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Abstract

Pathway analysis is widely used to gain mechanistic insights from high-throughput omics

data. However, most existing methods do not consider signal integration represented by

pathway topology, resulting in enrichment of convergent pathways when downstream

genes are modulated. Incorporation of signal flow and integration in pathway analysis could

rank the pathways based on modulation in key regulatory genes. This implementation can

be facilitated for large-scale data by discrete state network modeling due to simplicity in

parameterization. Here, we model cellular heterogeneity using discrete state dynamics and

measure pathway activities in cross-sectional data. We introduce a new algorithm, Boolean

Omics Network Invariant-Time Analysis (BONITA), for signal propagation, signal integra-

tion, and pathway analysis. Our signal propagation approach models heterogeneity in

transcriptomic data as arising from intercellular heterogeneity rather than intracellular sto-

chasticity, and propagates binary signals repeatedly across networks. Logic rules defining

signal integration are inferred by genetic algorithm and are refined by local search. The

rules determine the impact of each node in a pathway, which is used to score the probability

of the pathway’s modulation by chance. We have comprehensively tested BONITA for appli-

cation to transcriptomics data from translational studies. Comparison with state-of-the-art

pathway analysis methods shows that BONITA has higher sensitivity at lower levels of

source node modulation and similar sensitivity at higher levels of source node modulation.

Application of BONITA pathway analysis to previously validated RNA-sequencing studies

identifies additional relevant pathways in in-vitro human cell line experiments and in-vivo

infant studies. Additionally, BONITA successfully detected modulation of disease specific

pathways when comparing relevant RNA-sequencing data with healthy controls. Most inter-

estingly, the two highest impact score nodes identified by BONITA included known drug tar-

gets. Thus, BONITA is a powerful approach to prioritize not only pathways but also specific

mechanistic role of genes compared to existing methods. BONITA is available at: https://

github.com/thakar-lab/BONITA.
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Author summary

21st-century biotechnology has enabled measurements of genes and proteins at large scale

by RNA sequencing and proteomics technologies. In particular, RNA-sequencing has

become a first step of unbiased interrogation. These studies frequently produce a long list

of differentially abundant genes, which become interpretable by widely used pathway

analysis methods. The pathway topologies frequently include information on how genes

interact and influence each other’s expression, but current methods do not utilize this

information to estimate signal flow through each pathway. We have developed a model of

binary (on/off) behavior that accounts for varying expression across samples as different

proportions of cells expressing genes. We model signal flow by averaging repeated simula-

tions of individual cells passing binary signals through molecular networks. We use this

model to infer regulatory rules explaining gene expression. These rules of signal integra-

tion for all nodes in the network are used to identify the most important genes, and to

determine if a pathway’s activity is different between two groups. BONITA compares

favorably to previous approaches using simulated and real data. Furthermore, application

to 36 datasets from 15 different diseases demonstrates BONITA’s exceptional ability to

detect drug targets.

This is a PLOS Computational Biology Methods paper.

Introduction

Gene set and pathway analysis have become one of the first choices for gaining mechanistic

insights from high-throughput sequencing and gene/protein profiling techniques [1]. Typi-

cally, gene set analysis uses a set of pathway genes to estimate its modulation and discounts

pathway topology. This approach ignores synergy among genes, resulting in enrichment of

convergent pathways when downstream genes are modulated. Though none of the existing

methods explicitly investigate synergy among genes, current topology-based methods use

graph theoretical metrics to weigh pathway nodes based on connectivity before estimating

pathway modulation [1–3]. However, it is critical to go beyond this simple characterization in

order to identify key regulators from large-scale datasets for systematic prioritization of fol-

low-up experiments. Discrete state network modeling facilitates prioritization of experiments

by using simple logic rules such as ‘AND’ or ‘OR’ to explicitly define signal integration,

enabling investigation of cross-talk and downstream events as shown in our previous studies.

[4–6].

Discrete state network modeling has been used to study high throughput gene and protein

profiling data collected across multiple time-points by utilizing two different underlying mod-

els of variation [7, 8] in addition to conventional Boolean modeling. Fuzzy models explain var-

iation in the gene expression levels using multiple states, unlike Boolean models that allow

only binary (on/off) states. Recently, fuzzy models have been used to study literature-derived

prior knowledge networks using a genetic programming algorithm to derive logic rules from

time course data by Liu et al. [9]. Probabilistic Boolean Network models assume that variability

arises from ambiguity in logic-rules employed rather than in amount of activation [10], mak-

ing the counterintuitive assumption that cells randomly employ one of multiple different
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wirings. Many biological insights have resulted from fuzzy network [11, 12] and Probabilistic

Boolean Network [13, 14] models, but there remains great potential for improvement in

describing variation and improving applicability to cross-sectional datasets. Unlike time

course data, cross-sectional data is collected from multiple samples (and possibly conditions)

at a single time point providing minimal information about interactions between genes.

Indeed, cross-sectional sampling is more feasible in translational studies and algorithms that

derive discrete state network models from this data type would have greater applicability in

translational research.

Here, we describe BONITA- Boolean Omics Network Invariant-Time Analysis, to capture

cellular heterogeneity, a critical source of variability in transcriptomic data. A portion of vari-

ance in gene expression stems from heterogeneity in the activation state of cells in addition to

variation in expression levels within each cell. This is demonstrated by gene expression in mul-

tiple stem cell types [15] [16] and stimulated bone marrow-derived dendritic cells [17].

BONITA is designed specifically to leverage this bimodality in cell-specific gene expression to

perform continuous-valued simulations of molecular networks under assumptions of switch-

like behavior in each cell. Hence, BONITA network propagation (NP) assumes that the activity

of each biomolecule is directly dependent upon the proportion of cells in which that molecule

is active or, equivalently, the probability a node is active in an arbitrary cell. The propagation

of signals across multiple cells facilitates the application of NP to the cross-sectional data.

Since this NP approach should recapitulate steady states in cross-sectional data, BONITA rule

determination (RD) finds rules that minimally change activities after NP. These logic rules rep-

resenting synergy between genes from cross-sectional data are utilized in BONITA pathway

analysis (PA). Thus, by capturing integration of signals coming from multiple genes, BONITA

uncovers differentially regulated pathways.

BONITA is currently implemented and tested for application to transcriptomics data, but

work is under way to apply it to other types of data including proteomics, metabolomics, and

phosphoproteomics. BONITA is rigorously tested using simulated data and is applied to pub-

licly available experimental datasets. In addition, a comparison of BONITA-RD to an existing

algorithm for time-course data [9] shows comparable performance for cross sectional data,

improving applicability to translational studies. Moreover, comparison of BONITA-PA with

state-of-the-art pathway analysis methods CAMERA [18] and CLIPPER [3] shows exceptional

Receiver Operating Characteristic (ROC) and higher specificity in detecting signaling modula-

tions in validated experimental studies. Finally, when applied to disease specific data from

patients vs healthy humans, BONITA impact scores identify known drug targets as key regula-

tors. This suggests that BONITA can be used for drug discovery from large-scale high-

throughput datasets.

