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ABSTRACT

Despite the tremendous growth of microarray usage
in scientific studies, there is a lack of standards for
background correction methodologies, especially in
single-color microarray platforms. Traditional back-
ground subtractionmethods often generate negative
signals and thus cause large amounts of data loss.
Hence, some researchers prefer to avoid back-
ground corrections, which typically result in the
underestimation of differential expression. Here, by
utilizing nonspecific negative control features inte-
grated into Illumina whole genome expression
arrays, we have developed a method of model-
based background correction for BeadArrays
(MBCB). We compared the MBCB with a method
adapted from the Affymetrix robust multi-array anal-
ysis algorithm and with no background subtraction,
using a mouse acute myeloid leukemia (AML)
dataset. We demonstrated that differential expres-
sion ratios obtained by using the MBCB had the best
correlation with quantitative RT–PCR. MBCB also
achieved better sensitivity in detecting differentially
expressed genes with biological significance. For
example, we demonstrated that the differential
regulation of Tnfr2, Ikk and NF-kappaB, the death
receptor pathway, in the AML samples, could only be
detected by using data after MBCB implementation.
We conclude that MBCB is a robust background
correction method that will lead to more precise

determination of gene expression and better biolo-
gical interpretation of Illumina BeadArray data.

INTRODUCTION

With the advent of microarray technology, gene expression
analysis has become a valuable tool in biological research
from development to cancer. Researchers now can choose
from a number of commercially available microarray
platforms. While early results were limited by lack of
reproducibility, the recently completedMicroarray Quality
Control (MAQC) project demonstrated that through the
use of standardized protocols both intraplatform consis-
tency and interplatform concordance could be achieved
(1–6). However, one area of data processing where
standardization and optimization lags is background
signal correction, that is, the removal of nonspecific signals
from total signal intensity in the process of microarray data
analysis. Comprehensive comparisons have been con-
ducted to evaluate the performance of different back-
ground correction methodologies in two-color arrays (7);
however, because of the high extent of commercialization,
background correction methods for single-color arrays are
mostly platform dependent. This is a consequence of
different array designs, image scanning and data extraction
processes developed by different vendors. Even in this
setting, there is a lack of standardization for background
correction—even within the same platform. For example,
the robust multi-array analysis (RMA), a popular algo-
rithm to preprocess Affymetrix GeneChip data (8), uses
only perfect match (PM) probes and ignores mismatch
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(MM) probes when correcting for background signal.
Although the empirical experience shows that RMA
background correction works well in practice (8,9), it uses
the ad hoc parameter estimation procedure and McGee
et al. (8) have identified problems associated with its
parameter estimation.
Another single color microarray platform tested in the

MAQC project is from Illumina Inc., San Diego, CA,
USA. This platform utilizes the company’s BeadArray
technology; 3-mm beads coated with hundreds of thou-
sands of copies of 50-mer oligonucleotides sequences. The
beads are randomly assembled into microwells on each
array. A postscanning ‘decoding’ process is required to
determine the location of each probe (10,11). One feature
of Illumina arrays is that its noise is controlled by beads
conjugated with nonspecific oligonucleotides. Illumina
Inc. provides a method to perform background subtrac-
tion using the average value of control beads.
Unfortunately, substantial negative data values can be
generated by this method. For example, with the samples
used in this study, where samples from one group are
compared against another, use of the Illumina default
background correction resulted in more than half of the
probe values in one group being negative. More impor-
tantly, over 6000 probes had negative values in one group
but positive values in the other group. Exclusion of probes
with negative values can result in loss of large amounts of
information on the chip, especially genes that ‘switch’ on
and off between different sample groups. In this context,
there has been report suggesting that method provided by
Illumina has a negative impact on Illumina data quality
and the use of the raw data before normalization was
recommended (12). However, significant data compression
was observed when expression ratios were calculated
between two experimental groups when no background
subtraction was performed. These data compression
resulted in far fewer genes identified as differentially
expressed than expected. For these reasons, our intent in
this study was to address the necessity of performing
background correction and, in the mean time, develop a
robust background correction model to facilitate further
statistical and data mining analysis.
In addition to using no background correction or the

default manufacturer’s protocol, there are two background
subtraction methods for BeadArrays proposed in the
Bioconductor ‘lumi’ package. The first method is to raise
all data uniformly to a ‘floor’ value, which assures that all
signals are positive. The other approach applies the Affy-
metrix RMA background correction model to BeadArray
data. The former method is arbitrary and induces data
compression that results in diminished expression ratios.
The latter method ignores the nonspecific oligo-beads
contained on Illumina arrays. By examining the histogram
of signal intensities on BeadArrays, we noted that gene and
control signal intensity values exhibited different distribu-
tions. The intensity values from genes did not follow the
same distribution as that of the control beads in that they
exhibited much heavier tails than the control intensity
values (Figure 1). It was our contention that the intensity
values associated with the nonspecific oligo-labeled beads is
valuable information and by using the information from

