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Abstract

Understanding long-term trends in marine ecosystems requires accurate and repeatable

counts of fishes and other aquatic organisms on spatial and temporal scales that are difficult

or impossible to achieve with diver-based surveys. Long-term, spatially distributed cameras,

like those used in terrestrial camera trapping, have not been successfully applied in marine

systems due to limitations of the aquatic environment. Here, we develop methodology for a

system of low-cost, long-term camera traps (Dispersed Environment Aquatic Cameras),

deployable over large spatial scales in remote marine environments. We use machine learn-

ing to classify the large volume of images collected by the cameras. We present a case

study of these combined techniques’ use by addressing fish movement and feeding behav-

ior related to halos, a well-documented benthic pattern in shallow tropical reefscapes. Cam-

eras proved able to function continuously underwater at deployed depths (up to 7 m, with

later versions deployed to 40 m) with no maintenance or monitoring for over five months and

collected a total of over 100,000 images in time-lapse mode (by 15 minutes) during daylight

hours. Our ResNet-50-based deep learning model achieved 92.5% overall accuracy in sort-

ing images with and without fishes, and diver surveys revealed that the camera images

accurately represented local fish communities. The cameras and machine learning classifi-

cation represent the first successful method for broad-scale underwater camera trap deploy-

ment, and our case study demonstrates the cameras’ potential for addressing questions of

marine animal behavior, distributions, and large-scale spatial patterns.

Introduction

Understanding species’ habitat use and biodiversity is central to ecology and conservation of

marine and terrestrial ecosystems, though these data are often some of the most difficult to
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gather. Terrestrial camera trapping is a growing field and a technique widely applied in global

biodiversity monitoring [1]. Camera traps are remotely activated cameras that usually trigger

based on the difference between background radiation and a warm-bodied animal passing

through the sensor’s field. They have been used primarily to study mammals and birds,

although the field is now expanding to include some ectotherms [2].

Camera traps are used to study species richness [2] and the distribution, abundance, habitat

use, and behavior of wildlife around the world, with many studies surveying more than one

species at a time [3]. Most camera traps are small, relatively inexpensive, and often deployed in

groups or networks over a wide area for months at a time. They are typically less invasive and

more reliable than comparable observation techniques [4].

Analogous techniques for monitoring underwater species face several operational chal-

lenges, chiefly the attenuation of infrared radiation in water, which renders a standard com-

mercial camera trap unlikely to trigger underwater, except at very close range [5], and the

rigors of operating in the marine environment where water intrusion and algal and faunal

fouling are persistent issues, especially in nearshore systems [6]. The fact that most fishes are

ectotherms further complicates use of the traditional heat-triggered infrared sensor technology

used in most terrestrial camera traps. Far-red illumination invisible to most fishes provides

one potential alternative to infrared [7], although far-red light still attenuates over short dis-

tances underwater. Given the ability of sound to propagate well underwater, acoustic tech-

niques provide another possible alternative to infrared sensing [5]. Acoustic cameras [8,9]

have been used in the past to image sharks and other fishes in low-light, turbid environments,

replacing light-based imaging entirely [10] for species that are morphologically distinct

enough to be differentiated in this manner [11]. This suggests that specific acoustic cues could

also be used to trigger conventional optical cameras [12], although this would have limited

applications outside of underwater camera trapping.

Due to the power requirements of active triggering (far-red light, sonar) and recording

methods, most current underwater fish monitoring and measurement techniques are either

limited by short battery life and operate on the scale of hours, as with baited remote underwater

video (BRUV) and similar short-term recording devices [7,13–17], or require a tethered, exter-

nal power source [18,19]. Because of this, the spatial extent, number of cameras, and duration

of monitoring for marine systems are vastly smaller in scope than terrestrial efforts (compare

the work of Williams et al. [7] and Siddiqui et al. [20] to the TEAM [21] or Snapshot Serengeti

[22] datasets). Even long-term underwater monitoring with an external power supply may be

limited to recording images or video during daylight hours [18] due to the difficulties of avoid-

ing reflected particulate matter in underwater images taken at night with direct illumination.

Without a side-mounted flash or otherwise indirect lighting, both white light and infrared

images may be obscured by the illumination of biotic and abiotic particulates suspended in the

water column, although optical backscatter filters and other multispectral image processing

techniques can improve image quality in low-light and/or turbid environments [23,24]. Contin-

uous illumination may also attract fishes and other marine organisms, depending on the color

of the light [25]. Thus, long-term underwater observations are limited with regard to both

power and nighttime illumination, and available solutions (e.g., batteries, specialty lighting rigs)

are expensive. Both monetary costs and logistics can limit deployment of underwater cameras

in remote locations without access to external power or consistent upkeep.

A related challenge faced by both terrestrial and marine camera traps is the time cost related

to processing and analyzing large photosets obtained from multiple cameras over the course of

months or years [22]. Applications of computer vision are growing in the field of camera trap-

ping. They have the potential to reduce time cost [2] and have already been successfully applied

to the extensive Snapshot Serengeti camera trap dataset [22] as well as images and video frames
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from cabled observatories or short-term marine cameras [18–20,26–28], long-term GUARD1

cameras on marine floats [29,30], and autonomous underwater vehicles [31].

Here we present a simple design for an affordable, long-running, autonomous underwater

camera based on an existing commercially-available terrestrial model. We outline the deploy-

ment of our Dispersed Environment Aquatic Cameras (DEACs) across a 270 km2 tropical

reefscape, our testing, and our subsequent analysis of the 100,000+ images obtained by imple-

menting a deep convolutional neural network (CNN) technique for image classification. To

demonstrate both the efficacy of our design and the value of long-term unmanned underwater

observations to marine ecology research, we present a case study in fish feeding behavior as it

relates to a well-documented benthic pattern at Lighthouse Reef Atoll, Belize of sand halos

around coral heads [32,33].

