, 2016; Zapata et al., 1992). 
Concurrently, Bd matures and reproduces best in relatively cool tem-
peratures in temperate regions, making winter a potentially high-risk 
season for Bd outbreaks.

We explored the lower range of thermal tolerance of amphib-
ians exposed to Bd to better understand how Bd affects its hosts 
in the winter. We tested if Bd exposure would limit the righting re-
sponse of two frog species in cold temperatures. We predicted that 
Bd-exposed individuals would have a higher CTmin than unexposed 
individuals for both species because the pathogen would reduce 
overall physiological function. This investigation could highlight a 
mechanism of Bd pathology and winter mortality of host species in 
temperate regions.

2  | MATERIAL S AND METHODS

2.1 | Animal collection and husbandry

We collected one egg mass of Lithobates palustris (pickerel frog) in April 
2018 and Hyla versicolor (gray treefrog) in May 2018 in Tippecanoe 
County, IN, USA. These species differ in their overwintering habitats. 
Lithobates palustris remain in lakes or streams, or migrate to caves to 
avoid freezing (Fenolio et al., 2005; Resetarits, 1986). H. versicolor 
migrate to the forest floor and tolerate freezing by distributing cryo-
protectant metabolites (e.g., glycerol) to their cells to prevent intra-
cellular ice formation (Storey & Storey, 1985). Animals were housed 
in 37.8 L tanks through metamorphosis. Tadpoles were fed a mixture 
of fish flakes, rabbit chow, and algae pellets. Postmetamorphic indi-
viduals (i.e., “metamorphs”) were fed wingless fruit flies (Drosophila 
melanogaster). Lighting matched outdoor conditions through a win-
dow until Bd exposure (see below).

2.2 | Pathogen culturing and exposure

We exposed approximately half of the metamorphs from each spe-
cies to Bd. A total of 18 L. palustris and 15 H. versicolor were exposed 
to Bd, while 18 and 14 were left unexposed, respectively. We used a 
Bd strain isolated from an infected Lithobates sp. from Ohio (JSOH-1), 
grown on 1% tryptone agar plates for seven days and quantified 
using a hemocytometer.
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Immediately prior to Bd exposure, we measured weight (g) and 
snout-vent-length (mm) for each animal. Each Bd-exposed individ-
ual was then exposed to 340,000 zoospores for 24 hr in a 9-cm 
(diameter) plastic petri dish with air holes and 10 ml of inoculated 
water (Searle et al., 2011). Unexposed individuals were given 10 ml 
of sham inoculated water. To ensure animals were exposed to Bd, 
petri dishes were manually tilted 12 times over the 24-hr exposure 
period to allow the inoculated water to contact each individual. 
After the exposure period, animals were immediately placed in 
plastic deli-cups lined with an un-bleached cotton cloth saturated 
in water. Deli-cups were placed into an incubator at 21°C without 
light, and temperature was reduced by approximately 0.3°C per 
day over 21 days to reach 15°C (Irwin & Lee, 2003). Frogs were 
fed wingless fruit flies (D. melanogaster) ad libitum until tempera-
tures reached 18°C. The goal of the temperature and feeding re-
duction was to simulate a decrease in temperature and light that 
occurs during the fall leading up to winter. This change in ambi-
ent temperature and light coincides with a reduction in activity 
and feeding for both species near 15°C (John-Adler et  al.,  1988; 
Resetarits,  1986). Righting response trials began once the tem-
perature reached 15°C.

2.3 | Righting response trials

We measured the critical thermal minimum (CTmin) of all individu-
als, which is the temperature at which an individual loses locomotor 
function (Lutterschmidt & Hutchison, 1997). Due to mortality leading 
up to the trials, only 11 unexposed and seven exposed H. versicolor 
and 12 unexposed and six exposed L. palustris, individuals were 
tested. We conducted two trials under minimal light over the course 
of seven days. In the “constant” trial, the temperature remained at 
15°C, while in the “decreasing” trial, the temperature was reduced 
at a rate of −1°C/2.5 min starting at 15°C. Comparing the constant 
temperature trial with the decreasing trial allowed us to confirm that 
the number of righting responses in the decreasing temperature 
trial was not driven by exhaustion. For each individual, the two tri-
als were spaced 24 hr apart to allow each frog time to recover. Trial 
day and temperature trial order (i.e., whether the animal was in the 
constant or decreasing trial first) were randomly chosen across all 
individuals of both species. For each trial, a frog was placed in an 
open 250-mL beaker with 10 ml of reconstituted RO water, allowing 
the frog to be partially submerged while resting on the floor of the 
beaker. The beaker was partially submerged in a recirculating water 
bath (Neslab RTE-210, Thermo Fisher Scientific, USA) containing a 
50:50 ethylene glycol:water mixture. Beaker temperature was re-
corded with a temperature probe partially submerged in the beaker 
water. Once the animal was in the beaker, it was gently moved onto 
its back with forceps every 2.5 min (i.e., every time the temperature 
decreased by 1°C in the decreasing temperature trial).