Materials and methods

BONITA network propagation (BONITA-NP) models signal transduction

BONITA network propagation (NP) runs on prior knowledge networks obtained from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) using the KEGG API. Activating/inhibit-

ing relationships are inherited from KEGG edge attributes [19]. Edges in KEGG pathways con-

tain edge type annotations; these are exploited to determine activating or inhibitory edges.

Hence, all the Boolean functions inferred by BONITA are sign-compatible functions, i.e., they

satisfy positive or negative unateness based on the interaction annotation, as described in

Zhou et al [20]. We demonstrate in S1 Text and S1 Fig that BONITA-NP infers these sign-

compatible functions in an unbiased manner. BONITA-NP assumes that the mRNA-produc-

ing cells are proportional to counts obtained from mRNA-sequencing. To obtain the
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proportion of cells expressing mRNAs, the RNA-seq data is transformed to [0, 1] domain

using division by the maximum element. This transformed data is used as a starting point to

compute a series of Boolean Network simulations using synchronous or asynchronous update

algorithms as described in [21]. The ensemble averages of 1000 such repeated runs are used to

define activities which are compared with the transformed data to determine fitness value in

BONITA-RD below. Comparison of methods for data transformation to [0, 1] demonstrated

that division by maximum was the best method for transforming data and that BONITA-RD,

as expected, has better fits than purely Boolean simulation (S2 Text, S2 Fig). In this report, all

BONITA-NP simulations were carried out for 100 steps using the synchronous update algo-

rithm. The maximum number of steps necessary to reach the steady state or terminal cycle of

the Boolean network is the longest path between any two nodes in the network. The longest

shortest path between all pairs of nodes across KEGG networks was 17 (S3 Text, S3 Fig) indi-

cating that 100 simulation steps were adequate. The results were reported as average over the

last ten steps of the simulation.

BONITA-RD algorithm for rule determination

BONITA-RD implements a combination of a genetic algorithm and a node-wise local search

to infer logic-rules. BONITA assumes cross-sectional samples represent steady states and min-

imizes change after simulation of a network as given by:

Xd

i¼1

1

n

Xn

j¼1

ðDi;j � Oi;jÞ
2

ð1Þ

In Eq 1, d is the number of available samples, n is the number of nodes in the network, Di,j is

the value of node j in sample i, and Oi,j is the value of node j in sample i calculated by BONI-

TA-NP. The overall design of the rule determination algorithm is graphically represented in

Fig 1.

The genetic algorithm generates new rule sets (individuals) either by selecting rules for ran-

domly chosen nodes from their parent rule sets, or by mutating (altering) a particular rule and

incoming nodes. At later generations, crossover events tend to produce rule sets that have

already been tried in earlier generations, leading to a greater probability of mutations. The

Fig 1. BONITA rule determination (BONITA-RD) flowchart shows dependencies between BONITA-NP, genetic

algorithm and local search for rule inference. Rhomboids represent inputs while rectangles represent calculation

steps. MSE is mean square error given by Eq 2. BONITA-NP is BONITA Network Propagation.

https://doi.org/10.1371/journal.pcbi.1007317.g001
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space of potential rules is extremely large and scales quickly with in-degree. Hence, to reduce

the space of potential rules to a region that can be sampled, a maximum of three upstream reg-

ulators are selected. This is a compromise between decreasing resolution and increasing search

time. The three upstream regulators (U) are sampled for nodes with>3 upstream regulators in

the genetic algorithm using a probability function P Uð Þ ¼ CU;NP
U
CU;N

where CU,N is the Spearman

correlation of upstream regulators with the node (N) for which the rule is being determined.

For all simulations shown in this report, the genetic algorithm was run for 120 generations

from a starting population and constant population size of 24. Thus, 24 new rule sets were gen-

erated and tested at each generation. Decreasing errors (Fig 2a) with a plateau before 40 gener-

ations for networks with varying complexities indicated that 120 generations are appropriate

for the genetic algorithm. The genetic algorithm searches the product of the number of possi-

ble rules at each node in the network. In order to transform this multiplicative problem into

an additive one, a node-level local search strategy was implemented. The local search only con-

siders the error at the node under consideration as given by

Xd

i¼1

ðDi;j � Oi;jÞ
2

ð2Þ

Fig 2. BONITA-RD accuracy and node characteristics. a) Sum of squares of node-wise error (SSE) are plotted across

genetic algorithm generations for three representative test networks with varying complexity (node degree = 346, 108,

and 29). b) Percent rules true (y-axis) identified by BONITA-RD are plotted against the number of nodes in 11

networks (x-axis) for 25 simulated trials. Error bars represent standard error. c) The percent rules true in ERS (y-axis)

for each node are plotted against the in-degree of those nodes in the prior knowledge network. d) The log average total

size of ERS for each node are plotted against the log total ancestor overlap which is the sum of the pairwise shared

ancestor number between any two upstream nodes.

https://doi.org/10.1371/journal.pcbi.1007317.g002
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This exhaustive search only evaluates the possible rules at each node while holding constant

all other rules as well as the incoming edges to that node as determined by the genetic algo-

rithm. The node-level local search was initiated with the minimal error rule set from the

genetic algorithm and was found to be effective in inferring the rules as shown in the results

(Fig 2b). During the local search, rules within a tolerance threshold of this minimal rule are

kept as equivalent rules i.e. the equivalent rule set (ERS). This set was constructed to overcome

the inability to distinguish between equivalent rules with cross-sectional data. Thus, while

local search improves accuracy, it is dependent on the global search performed by the genetic

algorithm to resolve the complexity of the networks (S2 Text, S2 Fig).

To test BONITA-RD, simulated data representing 5 samples was generated by BONITA-NP

with a rule set and initial states determined by a uniform random distribution. Rules deter-

mined by BONITA-RD were then compared with the rule-set used to generate the data.

BONITA-PA for pathway analysis

BONITA-PA seeks to prioritize nodes that have a large influence over signal flow through the

network by assigning node-level impact scores. The impact score, Ig, captures the change

induced in the network when the node is perturbed. Ig is given by the difference in network

state after knockout and knock-in of g:

Ig ¼
Xd

i¼1

Xn

j¼1

ððOi;j � Zi;jÞ
2
Þ ð3Þ

In Eq 3, j ranging from 1 to n indicates nodes in the network, i ranging from 1 to d indicates

samples, Oi,j and Zi,j are BONITA-NP outputs when g = 0 and g = 1 across all iterations, respec-

tively. The comparison of BONITA-PA’s node impact score with graph theoretical measures

of node centrality such as degree centrality, eccentricity, shortest-path betweenness, eigenvec-

tor centrality and the hubscore and authority scores obtained from the hyperlink-induced

topic search algorithm showed no correlation (S4 Text, S4 Fig). The pathway modulation is

measured by taking into account impact score and fold difference in the expression across con-

ditions of interest. Specifically, Mp is calculated as follows:

Mp ¼
Xn

1

logðIgÞ � jlogðqgÞj � stdðgÞ ð4Þ

In Eq 4, qg is the fold difference of g and std(g) is the standard deviation of g across all samples.