Halos consist of a bare sand or lightly vegetated border surrounding a coral patch or similar

underwater structure that separates the reef from surrounding dense vegetation (i.e., seagrass

or algae). The heightened grazing observed inside these halos could be due to a landscape of

fear [34], where herbivores are afraid to venture past a threshold distance from the reef due to

predation risk [35]. However, this threshold of fish density could also be due simply to the nat-

ural dispersion of grazers and other fishes as they venture farther from the reef, which serves

as a central aggregating structure for many species [36–38]. We proposed that if a strong land-

scape of fear is in effect, herbivorous species observed and photographed in the halo will never

venture out into the surrounding seagrass, except perhaps when traveling in schools. However,

a simple drop-off in fish density with distance would still result in the occasional grazing reef

fish being seen by our cameras, and if reef fishes are food limited rather than predator limited,

they should forage widely in the seagrass, which is a preferred food [39]. Therefore, regular

detection of reef herbivores out in the seagrass over multiple months could be taken as evi-

dence refuting the landscape of fear at Lighthouse Reef.

Methods

Design

Camera selection. Cuddeback Silver Series scouting cameras, model 1231 (Cuddeback,

Green Bay, WI, USA), were chosen for their compact size, their relatively high 20 megapixel

(MP) image resolution, and their time-lapse function, which allows images to be taken at pre-

programmed time intervals and certain light levels without requiring the use of additional

video or motion-triggered image settings. Since infrared motion triggering does not function

well in the underwater environment, the presence of a time-lapse option was critical and is

increasingly available in terrestrial trail cams. The cameras were programmed to take one 20

MP image every 15 minutes whenever ambient light levels were high enough to allow for color

photography without flash, using the “Day” setting. Nighttime images and video and all infra-

red sensor-triggered images and video were disabled to conserve both power and memory

space because initial field tests showed that few or no additional usable images were captured

using the infrared, low-light “Night” setting.

All cameras deployed throughout the study period were synchronized to record photos on

the hour and every 15 minutes following to ensure that images from different cameras and

sites were captured at the same time of day and under the same local conditions. The 15-min-

ute interval was chosen to balance the need for regular observations of reef and seagrass com-

munities that may include transient fish species and the constraints of storing and processing

thousands of high-resolution images collected by multiple cameras over a months-long

deployment. The ability of this interval to adequately capture the community composition and

species present at a given reef was validated using in-person diver surveys (described below).
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Memory cards were 32 GB SanDisk (Western Digital Corporation, Milpitas, CA, USA) or

Kingston (Kingston Technology Corporation, Fountain Valley, CA, USA) microSD cards with

adapters, capable of holding over 25,000 20 MP color images each. Each camera required eight

Energizer Ultimate Lithium AA batteries (Energizer Holdings, Inc., St. Louis, MO, USA),

which provided enough power for over five months of continuous function under the settings

described here.

The total cost of each camera, including the batteries and SD card, came to just $125 per

unit with the housing (discussed below). The use of pre-built commercial trail cameras, which

are designed for energy efficiency over long deployments, significantly reduced both material

and energy costs, relative to constructing a similar camera from scratch using components like

a Raspberry Pi (Raspberry Pi Foundation, Cambridgeshire, UK) and GoPro (GoPro, Inc., San

Mateo, CA, USA), Canon (Canon, Inc., Ota City, Tokyo, Japan), or Sony (Sony Corporation,

Minato City, Tokyo, Japan) cameras, as used in previous underwater camera applications

[7,15,16,20,26].

Housing construction. Two housings of different materials were tested in the field, both

based on commercially available junction box enclosures. Housing 1, based on item DS-AT-

1217-1 available from “Saipwell” (Saip Electric Group Co., Ltd, Wenzhou, China), has thinner

walls (2.4–3.9 mm) made of an unspecified plastic. The top secures with specially-shaped plas-

tic screws and it contains an O-ring-like insert made of foam. Housing 2, based on model ML-

47F�1508 from Polycase, Inc. (Avon, OH, USA), is a thick-walled (3.5–4.0 mm) design made

of polycarbonate resin secured with stainless steel screws and a silicon rubber gasket. Both

housings had a 2-inch diameter hole drilled in the faceplate and a 3-inch disk of 1/8 inch thick

acrylic epoxied to the opening with MarineWeld (J-B Weld Company, Atlanta, GA, USA) to

act as a window. Since both housings used identical acrylic windows and contained the same

cameras, images collected using each design were indistinguishable; the chief difference

between the housings was their pressure tolerance and leakage at depth. Each housing cost

approximately $30 for all components (included in the total price given above). Ablative anti-

fouling boat paint was applied to the housing exterior, excluding the back and acrylic window,

of a subset of cameras with Housing 2 to reduce biofouling.

Cameras were programmed, armed, and packed inside their housings with cardboard spac-

ers. Housings were sealed with Star brite marine silicone sealant (Star brite, Fort Lauderdale,

FL, USA) around the seam of the enclosure lid. Silicone sealant was also used to reinforce the

edges of the epoxy seal around the lens window, both inside and outside.

Field installation. Cameras were secured to four-legged bent rebar stands with plastic

cable ties threaded through mounting holes pre-built into the housings (Fig 1). Due to their

buoyancy, camera housings were placed underneath the crossed rebar forming the top of each

stand and secured laterally to the four legs, which were sunk into the sediment to keep the

stands upright. Lightweight plastic or polystyrene buoys were tethered to a small subset of cam-

eras and stands located in particularly shallow water (2 m or less) to prevent collision by boats.

Deployment

Study system. Lighthouse Reef Atoll off the coast of Belize is primarily a shallow (1–8 m

depth) lagoon environment, dominated by scattered patch reefs interspersed with a mosaic of

seagrass, macroalgae, and sand [40]. Although relatively isolated from the mainland, the atoll is

subject to heavy local fishing pressure for conch, lobster, and certain fish species. A small no-

take marine protected area (MPA) surrounds the island of Half Moon Caye in the southeastern

corner of the atoll. Because of its shallow benthos, wide variety of benthic cover types, and spa-

tial variation in protected status, Lighthouse Reef provides an ideal location to test our DEACs
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under a variety of conditions. The shallow marine grazing system of Lighthouse Reef and simi-

lar Caribbean locations is in many ways analogous to terrestrial grazing systems like the African

savanna [41], where camera trap networks have been effectively deployed for years [22].