Starting at 15°C, and each subsequent temperature decrease 
(or every 2.5 min for the constant trials), we allowed each frog 10 s 
to right itself and recorded the righting response as successful or 

unsuccessful. Therefore, the maximum number of righting responses 
for each individual in a given trial was 15 (down to 1°C in the de-
creasing temperature trial). We calculated the CTmin as the first 
temperature (measured in the beaker) that individuals failed to right 
themselves in the decreasing temperature trial (Navas et al., 2007). 
We assumed the beaker water temperature was equivalent to the 
animals’ internal temperature since the small size of the animals 
(<1.5  g) enables rapid heat transfer between their body and the 
water (Navas et al., 2007). Also, we did not attempt to attach a tem-
perature monitor to the frogs due to their small size, which may have 
affected their righting response abilities (Navas & Araujo,  2000). 
Several H. versicolor individuals did not attempt to right themselves 
in the beaker and exhibited a death feigning response (Banta & 
Carl,  1967), so were given two attempts to right themselves in a 
gloved hand, where they assumed death-feigning less often. Several 
times we documented no attempt to right themselves in the bea-
ker with the individual in a death-feigning posture after 15  s, and 
immediate (<1  s) righting in-hand. All H. versicolor were given the 
opportunity to right themselves in hand over the course of each trial 
to standardize methods within the species. The number of righting 
responses was recorded for both in beaker and in-hand. Each trial 
ended when an individual was unable to right itself in the beaker or 
hand (when applicable).

2.4 | Bd Infection diagnostics

To test each animal for Bd infection, one rayon-tipped culture swab 
(MW 113; Medical Wire and Equipment Co Ltd, Corsham, England) 
was passed along three areas of each frog for a total of 40 swipes 
(10× on ventrum, 10× on each inner thigh, 1× under each toe) (Hyatt 
et al., 2007). Swabbing occurred immediately following their second 
righting response trial. The swab was placed in a 1.5-ml microcentri-
fuge tube and stored in a −20°C freezer until DNA extraction. We 
did not swab frogs prior to righting response trials as to not disturb 
their thermal acclimation or increase stress responses, which can 
cause immunosuppression (Padgett & Glaser, 2003).

We extracted Bd DNA from swabs using PrepMan Ultra (Applied 
Biosystems by Life Technology Corporation, Carlsbad, CA) and quan-
tified Bd using a quantitative polymerase chain reaction TaqMan 
assay (Boyle et al., 2004). Each sample was run in duplicate and con-
sidered positive for Bd if amplification occurred in both replicates on 
a StepOnePlus Real-Time PCR system (Applied Biosystems, Foster 
City, CA). A sample was re-run in duplicate if it tested positive in 
only one well, and subsequently classified as positive for Bd if ampli-
fication occurred in two of four wells. Infection load was quantified 
using gBlocks (Integrated DNA Technologies, Coralville, IA, USA) for 
Bd ITS genes as standards, which included four serial dilutions in du-
plicate in each plate (1,000 to 1×).

All methods were conducted under permission of the Purdue 
Animal Care and Use Committee (#1711001645) and the Indiana 
Department of Natural Resources Scientific Purposes License 
(#18-099).
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2.5 | Statistical analysis