To calculate the p-value, a distribution of nodes with different impact scores having a range of

fold differences is generated. Specifically, the distribution of Mp values is generated by weight-

ing impact scores for a specific pathway’s topology with random fold differences that are re-

sampled from the gene expression data. Pathways with at least four genes in the transcriptomic

data are considered.

Simulated data for comparison of pathway analysis methods

To compare BONITA-PA with existing pathway analysis approaches, simulated datasets that

resembled biological data were constructed. The data was generated using a negative binomial

distribution with gene-wise means and dispersions from existing RNA-seq data [22]. To simu-

late the modulation of pathways, the expression levels of source nodes were multiplied by log2

(-attenuation) where attenuation values were 0.0, 0.5, 1.0, 1.5, and 2.0 as described in Ihnatova

et al [2]. This attenuated signal was propagated by BONITA-NP with random rules to simulate

inhibition of the entire network mediated by source node inhibition. To test the performance
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of BONITA- RD, a subset of networks were obtained by searching the KEGG database for

Interferon Gamma (IFN-γ). These 12 networks were used as test networks since they provide

an unbiased set of networks with varying complexity, ranging in size from 13 to 346 nodes.

Signal attenuation and propagation was performed 10 times each on the 6 test networks with

nodes (genes) in the RNA-seq data, and analysis performed using CLIPPER, CAMERA, and

BONITA. CLIPPER determines modulated pathways based on mean and concentration (the

inverse of the covariance) matrices. However, for simulation studies, only p-values from CLIP-

PER comparison of means and not concentration matrices were considered since this

improved performance of CLIPPER substantially.

Pathway analysis of publicly available data

BONITA was rigorously assessed using RNA-seq data. First, BONITA was compared with

state-of-the-art pathway analysis approaches using data from the public domain. Second,

BONITA’s specificity in detecting disease specific pathway from patient data was investigated.

Finally, BONITA’s ability to infer rules from a de novo directed network constructed was

evaluated.

Comparison of BONITA pathway analysis with CLIPPER and CAMERA was performed

using previously published RNA-sequencing data measuring IFN-γ signaling modulation in

human choriocarcinoma cells [23] and a study representing translational design where periph-

eral blood mononuclear cells from infants with mild or severe respiratory syncitial virus were

assessed by RNA-sequencing [22]. Data was processed using voom [24] for CAMERA or

CLIPPER. A set of 37 immunologically relevant KEGG pathways identified in previous studies

were utilized because RSV infection and IFN-γ stimulation are expected to modulate these

pathways [34]. Furthermore, a priori selection of biologically relevant pathways reduces the

requirement for correction for multiple comparisons. Data from all studies were processed

in R.

To test whether BONITA identifies disease specific pathways, microarray gene expression

data from a set of 36 experiments comparing patients to healthy controls in 15 unique diseases

was analyzed [2, 25, 26]. Previously RMA normalized and log2 transformed microarray data

was downloaded and was processed to keep probe ID with highest mean expression for each

gene symbol. The data was exponentiated with base 2 before running BONITA. The data was

retrieved from Gene Expression Omnibus (GEO) using R packages KEGGandMetacoreDz-

PathwaysGEO and KEGGdzPathwaysGEO [25, 26]. BONITA was applied to KEGG networks

associated with each disease in the data set.

Finally, a de novo directed network was generated by application of miic [27] to RSV data.

Miic constructs directed networks by inferring a coexpression network using mutual informa-

tion. Edges with higher cumulative mutual information than alternative paths are retained and

directed based on topological characteristics. For edges that remained bidirectional, two edges,

one going in each direction, were inserting before running BONITA-RD.

Implementation and code availability

BONITA is written entirely in Python and C using genetic algorithms from deap [28]. It has

been tested for use with Intel Distribution for Python 2.7. Generation of network representa-

tions of rules was performed by modification of previously published code from the Albert Lab

[29]. BONITA is designed to be run from the command line by a non-expert user. Code and

documentation are available on Github at https://github.com/thakar-Lab/BONITA.
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Results

BONITA- Boolean Omics Network Invariant-Time Analysis- is designed to leverage variance

driven by cellular heterogeneity and signal integration for advanced pathway analysis of cross-

sectional data, frequently available in translational studies. The accuracy and robustness of

BONITA-RD for cross sectional data was assessed using a series of simulation studies, and its

application to a de novo network. Furthermore, the utility and performance of BONITA-PA is

rigorously tested using simulated and publicly available transcriptomic data. Additionally, its

performance was also compared to the state-of-art pathway analysis techniques.

BONITA accuracy in rule determination

BONITA Network Propagation (BONITA-NP) propagates continuous-valued signals across

molecular networks with the assumption that bulk transcriptomic measurements are propor-

tional to the number of cells expressing specific genes. The signal propagation depends on the

inference of logic rules performed by BONITA rule determination (BONITA-RD), which is

optimized to preserve steady states assumed to be represented by the cross-sectional data. The

logic rules define integration of signals coming from different genes. To test the performance

of BONITA-RD, a subset of networks were obtained by searching the KEGG database for

Interferon Gamma (IFN-γ). These 12 networks were used as test networks since they provide

an unbiased set of networks with varying complexity, ranging in size from 13 to 346 nodes.

Simulated data representing cross-sectional measurements were generated for each test net-

work using BONITA-NP and were used as inputs for BONITA-RD. Rules recovered from

BONITA-RD were compared to the rules used to generate simulated data. BONITA recovered

exact rules used to generate the simulated data with 50% accuracy across test networks. How-

ever, multiple logic rules can result in similar cross-sectional outcomes. Hence, the multiple

logic rules that produce equivalent cross-sectional outcomes were treated as ‘equivalent’ rule

sets (ERS) (see Methods).

ERS facilitated evaluation of accuracy of BONITA-RD within the limits of cross-sectional

data. BONITA-RD accuracy reached 87—99% when considering ERS among test networks

(Fig 2b). The size of the ERS depicting number of rules in the set varied from just 1 rule to all

possible rules (1, 15 and 127 for in-degree 1, 2 and 3, respectively). The size of the ERS was

expected to be dependent on signal flow from the shared upstream nodes. Since signal could

flow directly or indirectly from such nodes to the node of interest, it is theoretically impossible

to distinguish them with cross-sectional data. Consider a network with 3 nodes, A, B, and C,

and with edges from A to B, A to C, and from B to C. Under no circumstances will cross-sec-

tional data reveal whether changes in A are propagated to C directly, via B, or both. We wanted

to understand whether the size of the ERS was driven by such unsolvable equivalences. To

identify these situations, cases where a single node (like A in the network described above)

could influence two incoming edges were enumerated. To this end, the sum of intersection

between nodes influencing the signal along each pair of incoming edges was calculated as

the sum of the shared ancestors between pairs of upstream nodes U of the node under investi-

gation. This total ancestor overlap is given by
P

U1 6¼U2
jAðU1Þ \ AðU2Þj, for all such pairs of

upstream nodes U where A is the set of all ancestors of U. The total ancestor overlap and the

size of the ERS were highly correlated (Fig 2d, Spearman r = 0.947), demonstrating that alter-

native paths that were indistinguishable in cross-sectional data lead to unsolvable rules and

consequently larger ERS sizes.