To structure our testing and demonstrate the utility of the DEACs for addressing ecological

questions at large spatial scales, we organized our deployments around detection of herbivo-

rous fishes grazing in coral reef halos at Lighthouse Reef. Grazers at Lighthouse Reef are mostly

large parrotfishes (Scaridae) and surgeonfishes (Acanthuridae). These diurnal herbivores read-

ily consume seagrass when it is provided to them within the halo surrounding a reef [39]. We

conducted nighttime observations and grazing assays (see [39]) to ascertain that nocturnal

grazers like urchins were not particularly active at our sites. We deployed our DEACs in a

paired design that allowed us to monitor the reef and halo as well as the surrounding seagrass

or macroalgae at multiple sites to determine whether these herbivorous reef fishes regularly

venture into the surrounding seagrass to feed and are simply more abundant in the halo due to

its proximity to the reef or if they are constrained to the reef and adjacent halo by predation (a

landscape of fear).

Spatial arrangement. Cameras were deployed in pairs at 21 patch reef sites within Light-

house Reef Atoll. Deployments occurred asynchronously between March 2018 and March

Fig 1. DEACs deployed on four-legged rebar stands in the field. Plastic cable ties attached to the camera housing and to the legs were used to

secure buoyant cameras in housings below the crossed rebar at the top of each stand. Bottom left inset: A detailed front view of a camera in Housing

1 underwater. Reprinted from [39] under a CC BY license with permission.

https://doi.org/10.1371/journal.pone.0263377.g001
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2019 (S1 Fig), and a total of 28 individual cameras were used across all deployments, with

some cameras deployed multiple times. The majority of sites were occupied by cameras

between June and August 2018, with the longest deployments lasting over 5 months (August 7,

2018 to January 12, 2019). DEAC sites were distributed evenly inside and outside of the Half

Moon Caye Natural Monument MPA in the southeastern corner of the atoll. Seven sites (3

inside the MPA, 4 outside) featured predominantly algal bottom cover; the rest were in areas

surrounded by seagrass, primarily Thalassia testudinum. Patch reef sites for camera deploy-

ment were chosen via random point placement using satellite imagery and a depth map of the

atoll (courtesy of the Carnegie Airborne Observatory), which allowed sites to be evenly strati-

fied across depths from 2–7 m.

Sites deeper than 4 m were initially avoided due to leakage of Housing 1 past this depth,

although depths of up to 7 m (maximum depth required in the study) were successfully

achieved with Housing 2, which was used for initial deployments in March 2018 and all

deployments from August 2018 onward. Cameras were deployed in sets of two, one camera

located at the edge of the sandy halo surrounding a patch reef and the other located at least

twice the halo’s width away from the edge in the surrounding seagrass or algal benthic cover

(Fig 2). In the case of particularly narrow halos, “control” cameras were placed a minimum of

15 m from the halo edge. This allowed control cameras a view of the same bottom cover (sea-

grass or macroalgae) as that adjacent to the halo but placed them well beyond the fish density

thresholds observed by Layman et al. [38], while also accounting for the possibility that larger

halos could represent reefs with larger or farther-ranging fish populations. “Halo” cameras had

a relatively wide field of view, as is typical of terrestrial trail cameras, which included both the

halo in front of them and the patch reef beyond. Both cameras were pointed toward the reef,

although the edge of the halo was beyond the range of view for the grass (“control”) camera at

most sites. Camera orientation with regard to compass direction was varied between sites dur-

ing deployment, although both cameras at any given location were oriented in the same

direction.

Monitoring and secondary deployments. Camera deployments occurred in stages, with

the first cameras deployed in March 2018 and the last cameras collected in March 2019 (S1

Fig). The longest-running DEACs remained continuously active underwater for five months

(see above) and were still operating at retrieval. Initial deployment of cameras in March 2018

included one camera at the edge of a halo and a second camera pointed at the first in order to

assess whether the presence of the camera and stand had any effect on the presence or behavior

of fishes. No obvious confounding effects of camera presence were noted in this initial test

(neither herbivores nor large predators aggregated around the camera structure, the same spe-

cies were photographed near the camera and in other parts of the halo, etc.), so doubling of

cameras in this manner was discontinued for future deployments. For all subsequent deploy-

ments (March 2018 onward), the two cameras at each site were positioned to monitor different

benthic environments and unable to see each other. Diver observations while cleaning and

monitoring cameras in the field over the duration of this study supported our initial conclu-

sion that reef fishes largely ignore cameras, except to occasionally eat algae off the structures,

as they do with any other hard substrate in the halo. During the summer of 2018 (June to

August), cameras were consistently checked every 1–2 weeks for leakage, algal overgrowth, or

stand displacement. Cameras deployed at longer intervals from March to June 2018, August

2018 to January 2019, and January to March 2019 were unmonitored during these periods in

order to test long-term underwater function and determine the effects of biofouling on hous-

ings and image quality in the absence of cleaning or regular adjustments.

Diver observations. In-water observations were conducted by a team of 2–3 divers at each

camera site and at several additional locations in order to validate the cameras’ ability to detect
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fishes and other animals. Observations consisted of all divers sitting directly behind each camera

for 15 minutes and recording the presence and abundance of all fishes and other animals

observed on the reef, in the halo, or in the grass to the genus or species level, when possible.

Divers faced forward toward the reef and recorded all fishes observed within the halo or on the

reef itself, as this was the primary field of view of the camera. In the seagrass or macroalgae,

divers again faced toward the reef and recorded only fishes that swam in front of them and the

camera. Divers remained stationary for the entire observation period at each camera. Fish spe-

cies and counts were determined by a consensus of all the divers present at each observation.