We first constructed a generalized linear mixed-effects model 
(GLMM) with Poisson error distribution to test the effects of ex-
posure status, species, and final mass, on the CTmin (analyzed as an 
integer as righting responses were tested after each 1°C decrease, 
e.g., 15°C, 14°C, 13°C). Individual frog ID and trial day were included 
as crossed random predictors. Including species as a factor in these 
models is solely to compare these two species and is not a compari-
son to indicate species diversity in CTmin. All explanatory variables 
were tested for multicollinearity using variance inflation values 
(VIF), and a cutoff value of five was used to consider removing col-
linear variables (James et al., 2013). No explanatory variables were 
collinear, thus, all three remained in the GLMM. We constructed a 
second GLMM with Poisson error distribution to test the effects 
of species, temperature trial (constant or decreasing), and expo-
sure status on the maximum number of times an individual was able 
to right itself in each trial. Exposure status and temperature trial 
were included as fixed predictors, and individual ID and trial day 
were included as crossed random predictors using the “lme4” pack-
age (Bates et al., 2015). Model assessment for each full model was 
ranked by Akaike's information criterion with a correction for finite 
sample size (AICc) with a threshold ΔAIC of two for distinguishing 
differences among models (Burnham & Anderson, 2002). For each 
response variable, a set of GLMMs starting with a global model that 
included all variables were created using the “lme4” package (Bates 
et al., 2015). We also compared differences in final mass and mass 
change between species, and between exposure statuses within 
species using Mann–Whitney U tests, as normalization via transfor-
mations was not achieved.

We also created a Cox proportional hazards model (Cox, 1972) 
to compare mortality in the Bd-exposure period (before the righting 
response trials) between species, exposure status, and their inter-
action using the “survival” and “survminer” packages (Kassambara 
et al., 2019; Therneau, 2019). All analyses were conducted in R ver-
sion 3.6.0 (R Core Team, 2018).

3  | RESULTS

The best fit models predicting CTmin revealed that exposure status 
and species were significant predictors (Table 1). We found that Bd 
exposure increased the CTmin of both H. versicolor and L. palustris. In 
both species, unexposed individuals were able to right themselves at 
significantly lower temperatures than exposed individuals (p < .001, 
Table 1, Figure 1). Exposure to Bd resulted in a CTmin reduction of 
60.86% (+4.54°C) for H. versicolor, and 96.9% (+4.92°C) for L. palus-
tris (Figure 1). CTmin was higher for H. versicolor than L. palustris in 
both exposed and unexposed groups (p =  .034, Table 1, Figure 1). 
Final mass did not influence CTmin in the final model; however, a 
Mann–Whitney U test revealed mean final mass of Bd-exposed L. 
palustris (0.73 g [0.04 SE]) was significantly higher than Bd-exposed 
H. versicolor (0.44 g [0.02 SE), (W = 6.42, p < .01). Final mass of un-
exposed L. palustris (0.83 g [0.04 SE]) was also significantly higher 
than unexposed H. versicolor (0.46 g [0.03 SE]) (W = 130, p < .001). 
We documented infection in three H. versicolor individuals from the 
Bd-exposed treatments, with an average infection load of 4.74 ge-
nome equivalents/individual. Control individuals (unexposed n = 23) 
were also tested for infection and were all negative. Because only H. 
versicolor were infected (n = 3), we conducted a two-sample t-test to 

TA B L E  1   Predictor variables from best supported generalized linear mixed-effects model (GLMM) predicting critical thermal minimum 
(CTmin). The top three GLMMs with AIC scores are listed. LRT = Likelihood ratio test of fixed predictors. p-Values were derived from drop1 
function to test single fixed effects. Statistically significant explanatory variables are listed in bold

Models dfa  AICcb  ΔAICcc 

Exposure Status + Species 5 195.1 0.0

Exposure Status + Species + Final Mass 6 195.3 0.2

Exposure Status * Species 6 197.1 2.0

Exposure Status * Species * Final Mass 7 198.0 2.9

Exposure Status + Final Mass 5 198.8 3.8

Exposure Status * Final Mass 5 198.8 3.8

Species + Final Mass 5 202.9 7.8

Species * Final Mass 5 202.9 7.8

Explanatory variables df LRTd  p-Value

1. Exposure Status 1 11.61 <.001

2. Species 1 8.02 <.01

adf = Degrees of freedom
bAIC = Akaike information criterion to rank candidate models, lower values denote more robust models.
cΔAIC = Delta Akaike information criterion, to measure relative differences between candidate models. Values ≥2 indicate candidate model is not as 
good as top model.
dLRT = Likelihood ratio test of fixed predictors.
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compare CTmin between infected and uninfected (of only exposed 
group) individuals and found no difference in mean CTmin between 
infected (12.7°C, [1.2 SE]) and uninfected (11.5°C, [0.91 SE]) indi-
viduals (t(4.9) = −0.55, p = .61).