The strikingly high accuracy across diverse networks when considering ERS demonstrates

that BONITA rule inference can correctly infer rules to the extent they are distinguishable by
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cross-sectional data. Next, we investigated the impact of network complexity on BONITA-RD.

To assess the impact of network size BONITA-RD accuracy was compared with the number of

nodes in each test network. Though the test networks have a wide range of sizes, node num-

bers did not explain differences in accuracy across networks (Fig 2b). To further understand

the differences in accuracy, we hypothesized that the accuracy of ERS would be associated with

in-degree. Though BONITA-RD restricts the in-degree to 3, decreasing accuracy with increas-

ing original in-degree (Fig 2c, Spearman r = -0.851) was observed. The in-edges are optimized

by BONITA-RD, which could compound the inaccuracies introduced by size of the rule space

for the nodes with 3 incoming edges. These findings indicate that even when BONITA

achieves>80% accuracy, the nodes that are incorrectly inferred have high in-degree in original

network.

Robustness of BONITA to technical noise, sample number, and prior

knowledge

Having established the ability of BONITA-RD to recover rules from large-scale data, we

wanted to establish BONITA’s robustness to other important factors in transcriptomic data:

sample number and technical noise. Susceptibility of BONITA to technical noise was investi-

gated by adding random noise in the range 1-200% for each node in the network. The BONI-

TA-RD accuracy remains >80% with up to 10% noise in the data (Fig 3a), however accuracy

was 65-91% when noise to signal ratio was 50%. Overall, accuracy dropped to 65-88% with

addition of 200% noise for larger networks. For sample size analysis, the number of samples

were varied from 2 to 15 in the simulated data. Fig 3b shows that accuracy improves from 83-

95% with three samples to 91-99% with 15 samples across test networks, but accuracy was pre-

served to be>80% with just 2 samples. Altogether, these simulations show that BONITA is

robust to sample number and technical noise.

Typically, pathway topologies available in databases are generalized cases that can lead to

false positive edges not relevant to the context of a specific study. Hence, the robustness of

BONITA to false positive edges in the prior knowledge network was assessed and compared to

the existing algorithm that utilized discrete state modeling [9]. A toy network from [9] was

used to generate a dataset and false positive edges were added as multiples of that network’s

Fig 3. BONITA robustness to noise and sample number is measured on the data simulated using BONITA-NP

using test networks for ten trials with various amounts of (a) added noise or (b) samples. ERS (y-axis) for (a) 1% to

200% noise (x-axis) and (b) for 2 to 15 number of samples are reported across the test networks. Error bars represent

standard error.

https://doi.org/10.1371/journal.pcbi.1007317.g003
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edge number. The ability of BONITA-RD to retrieve the original network was measured by

structural distance. Specifically, structural distance is the number of edges that must be added

or removed to obtain the original correct network. BONITA-RD performed substantially bet-

ter with <0.5 times the number of edges added to the prior knowledge network than Liu’s

model, but worse when false-positive edges were greater than the number of edges in the prior

knowledge network(Fig 4). Critically, BONITA application to cross-sectional data performs

comparably to Liu’s model applied to time course data. Generally, time course data is expected

to make rule inference, especially of directional edges, easier. Thus, BONITA-RD performance

is robust given the limitations of cross-sectional data in rule inference and relies on reasonably

accurate prior knowledge networks.

Comparison of BONITA-PA accuracy with existing methods

Pathway analysis is the most useful functionality of BONITA-RD. Briefly, nodes of network

representing pathway are perturbed in silico to measure network-wide changes and calculate a

node-level impact score. This impact score is then used to measure pathway-level modulation

in the dataset under study. The performance of BONITA-PA was assessed by comparing its

output to previously developed topology based pathway analysis method (CLIPPER) and a

popular gene-set enrichment method (CAMERA). CLIPPER was chosen since it was the best

performing algorithm in a recent comparative analysis of network based pathway analysis

techniques [2]. The comparison was performed on the simulated data representing attenuation

of pathway source node and downstream events (details in Methods). BONITA was more sen-

sitive than previous methods especially at low levels of source node attenuation (Fig 5, refer to

box and star) with the area under the curves (AUCs) 0.842, 0.832 and 0.830 for BONITA,

CLIPPER and CAMERA respectively at log2 attenuation of 0.5. All the methods performed

well in detecting the number of pathways for induced attenuation >1 in source nodes (Fig 5b).

The performance of all the three was excellent (.99-1.00 AUC) at log2 attenuation of 2.0. The

same results hold when attenuation is not propagated through the downstream nodes of the

pathways (S5 Text, S5 Fig). Thus, BONITA-PA outperforms previous state-of-the-art methods

at low levels of pathway perturbation. Moreover, even though BONITA-PA performs as well

as other methods at high level of signal perturbation, it offers rules for synergy among genes

unlike any other methods.

Fig 4. Performance and robustness of BONITA-RD. (a) Boxplots show minimum structural distance among the

equivalent rule sets learned by BONITA-RD (y-axis) or (b) structural distance among rules learned by Liu’s method

across prior knowledge network [9]. Structural distance is measured as the number of edges that must be added or

removed after optimization to obtain the original correct network for addition of false positive edges 0, 0.2, 0.5, 1, 1.5,

2, or 4 times the edge number (x-axis). b) is reproduced from Liu et al. [9] and x-axis labels modified for ease of

interpretation.

https://doi.org/10.1371/journal.pcbi.1007317.g004
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Comparison of pathway analysis methods for detecting IFN-γ signaling

perturbations

BONITA’s excellent performance on simulated data and in modeling pathway modulation

calls for verifying its performance in similar experimental setting. RNA-seq data from our pre-

vious study investigating Interferon-regulated genes (IRG) following stimulation of human

choriocarcinoma (Jar) cells with IFN-γ with or without pervanadate, a protein tyrosine phos-

phatase inhibitor, or valproic acid, a histone deacetylase (HDAC) inhibitor [23] was used.

Human choriocarcinoma cells are hypo-responsive to IFN-γ stimulation due to impaired acti-

vation of the JAK-STAT pathway [30, 31]. This impaired activation could be released by perva-

nadate and/or valproic acid. We previously showed modulation of certain IRGs by inhibitor

alone. Nonetheless, stimulation with both IFN-γ and inhibitors did not reveal elicitation of

higher number of pathways using existing tools such as CAMERA in [23]. In this study,

BONITA, CAMERA, and CLIPPER were used to assess significance of 37 immune pathways

in IFN-γ treatment with or without inhibitors compared to untreated cells (Fig 6, S1 Table).