Fig 2. Camera arrangement at a patch reef site. One camera was placed on the edge of the halo facing in toward the reef (“Halo Cam”), while the second (“Control

Cam”) was placed twice the halo’s width away in the surrounding seagrass or algal cover, in line with the first camera. Modified from [39] with permission.

https://doi.org/10.1371/journal.pone.0263377.g002
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Fish counts were recorded by divers as 1 individual, 2–3 fish, or 5 or more (coded as 1, 3, and

5), which could under-represent species for which there were many individuals at a given site.

In practice, the majority of fishes observed by divers were solo or in small groups.

Data analysis

Community composition. A non-metric multidimensional scaling (NMDS) analysis was

run on species communities inside and outside of the halo using data from diver observations

at 20 camera sites and image analyses from 18 of these cameras. For each camera, 3 images

taken before, during, and after diver observation (15-minute intervals) were analyzed, for a

total of 54 images. Only images from immediately before, after, and during diver observations

were used for comparison in order to control for natural variation in fish communities over

time, since the main goal of the comparison was to assess the ability of the cameras to capture

known community composition at a given location and time. All fishes in this subset of images

were identified to the genus or species level by the same divers who conducted the in-water

observations. Species recorded in images from all three time points (before, during, and after

divers) were pooled for each site to determine presence or absence. The NMDS used a Søren-

sen distance matrix calculated through the binary version of the “bray” method in vegan’s veg-

dist function [42] and was based on species presence or absence at each site, not abundance, to

reduce the chances of “double counting” the same individual fish in successive images and to

limit effects of the binned counts recorded by the divers. Fish counts across different habitat

types and methods (divers and cameras) were also compared with a two-way PERMANOVA,

using the adonis function in vegan [42]. To determine whether divers had any effect on fish

presence, counts from images captured before, during, and after diver observations were com-

pared using a nonparametric Friedman rank sum test. All analyses were conducted using R

statistical software version 4.0.3 [43] with packages qdap [44], reshape [45], rstatix [46], and

vegan [42].

Image sorting. Images from the larger dataset encompassing all cameras were initially

named and sorted by location, time, and date using the camtrapR [47] package in R [43]. A

subset of over 13,000 images were sorted by trained undergraduate student volunteers into cat-

egories containing at least one visible fish (“Fish”) and without any visible fishes (“NoFish”).

To ensure consistency, all volunteers were initially trained on the same subset of ~300 images

drawn from multiple different cameras and their accuracy assessed by the research team before

they were assigned a larger subset of images to sort individually. Due to the nature of timed

rather than motion or heat triggered photos, many images did not contain fishes.

Model choice. In order to streamline future analyses of fish photos and reduce the need to

manually classify over 80,000 images, we built and trained a CNN based on ImageNet pre-

trained ResNet-50 [48], a deep residual network widely used in image classification. Deep

CNNs (i.e., those with many layers) are important tools for visual recognition tasks but may be

hard to train because of vanishing gradients and degradation. The residual network (“ResNet”)

approach solves this by explicitly allowing stacked layers to fit a residual mapping instead of

directly fitting a desired underlying mapping, which enables neural network architectures to

go deeper [48]. In our application, ResNet allowed us to learn Fish/NoFish representations

from a noisy and relatively small dataset. We chose ResNet as our base structure because we

wanted conservative results in classifying fish pictures. ResNet is powerful at preventing over-

fitting, making it less likely to omit pictures containing fishes. The reproducible code was

implemented in Pytorch [48–50] to identify images with animals (Fig 3). It took roughly twelve

hours to train the ResNet model for 50 epochs on a custom-built desktop PC with a single Nvi-

dia RTX 2080 GPU, Intel i9-9900k CPU, and 32 GB of RAM.
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Training and validation. Our model was trained on a sample of 10,727 images sorted by

our team of trained volunteers and then run on 75,470 additional images to sort them into

“Fish” and “NoFish” categories, based on the model’s calculated probability of each image con-

taining at least one fish. To augment the training set, we preprocessed the fish images with spa-

tial transformations, cropping and lightening variation, and used focal loss [51] as an objective

function to address the problem of imbalanced labels. The model’s accuracy was validated by

comparing the categories produced by sorting above and below 0.5 probability with the actual

“Fish” and “NoFish” designations assigned to 2,702 images hand-sorted by trained volunteers.

Image analysis. Images with a “Fish” probability of 0.5 or above were used to determine

the relative presence of fishes at camera sites inside and outside of the Half Moon Caye MPA,

in different habitat types (reef/halo vs. seagrass/algae), and at different times of day. Detection

is an imperfect proxy for actual fish presence [52], so these comparisons could represent differ-

ences in occupancy, changes in behavior, or other unknown factors. This analysis of fish detec-

tions was conducted based on the relative proportions of the total images classified that did or

did not contain fishes inside and outside of the MPA and at patch reef and seagrass/algae loca-

tions, compared using the prop.test function in R [43]. The null hypothesis was that both

groups in each test should have equal proportions of images containing fishes. Only predic-

tions from images taken within the first month of deployment were used in these analyses to

account for the varying degradation in image quality (and resulting increased potential for

misclassification) due to biofouling at different sites. Trends in fish detection probability

across different times and locations were visualized using ggplot2 [53].

Results

Camera performance in the field

Cameras and housings. Housing 1 proved vulnerable to flooding at depths exceeding 4 m

and prone to leaking even at shallower depths. This appears to be due primarily to the thin

nature of Housing 1’s walls and lid, which deformed substantially under pressure, breaking the

epoxy seal with the lens and allowing water to enter. Housing 2 proved far more robust to

Fig 3. Empty (left) and fish-filled (right) images captured at the same camera site within 24 hours. The empty or “NoFish” photo was assigned only a 0.09

probability of containing a fish by our ResNet-50 model, whereas the model predicted a 0.88 probability of the second photo containing at least one fish, hence

its “Fish” designation. Probabilities like these were used to sort images into “Fish” and “NoFish” categories to streamline further analysis. Reprinted from [39]

under a CC BY license with permission.

https://doi.org/10.1371/journal.pone.0263377.g003
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pressure and had minimal leakage even at a maximum deployed depth of 7 m over multiple

months. Further testing with this housing will be necessary to determine its maximum func-

tional depth, but preliminary tests with a revised housing design have reached depths of 40 m.