In both species, unexposed individuals righted themselves more 
times than exposed individuals across temperature trials (p < .001; 
compare exposed and unexposed treatments in Table 2, Figure 2a 
and b). Additionally, individuals righted themselves more times in the 
constant (15°C) trials compared to their decreasing trials (p < .001; 
compare temperature regimes in Figure 2a and b). Although the av-
erage number of righting events was lower across treatments and 
trials for H. versicolor compared to L. palustris, there was no effect 

of species on the number of righting events in our model (p = .093, 
Table 2). There were no observations during trials for either species 
exhibiting muscular spasms, rigor, or death. Several frogs of both 
species exhibited poor posture when moved onto their back after 
instances of pulling their limbs tight to their body.

Exposed individuals had significantly lower survival in the pre-
trial period than unexposed individuals (p = .029), but there was no 
effect of species (p  =  .811) or the species by exposure treatment 
interaction (p = .249; Figure 3). In both species, the exposed group 
had an approximately 10 times greater chance of death than the un-
exposed group (hazard ratio = 10.3, p = .029).

Mann–Whitney U tests showed that, of the individuals that sur-
vived the entire experiment, final mass of L. palustris (0.73 g, 0.04 SE) 
was significantly greater than H. versicolor (0.44 g, 0.02 SE) in the Bd-
exposed groups (W = 42, p = .003). Final mass for unexposed L. pal-
ustris (0.83 g, 0.04 SE) was also significantly greater than H. versicolor 
(0.46 g, 0.03 SE; W = 130, p <  .001). Further, Bd-exposed L. palus-
tris lost significantly more mass (−24.6%) than unexposed L. palustris 
(−17.3%) throughout the study (W = 11, p = .02), but there were no 
differences in mass change between exposed and unexposed H. ver-
sicolor. Starting mass and final mass did not differ between exposed 
and unexposed individuals within either species.

4  | DISCUSSION

We found that pathogen exposure increased the CTmin of both am-
phibian species and led to fewer righting responses in both the de-
creasing and constant temperature trials. Because individuals were 
able to right themselves more times in the constant than decreasing 
trials, our results indicate that the higher CTmin of exposed individu-
als (Figure 1) was due to the colder temperatures of the decreasing 
trial and not exhaustion (i.e., they had the potential for more righting 
events if the temperature was not decreasing). Overall, our results 

F I G U R E  1   Comparison of exposure status and critical thermal 
minimum (CTmin) between Hyla versicolor (gray) (N = 7 exposed, 
N = 11 unexposed), and Lithobates palustris (green) (N = 6 exposed, 
N = 12 unexposed). Individuals in the Bd-exposed treatment had 
a significantly higher CTmin than individuals in the unexposed 
treatment. Additionally, H. versicolor had a higher CTmin than L. 
palustris

TA B L E  2   Predictor variables from best supported generalized linear mixed-effects model (GLMM) predicting number of times each 
individual could right itself. The top two GLMMs and interaction model of best GLMM with AIC scores are listed. LRT = Likelihood ratio test 
of fixed predictors. p-Values were derived from drop1 function to test single fixed effects. Statistically significant explanatory variables are 
highlighted in bold

Models dfa  AICb  ΔAICc 

Temperature Trial + Exposure Status + Species 6 416.9 0.0

Temperature Trial + Exposure Status 5 417.3 0.4

Temperature Trial * Exposure Status * Species 10 421.9 5.1

Explanatory Variables df LRTd  p-Value

1. Exposure Status 1 11.40 <.001

2. Temperature Trial 1 21.42 <.001

3. Species 1 2.82 .093

adf = Degrees of freedom
bAIC = Akaike information criterion to rank candidate models, lower values denote more robust models.
cΔAIC = Delta Akaike information criterion, to measure relative differences between candidate models. Values ≥2 indicate candidate model is not as 
good as top model.
dLRT = Likelihood ratio test of fixed predictors.
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show that pathogen exposure can affect righting response and in-
crease CTmin, which may reduce an individual's ability to function and 
survive in winter conditions.

We found an effect of Bd exposure on CTmin and the number of 
successful righting responses in both species despite low detection 
of Bd on exposed frogs when the trials concluded. Of the 36 exposed 
individuals, we only found Bd infections on three H. versicolor with 
an average infection load of 4.74 genome equivalents. Although the 
positive infections indicate the Bd was viable, it is possible expo-
sures were not successful at infecting the frogs. However, Bd expo-
sure has been shown to induce disease-related effects (e.g., tissue 
degradation) in the absence of infection through zoospore secre-
tions of proteins (Brutyn et al., 2012; McMahon et al., 2013; Moss 
et  al.,  2010). Alternatively, the paucity of infection by the time of 
the trials may have been caused by the exposed frogs resisting (or 
clearing) infection during the 21-day pretrial period. The frogs in our 
experiment could have resisted infections through innate immune 
responses, such as anti-Bd bacteria that compete with Bd or produce 