Both BONITA and CAMERA identified 6 significant pathways (p<0.05) when cells are

treated with IFN-γ alone. However, BONITA performed better in reproducing IFN-γ induced

pathways in joint stimulation with inhibitors than CAMERA. Specifically, BONITA revealed

activation of two pathways only upon joint treatment of IFN-γ and either one of the inhibitors

as expected from previous studies [30, 31]. CLIPPER performed poorly in detecting respon-

siveness to IFN-γ treatment and mostly detected pathways when cells were treated with the

inhibitors. Thus BONITA’s ability to detect pathways specifically upon joint stimulation is due

to the inference of modulation of downstream events by upstream nodes, rather than only

detecting downstream modulations.

Comparison of pathway analysis methods for detecting responses to

respiratory syncytial virus infection in infants

Detecting specific pathway signals is a major challenge in genome-wide sequencing studies of

human samples due to variation across individuals. Previously, we have measured changes in

isolated CD4+ T cells from infants with mild and severe respiratory syncytial virus (RSV)

infection by genome-wide mRNA sequencing [22]. It is well understood that the convalescent

time point is critical in understanding antigen-specific long term responses required for

Fig 5. Comparison of BONITA-PA performance with CLIPPER and CAMERA. (a) The number of pathways found

to be significant upon attenuation of the source node by log2 0.0, 0.5, 1, 1.5, or 2 and (b) Receiver operating

characteristic (ROC) curves for log2 induced attenuation of 0.5 and 2.0 by BONITA-PA (green), CLIPPER (orange)

and CAMERA (blue). The total number of pathways tested were 60 for each attenuation using 10 simulated RNA-seq

datasets and 6 test networks. ROC curves were constructed by treating −log10p-values from 0.0 attenuation as one class

and −log10p-values from 0.5 or 2.0 as the other class.

https://doi.org/10.1371/journal.pcbi.1007317.g005
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resolving infections [32–34]. However, our previous work indicates that the changes at the

convalescent time point are attenuated. Interestingly, BONITA-PA and CAMERA, but not

CLIPPER, identified several pathways as differentially regulated across mild and severe com-

parison even at the convalescent visit (Table 1).

Further, BONITA-PA produces helpful network synthesis, including rules, which can be

visualized easily in a network viewer such as Cytoscape, as in Fig 7. This network synthesis was

used to investigate the Apoptosis pathway which was detected to be differentially regulated

between mild and severe disease by BONITA but not CAMERA or CLIPPER at the conva-

lescent visit. Interestingly, 20 out of 138 nodes obtained high impact score, 5 of which also

had>0.5 fold difference between mild and severe. These nodes include many well-known

upstream regulators such as PDGFB and PIK3CA [35–37]. Thus, BONITA effectively priori-

tizes pathway modulation by emphasizing upstream regulators in translational studies.

Application of BONITA-PA to detect disease specific pathways using

patient data

To further test BONITA’s specificity, data from Ihnatova et al. was used [2, 25, 26], which

consists of 36 microarray experiments comparing patients with 15 unique diseases to healthy

Fig 6. Significant pathways detected upon IFN-γ signaling perturbations. Following stimulation of human

choriocarcinoma (Jar) cells with IFN-γ with or without pervanadate, a protein tyrosine phosphatase inhibitor, or

valproic acid, a histone deacetylase (HDAC) inhibitor when compared to untreated cells by BONITA, CLIPPER, and

CAMERA. The number of pathways with p<0.05 are shown. Blue represents IFN − γ alone, yellow valproic acid, green

IFN − γ + valproic acid, red pervanadate and pink IFN − γ + pervanadate.

https://doi.org/10.1371/journal.pcbi.1007317.g006

Table 1. Differentially regulated pathways at convalescent visit between infants with mild and severe RSV infec-

tion [22].

Pathway/Method: BON CLP CAM

Apoptosis 1.33 0.64 0.42

Cell adhesion molecules (CAMs) 0.10 0.64 1.46

Complement and coagulation cascades 2.56 0.39 0.01

Glycolysis / Gluconeogenesis 0.05 0.51 1.44

−log10 p-values are shown for analysis of infants with mild vs severe disease at convalescent visit with BONITA

(BON), CLIPPER (CLP), and CAMERA (CAM). Significant pathways are highlighted.

https://doi.org/10.1371/journal.pcbi.1007317.t001

Executable models for pathway analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007317 September 3, 2019 12 / 21

https://doi.org/10.1371/journal.pcbi.1007317.g006
https://doi.org/10.1371/journal.pcbi.1007317.t001
https://doi.org/10.1371/journal.pcbi.1007317


Fig 7. Impact scores, fold differences and rules generated by BONITA-PA for Apoptosis pathway. Small circular

nodes indicate ‘and’ rules whereas multiple incoming edges to a rectangular node indicate ‘or’ rule. Colors of the

rectangles ranging from white to red indicate low to high impact score. Widths of the rectangles’ outlines and their

color ranging from blue to green indicate fold difference (mRNAs) between infants with severe vs mild disease. Blue

represents higher expression in mild and green represent higher expression in severe. Impact scores have been divided

by the largest impact score in the pathway.

https://doi.org/10.1371/journal.pcbi.1007317.g007
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controls. Each of the disease conditions represented in our datasets corresponds to one dis-

ease pathway in KEGG. BONITA correctly found corresponding disease pathways to be

significant in 22/36 datasets (S2 Table). Ihnatova et al describe that CLIPPER found a compa-

rable number (24/36) to be significant in exactly same comparisons. Further, BONITA has a

unique capability to identify nodes with high impact scores, which we hypothesized would be

potential drug targets. Drug targets were identified using DrugBank and the targets with indi-

cations including the name of the disease pathway (e.g. ‘acute myeloid leukemia’) were

retained [38]. Four datasets (3 acute myeloid leukemia and 1 chronic myeloid leukemia)

were identified with >1 drug target among high impact nodes designated by BONITA. The

enrichment of drug targets among high impact scores was statistically significant (p<0.01, t-

test). For example, FLT3, a critical receptor tyrosine kinase mutated in up to 35% of acute

myeloid leukemia (AML) cases was found to be one of the three highest impact genes in all

three AML datasets. FLT3 is commonly targeted for treatment of AML. Similarly, ABL1, part

of the BCR-ABL target of imatinib, an early immunotherapy, had the top impact score in

both datasets with chronic myeloid leukemia. Since DrugBank annotations might not be

complete, the top 2 impact score nodes in each disease network with p<0.05 in BONITA-PA

were manually queried as targets of drugs either under development or approved. This

revealed that high impact nodes in each network, except those in Alzheimer disease network,

were either targeted by or were the ligand of a receptor targeted by an approved or under

development drug (S2 Table). In Alzheimer disease, there are no mechanistic drugs. How-

ever, 1/4 datasets revealed TNFRSF1A, the TNF − α receptor, candidacy of which is sup-

ported by previous studies [39–41] (S2 Table). Interestingly, ADRB1, the β − 1-adrenergic

receptor was the second highest impact gene for dilated cardiomyopathy, which is often

treated with beta-blockers targeting the adrenergic receptor (S2 Table). Thus, not only is

BONITA-PA able to detect differences in relevant disease networks between patients and

healthy control subjects, but it is also highly effective in identifying promising drug target

genes. BONITA connects upstream differences with downstream effects, identifying true cas-

cades depicted by the pathway topology that are highly modulated in comparison of interest.