The cameras themselves proved resilient to flooding and were typically still armed and tak-

ing photos when extracted from partially-flooded housings. However, many cameras recov-

ered from flooded housings were unable to be redeployed due to lasting damage to their

internal systems. Batteries were sufficient to power the cameras past the five-month extraction

date of our longest deployment, with all non-flooded cameras still displaying the starting bat-

tery status of “OK” (not “LOW” or “DEAD”). Maximum water temperature measured at any

of our deployment sites, which could affect battery life, was 30˚ C (86˚ F). Cuddeback adver-

tises that their cameras can operate up to 12 months continuously with efficient battery usage.

Memory cards were more than sufficient to store images on the schedule that they were col-

lected during this period (approximately 8.5 GB of images over 5 months), suggesting that

image frequency could be doubled or tripled in future deployments, assuming that processing

of these additional images is sufficiently streamlined with the use of computer vision or similar

techniques.

Biofouling. The most significant impediment to long-term camera function at our sites

was biofouling, the growth of marine organisms over the camera housing and stands. Image

quality declined rapidly due to biofouling, making fish identification impractical in as little as

one month depending on site conditions (S2 Fig), with a median value of two months endur-

ance, although imagery from some cameras remained usable up to four or five months after

deployment. This biofouling decreased both fish detections in images and the ability of our

model to accurately classify images taken by biofouled cameras (S3 and S4 Figs). Algal grazing

by fishes was an important factor reducing fouling on cameras and stands placed near patch

reefs, while cameras placed in seagrass or algae beds away from patch reefs were overgrown

with algae over the same deployment period that halo cameras remained relatively unob-

structed (Fig 4). The addition of antifouling boat paint to the camera housings before the

August 2018 deployment appeared to be only a minor deterrent to organisms growing on the

Fig 4. Comparison of biofouling and algal overgrowth after a month based on location. Structures were located at the edge of the halo, adjacent to seagrass

(left), and in the middle of the surrounding seagrass (right). Similar results seen across all camera sites suggest that reef-based herbivores help to control algal

growth both within and at the edges of the halo but do not graze heavily, if at all, on algae and related marine organisms in the surrounding algal or seagrass

beds. Reprinted from [39] under a CC BY license with permission.

https://doi.org/10.1371/journal.pone.0263377.g004
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housing in general and did not prevent the camera lens window from being almost completely

obscured 2–3 months after deployment. In addition to biofouling, camera function was also

limited by reduced visibility at certain sites, which varied based on local turbidity and light

availability, and by depth.

Image classification and accuracy

Of the 130,621 images collected, 88,899 were deemed usable (68%) based on a visual examina-

tion, despite some level of biofouling in many of these. Images were included in the model if

the researchers could still visually distinguish the shapes of fishes, the reef, and other underwa-

ter features despite the biofouling. The ability to identify individual species was impaired in

the most heavily fouled images we included, but this was not a primary goal of our particular

model. Since the determination regarding image quality was made by humans, it is possible

that the threshold at which we considered an image unusable was not the optimal cut-off point

for the processes used by the model to evaluate image content. Our ResNet-50 model had an

overall accuracy of 92.5% when classifying these images into “Fish” or “NoFish” categories,

with higher accuracy in identifying empty or “NoFish” photos, likely due to the increased

number of these in the training dataset (Table 1). The training and validation sets of manually

classified images together made up approximately 15% of the total usable images obtained

from the cameras.

Accuracy is determined by comparing the computer’s prediction for each image with the

actual label of “Fish” (image contains at least one fish or similar animal) or “NoFish” (image is

empty) assigned to the photo by a team of trained volunteers. The model was trained on

10,727 images classified by volunteers and then validated with an additional 2,702 human-

sorted images, the results of which are shown in this table. Prediction accuracy is higher for

“NoFish” (empty) images, likely due to the higher proportion of this type of image in both the

training and validation datasets.

Community composition

Comparison with diver observations. Large compositional differences were identified

between the halo/reef and seagrass/algae fish communities, which were reflected in both the

diver species observations and those from camera images (NMDS; Fig 5), although each

45-minute set of three images consistently contained fewer fishes than were observed by divers

during a 15-minute period at the same site. An ANOSIM conducted on the NMDS output

showed a significant difference between the halo/reef and seagrass/algae communities

(R = 0.68, p<0.001), which was reflected in both the camera and diver species observations.

The PERMANOVA revealed significant differences between diver and camera methods

(F = 3.92, df = 1, p = 0.002) and between habitat types (F = 7.15, df = 1, p<0.001), as well as an

interaction between the two (F = 2.31, df = 1, p = 0.028). Overall, there was no significant effect

of diver presence (before, during, or after) on fish counts from the cameras (Friedman rank

sum test p = 0.15, Kendall’s W = 0.09).

Table 1. Accuracy of model predictions.

True Image Designation Correct Predictions Incorrect Predictions Percent Accuracy (%)

Fish 444 165 72.9

NoFish 2057 36 98.3

All images 2501 201 92.5

https://doi.org/10.1371/journal.pone.0263377.t001
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Fish distributions. The fish detection counts based on camera data revealed that the pro-

portion of images with fishes was 32% higher in halos compared to seagrass or algae camera

locations (χ2 = 4892.2, df = 1, p<0.001). Fish counts were 38% higher in algae environments

than in seagrass (χ2 = 5298.3, df = 1, p<0.001), which could represent the actual presence of

animals in these habitats or might reflect differences in the ability of humans and human-

trained computer vision to distinguish small fishes in the denser seagrass cover. Protected sta-

tus also had a smaller but significant effect, with a 6% increase in the proportion of photos

Fig 5. Non-metric multidimensional scaling (NMDS) based on presence/absence data. Points represent 20 individual site observations by divers or 3

pooled images from 18 given sites and are colored purple for halo/reef cameras and dark green for seagrass or algae cameras. ANOSIM of this NMDS

output found a significant difference between halo/reef (purple) and seagrass/algae (green) communities (R = 0.68, p<0.001). Dots represent diver

observations, while triangles represent camera images. Both diver and camera observations reflect the same clear difference between fish communities on

the reef and those in the seagrass. See S5 Fig for a stressplot of this NMDS.

https://doi.org/10.1371/journal.pone.0263377.g005
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with fishes within the MPA, compared to outside the MPA (χ2 = 174.09, df = 1, p<0.001).