the nonspecific oligo-labeled beads, we could develop
a model to estimate a true background and perform first-
round data processing for Illumina arrays. This back-
ground correction method, referred to as model-based
background correction for BeadArrays (MBCB), incorpo-
rates the negative control bead information into a
statistical algorithm for background correction of Illumina
arrays. Using the same set of array data, we compared the
results after implementing the MBCB method versus using
the data without background subtraction (RAW) as
recommended by Barnes et al. (12). We also adapted the
Affymetrix RMA algorithm and compared it with MBCB
as well.

Although we could not apply it to Illumina data, another
approach we considered was the Li and Wong model
(13,14) found in the popular Affymetrix expression analysis
package dCHIP. Their model-based analysis algorithm has
a similar philosophical approach to MBCB in that it is a
model-based approach to oligonucleotide expression array
analysis. Unfortunately, it is not directly applicable to
Illumina arrays because of inherent platform differences.
For instance, unlike the Affymetrix MM probe that has
single nucleotide differences to perfect match probes,
Illumina control beads are conjugated to nonspecific
sequences that are not associated with gene-specific
probes. Furthermore, the main feature of Li–Wong’s
model is to take account of the probe-specific effects into
account for the computation of expression index. They use
a parameter (�j) to represent the sensitivity of PM probe of
probe pair j, and the parameter is estimated by using
information from multiple arrays, a minimum of 10 being
optimal. This is appropriate for Affymetrix array because
each probe in the probe set is different, and some probes are
more sensitive for hybridization. However, for Illumina
BeadArray data, the beads in each bead type are identical
and there is no sensitivity difference among beads within
same bead type. Therefore, the parameter (�j) in
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Figure 1. Distribution of control signal and total gene-expression
signal. The smoothed histograms represent the observed intensities for
both genes and negative controls from Illumina whole-genome
expression arrays.
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Li–Wong’s model is not appropriate for Illumina
BeadArrays and dCHIP software could not be adapted to
analyze output data from the Illumina platform.

For our approach, samples from spleens of CBA mice,
positive or not for acute myelogenous leukemia (AML),
were used to generate comparative data sets. The MBCB,
RMA and RAW methods were used to process probe
signal for subsequent statistical analysis. Relative gene
expression values were validated using quantitative RT–
PCR (QPCR). In some cases, western analysis of protein
expression was also examined. Data preprocessed using
the MBCB method had the highest correlation with
QPCR results and provided a greater sensitivity for
detecting differentially expressed genes. The result was a
better discrimination of gene expression between the AML
and non-AML groups, and subsequent to that a better
interpretation of differences in signal transduction path-
way activation in AML-positive spleen samples.

MATERIALS AND METHODS

RNA isolation

In this study, total RNA from samples of spleen cells from
four normal CBA mice and samples of spleen cells from
four mice confirms by a pathologist as positive for AML
were used. The tissues were homogenized in Trizol Reagent
(Invitrogen, CA, USA) using an Omni Tip Disposable
Generator Probe (Omni International Inc., Marietta, GA,
USA). RNA isolation was performed according to the
Qiagen RNeasy Mini Kit column (Qiagen, CA, USA)
protocol. Chloroform was added to the homogenate for
phase separation, the aqueous phase was removed and
mixed with 1 Vol. 70% ethanol and the mixture was loaded
into the Qiagen column, which was then centrifuged at
11 000 r.p.m. for 1min. The flow-through liquid was
discarded, buffer RW1 was added, the column was
washed and the RNA eluted. The RNA was quantified
and the quality was checked by using an Experion
automated electrophoresis system and Experion RNA
StdSens Chips (Bio-Rad Inc., CA, USA).

RNA labeling and microarray hybridization

Illumina Mouse-6 V1 BeadChip (Illumina, Inc.) mouse
whole-genome expression arrays were used in this study. Of
the eight samples, four were hybridized twice and were used
as technical replicates. Each RNA sample was amplified
using the Ambion Illumina RNA amplification kit with
biotin UTP (Enzo) labeling. The Ambion Illumina RNA
amplification kit uses T7 oligo(dT) primer to generate
single stranded cDNA followed by a second strand
synthesis to generate double-stranded cDNA, which is
then column purified. In vitro transcription was done to
synthesize biotin-labeled cRNA using T7 RNA polymer-
ase. The cRNA was then column purified. The cRNA was
then checked for size and yield using the Bio-Rad Experion
system. A total of 1.5mg of cRNA was hybridized for each
array using standard Illumina protocols with streptavidin-
Cy3 (Amersham, Piscataway, NJ, USA) being used for
detection. Slides were scanned on an Illumina Beadstation
and analyzed using BeadStudio (Illumina, Inc).