Taken together, these results show the effectiveness of BONITA-PA in prioritizing pathways

for further experimental studies following genome-wide transcriptional profiling.

Rule determination in de novo inferred gene-regulatory network

One of the applications of BONITA is to define co-operativity in networks inferred from the

data. Mutual information-based inductive causation (miic) [27] was used to generate a directed

network using RSV infection dataset described in the previous section. BONITA was run to

obtain logic rules and impact scores. BONITA predicts that absence of TAXBP1, a gene

known to participate in restricting antiviral signaling and YPEL5, a gene involved in cell cycle

progression leads to activation of TRAF3IP3, which is supported by previous studies [42, 43].

Finally, MYC and SP100 are hypothesized to activate MX1 together. This is particularly inter-

esting since MX1 is a nuclear factor known to recruit SP100 and involved in antiviral response

[44]. Thus, in addition to application of BONITA for pathway analysis, it can have high utility

in de novo hypothesis generation.

Discussion

BONITA is, to our knowledge, the first ever attempt to use discrete-state modeling for pathway

analysis and builds upon decades of work to calculate node impacts in Boolean networks,

Probabilistic Boolean Networks and fuzzy logic networks [45]. BONITA uses cross-sectional

data along with network topology to find node specific impact scores. The impact scores
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consider both the learned rules defining synergy among genes and the condition-specific dis-

tribution of expression values. Since BONITA-RD recovers rules, in silico generation of

hypotheses for downstream effects of node perturbations (knockout, knockdown, knock-in)

are trivial. In this way, BONITA offers an extension to pathway analysis that no other approach

affords.

BONITA-RD is a novel approach to rule determination for cross-sectional data that offers

significant advantages over previous algorithms. Existing software can solve the key problem

of Boolean rule determination for large-scale omics datasets by use of genetic [9, 14], linear, or

nonlinear programming algorithms [12, 46]. These implementations, however, require time-

course data which is infrequent in translational studies, limiting their usability. Indeed, BONI-

TA-RD shows comparable robustness and accuracy to the previous algorithms which were

solely developed for time-series data [9]. Moreover, these methods require either strictly Bool-

ean or fuzzy values, missing the cell-based variability arising between on and off states. These

limitations have hampered the adoption of discrete state modeling in the analysis of omics

data.

Approaches to solving networks for cross-sectional data must apply more general optimiza-

tion solutions because there are no explicit transitions available. Though efficient, genetic algo-

rithms often do not find the best configuration when combinatorial possibilities are high, i.e.,

when network topology is complex. BONITA-RD combines an exhaustive node-wise local

search with a genetic algorithm and achieves high accuracy in determining rules from simu-

lated data. While local search improves accuracy, it is dependent on an initial global search to

resolve the complexity of the networks. BONITA-RD is robust to inaccuracies in prior knowl-

edge networks, noise, and number of samples. This optimization happens relatively rapidly

within the genetic algorithm (Fig 2a) and the current settings are sufficient for significantly

larger and more complex networks than are studied in this report.

In addition to making rule determination possible from cross-sectional data, the BONI-

TA-NP algorithm accounts for cellular heterogeneity by explicitly modeling a population of

cells with a distribution of on/off starting states, rather than from varying levels of expression

in each as modeled by fuzzy models. Not all genes vary in a switch-like manner by cell, but

those that vary in a fuzzy manner will be implicitly modeled (with similar accuracy) in a

pseudo-switch-like manner, because the internal direction of gene activation will remain the

same. As expected, this model outperforms purely Boolean approaches in terms of error across

pathways (S2 Text, S2 Fig). In the future, BONITA can be extended to group the cells into sub-

populations and to derive the estimation of transition across cell states/ subpopulations [20].

However, such inferences from the bulk transcriptomic data are non-trivial and newer tech-

niques such as single-cell transcriptomics would facilitate the development.

Rigorous testing of rule inference is a difficult problem. The DREAM challenge provides

rigorously validated time-series data sets for evaluation of novel algorithms; however, no such

test sets exist for rule inference from cross-sectional data. Hence, a well-controlled study from

our collaborator Dr. Shawn Murphy was used to validate BONITA [30, 31] (Fig 6). BONITA’s

ability to identify pathways specifically in case of joint-stimulation with IFN-γ-valproic acid

and IFN-γ-pervanadate corroborates with multiple previously published studies [30, 31]. Pre-

vious methods could not distinguish increased immune signaling with co-treatment of IFN-γ
and valproic acid or pervanadate, demonstrating that BONITA can extract useful biological

information. Furthermore, rigorous testing of accuracy and robustness to noise, errors in the

prior knowledge network and number of samples demonstrates the effectiveness of BONI-

TA-RD in learning rules from cross-sectional data.

Interestingly, mutually exclusive pathways were identified by CAMERA and BONITA at

the convalescent visit after RSV infection but no pathways identified by CLIPPER. The

Executable models for pathway analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007317 September 3, 2019 15 / 21

https://doi.org/10.1371/journal.pcbi.1007317


pathways were most likely mutually exclusive because BONITA has higher sensitivity to detect

pathways with upstream changes that are linked to downstream variation whereas CAMERA

will detect changes in downstream genes as observed in the glycolysis pathway even in the

absence of corresponding changes in upstream regulators of a pathway. Non-signaling net-

works like glycolysis may have unclear signal flows, as described in the Methods, or may con-

tain many loops. In these cases, BONITA’s performance will be similar to that of other gene-

Fig 8. Rules generated by BONITA-RD for de novo network. BONITA-RD and impact score calculation were

applied to a network generated by mutual information-based inductive causation (miic) [27]. Small circular nodes

indicate ‘and’ rules whereas multiple incoming edges to a rectangular node indicate ‘or’ rule. Colors of the rectangles

ranging from white to red indicate low to high impact score. Impact scores have been divided by the largest impact

score in the pathway.

https://doi.org/10.1371/journal.pcbi.1007317.g008
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set analysis methods instead of the enhanced performance observed on signaling networks

when causation of downstream events can be linked to the upstream changes.