Analysis of camera locations relative to both benthic cover (i.e., reef/halo or algae/seagrass)

and protection status (inside or outside MPA) revealed that fish detection is always higher in

halos than in seagrass or algae communities at Lighthouse Reef, and the number of fishes in

each community type is relatively higher inside the MPA (Figs 6 and 7). Fishes were

Fig 6. Proportion of images containing fishes at halo and grass/algae sites inside and outside of the Half Moon Caye MPA. Halo sites are represented in

shades of purple, seagrass/algae sites in shades of green. Each bar is a proportion based on the n for that treatment. Error bars represent ± 1 standard deviation

from the binomial distribution, scaled by the respective n for each treatment.

https://doi.org/10.1371/journal.pone.0263377.g006
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consistently more abundant around reefs and halos than in surrounding vegetation. However,

there may also be a seasonal effect, with fewer fishes detected in seagrass environments during

the fall and winter (October through February), while fish detections in halos increased during

this time (Fig 7).

A preliminary analysis of diver observations from 20 camera locations as well as an addi-

tional 60 images from those sites did not contain a single instance of an herbivorous reef fish

(surgeonfish and all adult parrotfish except for Sparisoma radians) outside of a halo. Predatory

fishes, including barracuda (Sphyraena barracuda) and multiple species of jacks (Caranx spp.),

were seen in both the reef/halo and seagrass/algae environments at different sites. Snappers

(Ocyurus chrysurus, Lutjanus spp.) were seen primarily on the reef.

Discussion

Camera performance

Deployment duration and function. Underwater camera traps proved to be energy-effi-

cient, durable, and capable of producing large volumes of quality images representative of the

fish communities at their locations. The DEAC camera trap design is a reliable, cost-effective,

and easy-to-implement solution allowing the expansion of terrestrial camera trapping tech-

niques to shallow marine environments. The set-up can easily be used to vastly expand the

capability of BRUVs and associated techniques [13–15] and can also provide marine observa-

tions over periods of months. In addition to being long-term and more scalable, un-baited

camera traps such as these may be more accurate than BRUVs in their estimation of popula-

tion and community composition [54] and allow the use of random encounter models for

occupancy that are widely used with terrestrial camera traps [52].

Fig 7. Time series showing smoothed data from 40 different cameras deployed asynchronously between March 2018 and March 2019. (A) Fish probabilities for

individual images in halo/reef and seagrass/algae habitats by time of day. Probabilities ranged from 0 to 1 for this dataset, but smoothing visually compresses the highest

and lowest probability values on the graph. (B) Fish probabilities for images by date, showing variation over the course of one year at Lighthouse Reef Atoll. Trend lines

for all groups were generated using the geom_smooth function with method “loess” in ggplot2 [53]. Light gray shading represents 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0263377.g007
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Camera placement and orientation is an important consideration when deploying DEACs

in the field, and the ideal placement may vary with geographic location, season, target time of

day, water quality, and shading from local structures like patch reefs or docks. The cameras

have no observable effect on the behavior of marine animals and may therefore be used to doc-

ument species that typically evade divers. Even cameras that are “cleaned” by herbivorous

fishes in the halo do not appear to attract any more attention than natural patches of algae or

coral rubble. They are also capable of remaining underwater at depth for long periods and

recording high volumes of photo or video observations—our longest running cameras were

deployed for 5 months, captured over 7,500 images each, and still had battery life to extend to

a year. The exceptional duration and the ability to capture vast numbers of images, and to

automatically recognize photos with fishes (see below) gives the capability to not only provide

a continuous record of rare species behaviors or visits by transient species that divers would

miss or only observe by chance, but also, for the first time, to record changes in behavior, rela-

tive abundance, and migrations across seasons and lunar phases. DEACs are flexible in their

ability to record both photo and video at a variety of time intervals suitable for addressing dif-

ferent ecological and behavioral questions.

Comparison to existing methods. DEACs offer significant advantages over existing

underwater camera options for remote, shallow marine environments, as well as surveys by

divers. While the longer time interval chosen for our extended duration field tests did not cap-

ture as many individual fishes in each image as divers recorded during the same 15-minute

period corresponding to a single photo, analysis of synchronous diver and camera observations

at different sites demonstrated the ability of both methods to capture differences in community

composition between distinct benthic environments (Fig 5). These compositional differences

also support the placement of the halo and control cameras at each site, suggesting that the cam-

eras were separated enough to capture these different adjacent community types while remain-

ing close enough to control for local site conditions. The only group of animals observed by

divers that were not well captured by DEAC images were schools of roving juvenile fishes and

small parrotfishes that camouflage well within seagrass and algal environments and are best

detected through movement, which may have contributed to the interaction between habitat

type and observation method detected by the PERMANOVA. The inability of the camera

images and corresponding CNN to identify these fishes may be due to a combination of more

limited image quality in these turbid environments and the inability of human sorters (on

whose data the CNN was trained) to distinguish these small fishes later in a static image. Since

these species are neither threatening predators nor significant grazers on seagrass or foliose

macroalgae [55,56], their detection or inclusion in fish community composition was relatively

unimportant for addressing the question used here to assess DEAC utility. However, for appli-

cations where detection of these species or similarly small or cryptic organisms is important,

use of short video clips in place of still images (an option readily enabled with the DEAC design)

could increase the ability of both humans and machines to detect these animals through motion.

Because of their long deployment time, the DEACs captured differences inside and outside of

the MPA that were not revealed by the diver observations, as well as changes based on time of

day and season (Fig 7), which are hard to quantify with a limited number of diver surveys.