growth-inhibiting properties, or antimicrobial peptides (AMPs) in 
skin secretions that inhibit Bd growth (Grogan, Robert, et al., 2018; 
Pask et al., 2013; Rollins-Smith & Conlon, 2005). However, anti-Bd 
bacteria activity is reduced in lower temperatures (down to 8°C) in 
vitro (Daskin et al., 2014), suggesting resistance via bacteria is limited 
during cold periods (i.e., winter). Amphibians can also mount adap-
tive immune responses to Bd via cell mediated, and humoral immu-
nity, that lead to pathogen resistance (Grogan, Robert, et al., 2018; 
Rollins-Smith et al., 2009). Therefore, there are multiple mechanisms 
that could have allowed the frogs in our study to resist or clear Bd 
infection.

The increased CTmin of Bd-exposed individuals suggests that 
pathogen exposure impairs host behavioral response in cooling 
conditions. Our metric of a righting response to measure behavioral 
responsiveness requires neuromuscular coordination, which can be 
reduced in a frog species due to cooling temperatures (Costanzo 
et al., 1991) and Bd infection (Berger et al., 2005). For frogs infected 
with Bd, Andre et al. (2008) reported unresponsiveness was more 
common at cooler temperatures (17°C vs. 22°C), likely because the 
hosts were better able to immunologically cope with infection at 
warmer temperatures (i.e., resistance), while Bd growth and repro-
duction were unchanged between the temperatures in this study. 
We show that when combined, cooling temperatures and Bd ex-
posure can have similar effects, suggesting temperature and Bd 
act synergistically to impair frogs’ behavioral responsiveness. Our 
results can only imply behavioral responsiveness was affected, as 
opposed to physiological collapse (e.g., muscular spasms) and we did 
not observe signs of physiological collapse in any individuals, likely 
because of limited and low-level infections (Greenspan et al., 2017). 
Additionally, physiological collapse is not a common or recom-
mended measure of CTmin (Lutterschmidt & Hutchison, 1997; Taylor 
et al., 2020). However, several frogs of both species were unable to 
pull their limbs into their body when moved onto their back after 
being able to do so earlier in the trial. Other factors such as impaired 
force development due to reduced muscle and fiber growth (Fitts 

F I G U R E  2   The number of righting 
events in each temperature trial for 
exposed and unexposed individuals for 
(a) Hyla versicolor (N = 7 exposed, N = 11 
unexposed), and (b) Lithobates palustris 
(N = 6 exposed, N = 12 unexposed). 
Exposure to Bd and the decreasing 
temperature trial significantly reduced the 
number of righting events, but there were 
no differences between species

F I G U R E  3   Survival in the pretrial periods across species and 
exposure status (±95% CI). Bd exposure reduced survival in both 
species, but there was no difference in survival between species
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et al., 1991) and the sympathetic nervous system may also impact 
behavioral responsiveness, particularly in developing juvenile frogs.

Individuals exposed to a pathogen may undergo resource trade-
offs between immune responses and physiological maintenance to 
tolerate cold conditions (Barribeau et al., 2008). The energetic stores 
needed for an immune response to Bd may have induced physiological 
and survival costs, possibly explaining the higher CTmin and mortality 
we observed in Bd-exposed frogs (Bonneaud et al., 2003) (Figures 1 
and 3). Competition of energetic stores for immune responses, as 
well as growth and activity, likely worsens when amphibians enter 
overwintering acclimation. Amphibians reduce physiological and im-
munological functions, while also decreasing food intake to replen-
ish energy expenditures (Beck & Congdon, 2000; Resetarits, 1986). 
The reduction in physiological and immunological performance of 
H. versicolor and L. palustris occurs well above the temperatures at 
which Bd slows growth and reproduction (~4°C), suggesting that 
hosts must elicit an immune response under suboptimal physi-
cal conditions (John-Adler et  al.,  1988; Resetarits,  1986; Voyles 
et  al.,  2017). Therefore, immunocompromised individuals may be 
expending greater energetic stores to combat Bd due to cold tem-
peratures, leading to reduced cold tolerance and higher mortality. 
The scarcity of resources available to combat infection or maintain 
metabolic function in winter could be driving unobserved Bd-related 
mortality.