BONITA-PA explicitly provides increased impact to upstream nodes in the context of

downstream nodes. This quantitative prioritization of upstream signaling and relative modula-

tion highlights nodes and interactions that make pathways most interesting for further explo-

ration. The utility of such an approach is underscored by the effectiveness of BONITA impact

scores in identifying drug targets. Thus, BONITA provides a unique perspective and new capa-

bilities to maximize the utility of transcriptomics experiments in guiding future studies. Fur-

ther, BONITA can be applied to de novo inferred networks (Fig 8), extending its use to create a

complete platform to capture network of interactions from transcriptomic data. Finally, in

addition to the applications described here, accurate models of all-or-none behavior in hetero-

geneous populations like those described by BONITA-NP have broad applicability for diverse

types of molecular networks. Thus BONITA offers a novel tool for mechanistic interpretation

of transcriptomic data.

In conclusion, BONITA introduces a new, useful, and conceptually elegant approach to

considering variance in transcriptomic data. BONITA is theoretically applicable to any

directed network, including de novo inferred regulatory networks. Future releases of the

BONITA software will include interfaces to other pathway databases. Further developments in

transcriptomics technology and de novo assembly of directed networks from these rich data

sets will enhance the applicability and usefulness of the BONITA approach.

Supporting information

S1 Table. Results summary of comparison of BONITA to CAMERA and CLIPPER for

detection of IFN − γ signaling perturbations. −log10 p-values from pathway analysis of

human choriocarcinoma cells after treatment with/ without IFN-γ, phosphatase inhibitor (per-

vanadate) and histone deacetylase inhibitor (valproic acid).

(XLSX)

S2 Table. BONITA results summary for human disease data set. Results of BONITA simula-

tion across human disease data sets (p-values) along with the number of drug targets and, if

applicable, p value of t test of impact scores between drug targets and non-drug target nodes.

(XLSX)

S1 Fig. Distribution of median rule number from ERS obtained from 25 trials for each test

network of BONITA-RD from simulated data using random rules as in main text Fig 2.

(EPS)

S2 Fig. Performance of BONITA-RD with rescaling or binarization methods. BONITA-RD

was optimized using the RSV infection data [22] transformed using continuous rescaling (top

3) or binarization (bottom 5) methods. The mean squared error (MSE) between the trans-

formed data and the values estimated by BONITA across 3 replicates and all IFNG networks

are plotted along with standard error represented by error bars.

(EPS)

S3 Fig. Histogram of length of longest shortest path between all pairs of nodes in the test

networks.

(EPS)

S4 Fig. BONITA node impact score shows low correlation to node centrality measures.

Values in the labeled cells represent the Pearson correlation coefficient. Colors also represent
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Pearson correlation coefficient, ranging from -1 (dark blue) to 1 (dark red).

(EPS)

S5 Fig. Comparison of BONITA-PA performance with CLIPPER and CAMERA in simu-

lated data. (a) The number of pathways out of ten found to be significant in simulated RNA-

seq data with source nodes of 10 random data sets each of 6 test networks attenuated by log2

0.0, 0.5, 1, 1.5, or 2 without propagation to downstream nodes. (b) Receiver operating charac-

teristic (ROC) curves for log2 induced attenuation of 0.5 and 2.0 without propagation to down-

stream nodes. Receiver operating characteristic (ROC) curves were constructed by treating

−log10 p-values from 0.0 attenuation as one class and −log10 p-values from 0.5 or 2.0 as the

other class. Green represents BONITA-PA, orange represents CLIPPER and blue represents

CAMERA in both a and b.

(EPS)

S1 Text. Characterization of equivalent rule sets.

(PDF)

S2 Text. Comparison of methods for [0, 1] transformation and binarization.

(PDF)

S3 Text. Determination of number of simulation steps in BONITA-NP for KEGG net-

works.

(PDF)

S4 Text. BONITA node impact score does not correlate with node centrality measures.

(PDF)

S5 Text. Comparison of BONITA-PA performance with CLIPPER and CAMERA in simu-

lated data without network propagation.

(PDF)

Acknowledgments

Stephen Constable wrote BONITA’s KEGG parser, and Arica VanderWal assisted with miic
application. We would also like to thank Lauren Benoodt, Atif Khan, Adam Cornwell, Raven

M. Osborn, Matthew N. McCall, David H. Mathews, Stephen Dewhurst, and Louis Smith for

useful discussions and feedback.

Author Contributions

Conceptualization: Rohith Palli, Juilee Thakar.

Data curation: Rohith Palli, Mukta G. Palshikar.

Formal analysis: Rohith Palli, Juilee Thakar.

Funding acquisition: Rohith Palli, Juilee Thakar.

Investigation: Juilee Thakar.

Methodology: Rohith Palli, Juilee Thakar.

Project administration: Juilee Thakar.

Resources: Juilee Thakar.

Software: Rohith Palli.

Executable models for pathway analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007317 September 3, 2019 18 / 21

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007317.s007
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007317.s008
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007317.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007317.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007317.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007317.s012
https://doi.org/10.1371/journal.pcbi.1007317


Supervision: Juilee Thakar.

Validation: Rohith Palli, Mukta G. Palshikar.

Visualization: Rohith Palli.

Writing – original draft: Rohith Palli, Juilee Thakar.

Writing – review & editing: Rohith Palli, Mukta G. Palshikar, Juilee Thakar.

References
1. Khatri P, Sirota M, Butte AJ. Ten years of pathway analysis: Current approaches and outstanding

challenges. PLoS Comput Biol. 2012; 8(2). https://doi.org/10.1371/journal.pcbi.1002375 PMID:

22383865

2. Ihnatova I, Popovici V, Budinska E. A critical comparison of topology-based pathway analysis methods.

PLoS One. 2018; 13(1):e0191154. https://doi.org/10.1371/journal.pone.0191154 PMID: 29370226

3. Martini P, Sales G, Massa MS, Chiogna M, Romualdi C. Along signal paths: An empirical gene set

approach exploiting pathway topology. Nucleic Acids Res. 2013; 41(1):1–10. https://doi.org/10.1093/

nar/gks866

4. Connor R, Jones LD, Qiu X, Thakar J, Maggirwar SB. c-Myc regulates P-selectin glycoprotein ligand-1

expression in monocytes during HIV-1 infection. J Leukoc Biol. 2017; 102(4):953–964. https://doi.org/

10.1189/jlb.6HI0217-043R PMID: 28663244

5. Thakar J, Hartmann BM, Marjanovic N, Sealfon SC, Kleinstein SH. Comparative analysis of anti-retrovi-

ral transcriptomics reveals novel effects of influenza immune antagonism. BMC Immunol. 2012.

6. Walsh ER, Thakar J, Stokes K, Huang F, Albert R, August A. Computational and experimental analysis

reveals a requirement for eosinophil-derived IL-13 for the development of allergic airway responses in

C57BL/6 mice. J Immunol. 2011; 186(5):2936–2949. https://doi.org/10.4049/jimmunol.1001148 PMID:

21289305

7. Liang S, Fuhrman S, Somogyi R. Reveal, a General Reverse Engineering Algorithm for Inference of

Genetic Network Architectures. Pac Symp Biocomput. 1998; 3:18–29.