The current duration of camera operation is over an order of magnitude longer than the

operational duration achieved by similar non-tethered underwater cameras [7,20], even with

biofouling seriously impairing image quality after 1–2 months (S2 Fig). To the best of our

knowledge, these are the first such underwater camera traps to be affordable (<$200 per unit),

power-efficient (therefore deployable over the span of months) and also self-contained, with-

out the challenges imposed by a surface-tethered external power source, which typically pre-

cludes deployment in remote regions and at multiple sites over large areas.
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The most closely related marine camera application to the DEACs is GUARD1 [29,57,58],

an autonomous camera trap also operating on a time-lapse and for similarly long durations

(48,298 images over 5.5 months [58]), which uses on-board image recognition and classification

to detect gelatinous zooplankton in open waters. While GUARD1 is also a “low-cost” solution,

the price of just the commercial camera used in the GUARD1 system is more than the entire

DEAC set-up, including housing, memory, and batteries. This makes the DEAC design more

suitable for deploying networks of many individual cameras over a large area and for study

designs involving pairs or groups of cameras in close proximity. DEACs are inexpensive and

easy to assemble, allowing many of them to be quickly deployed to address a variety of ecologi-

cal questions, while GUARD1 units are individually more costly, complicated to build, and cur-

rently engineered to address a very specific monitoring challenge. DEACs and GUARD1 are

designed for different marine environments and applications, with GUARD1 optimized to

detect specific zooplankton [29] and potentially also fishes [30] in open water, while DEACs are

suitable for detecting fishes and other marine animals, changes in habitat or other ecosystem

features, and general monitoring in shallow, nearshore benthic environments, extending the

kinds of landscape-level data taken with terrestrial camera traps into the marine realm.

Future improvements. The greatest immediate limitation to the DEAC design is the

inability to prevent or seriously reduce biofouling without periodic manual cleaning of the

cameras, although the magnitude of this challenge may be location-specific. Biofouling is a

common problem with unsupervised underwater monitoring equipment [59], with multiple

solutions proposed to control it [6], including local chlorination [59,60], copper sheeting and

mesh, UV radiation [61], and wipers [62]. Ongoing tests of camera and housing design are

incorporating these methods to reduce biofouling by marine organisms and extend the func-

tional life of the lens window to better reflect the power and storage capabilities of the camera.

Preliminary tests of a similar camera design in Hawai’i suggest that the extreme biofouling

observed at Lighthouse Reef is not representative of all such reef environments and may be

related to especially high productivity and suspended organic matter in the water column at

this location. Simple monthly cleaning of the lens with a saltwater aquarist’s sponge is another

remedy if revisitation is possible.

While both the batteries and memory cards we employed were sufficient for the deploy-

ment duration and image capture frequency tested, the inability to utilize memory cards with

greater than 32 GB of storage in Cuddeback cameras is problematic with a more frequent time

lapse interval or in the case of short videos collected in place of single images. Therefore, opti-

mizing and expanding both power and data storage capacity of these cameras via commercial

means (cameras with larger SD storage capability) or noncommercial modifications is another

potentially valuable direction for future research. For example, SD Ultra Capacity (SDUC)

storage media currently affords 2 TB of storage, vastly expanding the capability of underwater

camera traps for either smaller time intervals between images or multi-year deployments.

Indeed, large storage capacity may obviate the need for camera triggering, making time-lapse

or video with on-board object recognition (as used in GUARD1 [29]) a superior alternative,

giving the ability to capture even rare or transient species while effectively using the millions of

potential images generated. Design improvements currently in progress focus on reducing bio-

fouling, extending the depth range of the camera housings to over 50 m, and implementing an

external flash or other nighttime illumination.

Image analysis

The success of our initial image sorting using the CNN ResNet-50 illustrates the power of

machine learning and computer vision techniques to drastically reduce time and cost when
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dealing with large image sets in marine environments. Our ability to use this trained model to

pre-sort images with high accuracy before attempting further analysis via manual or autono-

mous machine-learning based methods also reduces the cost of the most disadvantageous

aspect of our timed image capture method: the number of frames with no objects of interest to

the current study. Now that datasets obtained from this and similar shallow marine environ-

ments can be easily sorted to exclude non-target images, future underwater camera trap proj-

ects using a similar time-lapse method will be able to quickly remove the majority of empty

frames, while retaining the ability to measure frequency of detection events and variations in

fish presence by time of day, season, or other environmental variables by comparison of occu-

pied and empty images. Expansion of the deep neural network model to focus on identification

of individual species, functional groups, and/or the sizes of different individuals, as has been

done in similar image analyses [16,18,20,22], will further streamline the analysis of this and

related large image datasets.

Our community composition analysis also demonstrates that the 15-minute photo interval

of our cameras was sufficient to capture the same community differences between benthic

environments that were observed by divers in the water. This suggests that while a single

image does not capture every fish active in the area during the 15-minute period it represents,

the collection of images from any given site are representative of the community at that loca-

tion and are likely to accurately reflect changes in species behavior, abundance, or diversity at

the site over a range of time scales (e.g., daily vs. seasonal changes), perhaps more accurately

than a limited series of diver observations would. Camera networks are an emerging method

for monitoring fish activity and other behaviors on diel and seasonal timescales [63,64] and

may reveal important information about temporal resource partitioning, predator avoidance,

and other interspecific dynamics in the community [65]. Further study of camera captures vs.

diver observations regarding species known to be wary of divers, either those using traditional

open-circuit SCUBA or closed-circuit rebreathers [66], is an important line of future investiga-

tion to understand true reef fish occupancy and abundance.

Our analysis of the number of images with fishes collected at different groups of cameras

revealed a difference undetected by the fish counts from our diver observations, showing that

fishes were detected by cameras more frequently (and are therefore likely to have higher occu-

pancy) inside of the MPA. The inability of traditional diver surveys alone to detect this differ-

ence at all reinforces the value of spatially-distributed, long-term datasets like the images

collected from our cameras. The observed differences in fish detection between halo and grass/

algae control sites also reinforce diver observations of both fewer fishes and a different fish

community in the algae or seagrass beds away from the reef and support the results of the com-

munity composition analysis (Fig 5).