Our finding that Bd exposure impaired locomotor function at 
cold temperatures could affect life history behaviors of H. versicolor 
and L. palustris that ultimately induce physiological and fitness costs. 
It is reported that L. palustris often overwinter in caves and remain 
active at temperatures around ≤6°C (Resetarits,  1986), similar to 
the 5.1°C CTmin for unexposed individuals in our study. However, 
the loss of locomotor function we documented at 10°C for exposed 
L. palustris (Figure  1) suggests Bd exposure could reduce activity 
sooner, resulting in possible freezing if individuals are unable to 
reach overwintering sites, or could lead to starvation if they are un-
able to capture prey (Resetarits, 1986). For H. versicolor, this species 
will move between arboreal refugia and the forest floor (overwin-
tering microhabitats) as temperatures drop and fluctuate in the fall 
(Ritke & Babb, 1991; Roble, 1979; Storey & Storey, 1985), and they 
must produce enough cryoprotectant enzymes to tolerate freezing 
the majority of their body (Storey & Storey,  1985). Therefore, we 
speculate that a reduction in physiological abilities after Bd expo-
sure may impair movement between microhabitats, and the capacity 
to feed and produce cryoprotectants (Sibly & Calow, 1986; Sinclair 
et al., 2013), potentially resulting in mortality due to starvation or 
inability to tolerate freezing.

Beyond localized movement patterns, an elevated behav-
ioral CTmin could signify a compressed species distributional limit, 
spatially and temporally. Populations of both H. versicolor and L. 
palustris reach into south eastern Canada (Dodd, 2013), where tem-
peratures fall below 10°C for 7 months (en.clima​te-data.org), and 
these regions have documented Bd infections (Ouellet et al., 2005). 
If CTmin increases for both species, northern range limits may be 

compressed. Additionally, northern populations that must endure 
colder temperatures may be at greater risk of range compression, 
and mortality related to Bd exposure. H. versicolor reaches higher 
latitudes, but is more sensitive to cold when exposed to Bd, and 
therefore may experience a greater northern range reduction than 
L. palustris. However, testing thermal limits of local population in 
northern latitudes is necessary to better predict potential distribu-
tional changes due to Bd.

The use of juveniles in our study could have specific age-class 
responses to Bd exposure and cold tolerance. The CTmin of 8.3°C (un-
exposed) and 12°C (exposed) for H. versicolor appears high relative 
to some measures of the activity in natural populations (John-Adler 
et al., 1988). However, juvenile H. versicolor produce lower concen-
trations of cryoprotectants than adults, suggesting the immature 
age class is predisposed to have a lower cold tolerance than adults 
(Storey & Storey, 1985). Likely due to smaller size, juvenile L. palustris 
in natural populations are at greater risk of mortality than adults, 
causing younger individuals to be less capable of surviving winter 
(Resetarits, 1986).

The size differences between the H. versicolor and L. palustris in 
our study could be driving the species effect in CTmin. Larger mass 
has been shown to decrease Bd-induced mortality in metamorphs 
(H. versicolor and L. pipiens; Searle et al., 2011), and lower the proba-
bility of being infected with Bd (Murray et al., 2013). Since L. palustris 
is a larger species, these individuals might more successfully han-
dle infections, explaining our result that L. palustris righted them-
selves more and retained a lower CTmin than H. versicolor. However, 
because only a single clutch was used per species, the differences 
found between species could be due to a clutch (i.e., family) effect 
and not species. Therefore, a more robust interpretation of species 
would be possible by comparing multiple unrelated clutches.

5  | CONCLUSION

Our results showed that pathogen exposure can increase the CTmin 
of hosts, which may reduce their ability to survive and function in 
winter conditions. During the winter, the extent to which cold tem-
peratures lead to immunosuppression or energetic trade-offs be-
tween immune responses and physiological maintenance must be 
considered in future investigations to fully understand disease risk. 
Susceptibility to pathogen-related effects is highly context depend-
ent, varying across host species, age, sex, family, and spatial distri-
butions. Therefore, studies must examine a diverse array of hosts, 
potentially those that exhibit characteristics that make them most 
susceptible to disease, such as juveniles with underdeveloped im-
mune systems. Drivers and consequences of disease dynamics in 
winter often go unnoticed or untested, especially for species that 
overwinter in cryptic microhabitats. However, our study highlights 
the need to employ greater effort to monitor the effects of patho-
gens on winter performance and survival, which has been largely 
understudied.

http://en.climate-data.org
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