8. Aki HA, Fi HL, Sebastiani P, Kohane IS, Ramoni MF. On Learning Gene Regulatory Networks Under

the Boolean Network Model. Mach Learn. 2003; 52:147–167. https://doi.org/10.1023/

A:1023905711304

9. Liu H, Zhang F, Mishra SK, Zhou S, Zheng J. Knowledge-guided fuzzy logic modeling to infer cellular

signaling networks from proteomic data. Sci Rep. 2016; 6(September):35652. https://doi.org/10.1038/

srep35652 PMID: 27774993

10. Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean Networks: a rule-based uncer-

tainty model for gene regulatory networks. Bioinformatics (Oxford, England). 2002; 18(2):261–274.

https://doi.org/10.1093/bioinformatics/18.2.261

11. Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA. Fuzzy Logic Analysis of

Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling. PLoS Comput Biol. 2009; 5(4).

https://doi.org/10.1371/journal.pcbi.1000340

12. Morris MK, Saez-Rodriguez J, Clarke DC, Sorger PK, Lauffenburger DA. Training Signaling Pathway

Maps to Biochemical Data with Constrained Fuzzy Logic: Quantitative Analysis of Liver Cell Responses

to Inflammatory Stimuli. PLoS Comput Biol. 2011; 7(3):e1001099. https://doi.org/10.1371/journal.pcbi.

1001099 PMID: 21408212

13. Tay JC, Tan P. Finding Intervention Points in the Pathogenesis of Dengue Viral Infection. In: 2006 Inter-

national Conference of the IEEE Engineering in Medicine and Biology Society. IEEE; 2006. p. 5315–

5321. Available from: http://ieeexplore.ieee.org/document/4463004/.

14. Trairatphisan P, Wiesinger M, Bahlawane C, Haan S, Sauter T. A Probabilistic Boolean Network

approach for the analysis of cancer-specific signalling: A case study of deregulated pdgf signalling in

GIST. PLoS One. 2016; 11(5):1–22. https://doi.org/10.1371/journal.pone.0156223

15. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, et al. Nanog safeguards pluripotency

and mediates germline development. Nature. 2007; 450(7173):1230–1234. https://doi.org/10.1038/

nature06403 PMID: 18097409

16. Bonzanni N, Garg A, Feenstra KA, Schutte J, Kinston S, Miranda-Saavedra D, et al. Hard-wired hetero-

geneity in blood stem cells revealed using a dynamic regulatory network model. Bioinformatics. 2013;

29(13):i80–i88. https://doi.org/10.1093/bioinformatics/btt243 PMID: 23813012

Executable models for pathway analysis

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007317 September 3, 2019 19 / 21

https://doi.org/10.1371/journal.pcbi.1002375
http://www.ncbi.nlm.nih.gov/pubmed/22383865
https://doi.org/10.1371/journal.pone.0191154
http://www.ncbi.nlm.nih.gov/pubmed/29370226
https://doi.org/10.1093/nar/gks866
https://doi.org/10.1093/nar/gks866
https://doi.org/10.1189/jlb.6HI0217-043R
https://doi.org/10.1189/jlb.6HI0217-043R
http://www.ncbi.nlm.nih.gov/pubmed/28663244
https://doi.org/10.4049/jimmunol.1001148
http://www.ncbi.nlm.nih.gov/pubmed/21289305
https://doi.org/10.1023/A:1023905711304
https://doi.org/10.1023/A:1023905711304
https://doi.org/10.1038/srep35652
https://doi.org/10.1038/srep35652
http://www.ncbi.nlm.nih.gov/pubmed/27774993
https://doi.org/10.1093/bioinformatics/18.2.261
https://doi.org/10.1371/journal.pcbi.1000340
https://doi.org/10.1371/journal.pcbi.1001099
https://doi.org/10.1371/journal.pcbi.1001099
http://www.ncbi.nlm.nih.gov/pubmed/21408212
http://ieeexplore.ieee.org/document/4463004/
https://doi.org/10.1371/journal.pone.0156223
https://doi.org/10.1038/nature06403
https://doi.org/10.1038/nature06403
http://www.ncbi.nlm.nih.gov/pubmed/18097409
https://doi.org/10.1093/bioinformatics/btt243
http://www.ncbi.nlm.nih.gov/pubmed/23813012
https://doi.org/10.1371/journal.pcbi.1007317


17. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT, Raychowdhury R, et al. Single-cell

transcriptomics reveals bimodality in expression and splicing in immune cells. Nature. 2013; 498

(7453):236–40. https://doi.org/10.1038/nature12172 PMID: 23685454

18. Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic

Acids Res. 2012; 40(17):e133. https://doi.org/10.1093/nar/gks461 PMID: 22638577

19. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes,

pathways, diseases and drugs. Nucleic Acids Res. 2016; 45(November 2016):353–361. https://doi.org/

10.1093/nar/gkw1092

20. Zhou W, Wang Y, Lu A, Zhang G. Systems pharmacology in small molecular drug discovery. Int J Mol

Sci. 2016; 17(2):1–16. https://doi.org/10.3390/ijms17020246

21. Thakar J, Pilione M, Kirimanjeswara G, Harvill ET, Albert RR. Modeling systems-level regulation of host

immune responses. PLoS Comput Biol. 2007; 3(6):1022–1039. https://doi.org/10.1371/journal.pcbi.

0030109

22. Mariani TJ, Qiu X, Chu C, Wang L, Thakar J, Holden-Wiltse J, et al. Association of Dynamic Changes in

the CD4 T-Cell Transcriptome With Disease Severity During Primary Respiratory Syncytial Virus Infec-

tion in Young Infants. J Infect Dis. 2017; 216(8):1027–1037. https://doi.org/10.1093/infdis/jix400 PMID:

28962005

23. Van Twisk D, Murphy SP, Thakar J. Optimized logic rules reveal interferon-γ-induced modes regulated

by histone deacetylases and protein tyrosine phosphatases. Immunology. 2017; 1.

24. Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for

RNA-seq read counts. Genome Biology. 2014; 15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29

PMID: 24485249

25. Bhatti G (2018). KEGGandMetacoreDzPathwaysGEO: Disease Datasets from GEO. R package ver-

sion 1.2.0.

26. Bhatti G, Tarca AL (2018). KEGGdzPathwaysGEO: KEGG Disease Datasets from GEO. R package

version 1.2.0.

27. Verny L, Sella N, Affeldt S, Singh PP, Isambert H. Learning causal networks with latent variables from

multivariate information in genomic data. PLOS Comput Biol. 2017; 13(10):e1005662. https://doi.org/

10.1371/journal.pcbi.1005662 PMID: 28968390

28. De Rainville F, Fortin F, Gardner M, Parizeau M, Gagne C. DEAP—Enabling Nimbler Evolutions. SIGE-

volution 2012; 6(2):17–26. https://doi.org/10.1145/2597453.2597455
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