Case study and future applications

Our observations of fish species presence across different environments are consistent with the

landscape of fear explanation for heightened herbivory inside coral reef halos. We obtained a

large volume of usable images from sites with a variety of depths and benthic cover types, sub-

jected to different fishing pressures inside and outside of a local MPA, and monitored over the

course of different seasons. This allows us to reasonably conclude that our observations are

likely representative of fish presence and behavior at patch reef sites within Lighthouse Reef

Atoll as a whole. The complete lack of grazing reef fishes observed outside of the halo region

by cameras located in surrounding seagrass within 30 m or less of the halo supports the idea

that a predator modification of prey fish behavior imposes real constraints on fish movement

and that heightened grazing pressure adjacent to reef structures is not simply the result of
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fishes randomly dispersing with distance from the reef. If the latter were true, the pattern

would be a simple exponential decrease in fishes as distance from the patch reef increased,

which would likely be reflected in a lower (but nonzero) number of grazing fishes detected at

seagrass and algae camera locations, compared to those at the halo edge.

An alternative hypothesis is that the lack of grazing fishes appearing in images taken outside

of the halo is due to unequal detection of fishes between the two environments [67], possibly

the result of faster or more furtive movements outside the relative safety of the halo. However,

this explanation is refuted by two pieces of evidence: First, diver observations also showed no

herbivorous reef fishes at grass or algal camera sites; second, other fish species that were

observed by divers to move quickly through the seagrass or algal environment (e.g., bar jacks,

Caranx ruber) appear in both halo and control camera images, indicating that cameras placed

in the grass are very capable of photographing fishes moving through that environment. It is

therefore more likely that the complete lack of detection of reef-based grazers outside of the

halo, even though their food is in much higher supply there, is due to their total or near-total

absence from this environment because of the combined lack of shelter and exposure to preda-

tors [35].

The most common large predators seen by both divers and cameras were barracuda (S. bar-
racuda). This is based only on the 54 images used for the NMDS and anecdotal observations

made in the course of sorting and processing additional images, since our CNN did not

include detection of individual fishes to the species level. One of us (MR Silman) observed a

barracuda preying on a large adult parrotfish, which smaller predatory fishes are unlikely to

target. This demonstrates that barracuda present a real threat to even the largest herbivorous

fishes in this system. Barracuda were observed in both reef and seagrass/algae environments,

but the reef provides more structure (and likely protection [68,69]) to potential prey than the

open seagrass beds. This could lead foraging fishes to limit their movement to within a certain

radius of the reef, which is the most commonly-cited explanation for reef halos and is consis-

tent with our observations.

This study demonstrates the value of long-term, spatially-distributed underwater camera

trap observations for addressing a subtle difference in fish communities and benthic pattern

generation. DEACs can be easily deployed alone or in large spatial arrays for short or extended

time periods, and they are capable of recording periodic still images for long-term studies or

short videos for detailed behavioral observations. Most importantly, these cameras are highly

energy-efficient and require little-to-no maintenance while deployed, making them ideal for

remote locations or extended observations that surface-anchored systems or commercial

underwater cameras with limited battery life are not suitable for. Multiple networks of camera

traps like TEAM [21] and Snapshot Serengheti [22] have been successfully deployed over large

regions in terrestrial environments, and DEACs offer the option to now expand such long-

term, spatially-extensive monitoring efforts to the marine realm. The use of a CNN makes pro-

cessing the volume of images collected over such a long-term study a practical option, and

continuing advancements in machine learning and computer vision are likely to enable further

processing of similar large visual datasets in the future.

Supporting information

S1 Fig. Deployment periods for individual cameras, typically deployed in pairs at a given

site. Treatment designations represent if the camera was deployed in the Half Moon Caye

marine protected area (MPA) or outside (OUT), in algae (a) or seagrass (g), the site number or

other site designation within that treatment, and camera location at the halo edge (H) or far-

ther away (C),. The final number present for only certain treatments indicates which of
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multiple deployments at the same location this period refers to.

(JPEG)

S2 Fig. Decline in fish detections due to biofouling over time for the 13 longest deploy-

ments. Deployment time in days is shown on the x-axis, while the probability of a given image

containing at least one fish is shown on the y-axis, as calculated by the ResNet-50 model. Fish

detection probabilities decrease over the first month, at which point the pattern becomes less

clear, likely the result of inaccurate image classifications at certain sites in response to biofoul-

ing in the images. The red line represents the smoothed results of all sites combined, using the

“loess” function in R package ggplot2 (Wickham 2009).

(PNG)

S3 Fig. Fitted lines for fish detection probabilities over long-term reef-adjacent halo

deployments. Lines were fitted with the “loess” local polynomial regression fitting function

with span = 1 from R package ggplot2 (Wickham 2009). The dark line represents the smoothed

results of all sites shown on this graph. Not only do fish detections decline consistently at most

sites due to biofouling of the camera lens over the first month, model accuracy is clearly

impaired past this point at certain sites, leading to a false increase in fish detection probability

for some cameras (e.g., note the erroneously high probabilities around 80–100 days for

MPATr12H, shown in blue).

(JPEG)

S4 Fig. Fitted lines for fish detection probabilities over long-term seagrass or algae

meadow deployments. Lines were fitted with the “loess” local polynomial regression fitting

function with span = 1 from R package ggplot2 (Wickham 2009). The dark line represents the

smoothed results of all sites shown on this graph. Note that fish detection probabilities are

lower at grass sites, relative to reef/halo sites, and the y-axis is scaled appropriately. After the

first month, fish detection probabilities erroneously rise at a couple sites, likely reflecting

reduced accuracy in the ResNet-50 model’s image classifications as a result of biofouling.

(JPEG)

S5 Fig. Stressplot for the NMDS shown in Fig 5 of the main text. Created using the stress-

plot() function in R package vegan (Oksanen et al,. 2018) [42].

(PNG)
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