Model-based background correction for BeadArrays
(MBCB)

The expression data described by Figure 1 motivated a
background plus signal model to explain the observed
intensity of gene i, where Si=Xi+Yi, and Si represents
the observed intensity for gene i, Xi is the signal intensity
for gene i, and Yi is the noise intensity for gene i. The goal
was to adjust the observed intensity Si by removing the
effects of background Yi. The observed intensity of the
negative control bead comes only from the noise intensity.
In order to estimate Xi, we assume the signal Xi comes
from an exponential distribution with mean a and the
noise intensity for both genes and negative controls comes
from a normal distribution with mean m and variance �2.
We applied the model to the observed intensity of genes
and negative controls, and used Markov chain Monte
Carlo simulations to estimate the parameters. The
estimated signal intensity Xi is used as the background
corrected expression for gene i. The negative control
values were extracted from the bead-level intensity data of
all nonspecific control beads and summarized using
median values of each control bead type. The summarized
control bead-type values for each array were used for the
modeling. The R script and data files used for MBCB
model was posted as Supplementary materials at the
journal website. The model details could be found in the
Supplementary material.

Adaptation of RMA to BeadArrays

We adopted the convolution model in RMA for Affymetrix
Arrays to Illumina BeadArrays. The parameter estimation
also follows RMA’s procedure: first, a nonparametric
density function was fitted to the observed intensities, the
mode of this density was used as the estimate of the mean of
the noise; second, the lower tail of the mode was used to
estimate the variability of noise and finally, the right tail of
the mode was used to estimate the rate of exponential
distribution of the signal. The model was applied to the
observed intensity of each gene. The expected true signal
value condition on the observed total signal is used as the
background corrected gene expression level.

Normalization, clustering and significance analysis

After performing MBCB and RMA background subtrac-
tion, we applied quantile normalization across samples
using the ‘Affy’ package in Bioconductor. For comparison
of groups without background subtraction (RAW), we
carried out quantile normalization using the raw intensity
data on the arrays. The scatter plots and Venn diagram
were generated using GeneSpring GX 7.3.1. Significance
analysis was done using significant analysis of microarray
(SAM) and BRB-ArrayTool. Pathway analysis was
performed using ingenuity pathway analysis (IPA)
(www.ingenuity.com).

Real-time quantitative RT-PCR

QPCR was performed on one splenic sample of AML-
positive mouse and one normal mouse splenic sample.
Fourteen genes were randomly selected to test for
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validation of microarray results. RNA solutions were
treated with DNase I before reverse transcription.
Complementary DNA was synthesized from the treated
RNA solution in a reaction containing SuperScript III
reverse transcriptase (Invitrogen) and random hexamer
primers. The gene-specific primers were designed by using
Primer3 software. PCR reactions were performed using a
SYBR PCR master kit (AB Biosystems, Inc., Foster City,
CA, USA), and a Chromo4 Fluorescence Detector (Bio-
Rad, Inc.). The PCR protocol was designed with an initial
denaturing step of 958C 10min, followed by 40 cycles of
958C 15 s and 608C 1min. Mouse 18S RNA was used as an
internal control between samples. The PCR reactions were
performed in triplicates for each gene being validated.
Primers used in this experiment can be found in the
Supplementary materials.

Western blots

Samples of frozen mouse spleen tissues were lyzed with
lysis buffer (150mM NaCl, 1% NP-40, 0.5% sodium
deoxycholate, 0.1% SDS and 50mM Tris pH=8.0),
homogenized and then sonicated. After centrifugation for
10min at 48C, the protein concentration was measured.
For western blot analysis, 25 mg of total protein was
resolved on a 7.5% polyacrylamide gel and transferred
onto immunobilon-FL membrane (Millipore, Billerica,
MA, USA). Western blotting was performed as follows.
Briefly, after 1-h incubation with blocking buffer at room
temperature, membranes were incubated with the primary
antibody overnight at 48C. The membranes were then
washed five times with washing buffer and incubated with
the secondary antibody for 1 h at room temperature. After
washing with washing buffer three times, the membrane
was incubated with ECL plus reagents and exposed to
X-film. The antibodies for Tnfr2 and NF-kappaB were
purchased from Santa Cruz Biotechnology (Santa Cruz,
CA, USA), and the actin antibody was purchased from
Sigma, St. Louis, MO, USA.

RESULTS

Model-based background subtraction (MBCB)
and quantile normalization

We compared the normalization results of median polish
and quantile normalization, in order to determine which
method to use in combination with our background cor-
rection models. The difference between the two normal-
ization methods was best manifested in two technical
replicate samples. These replicates are hybridizations that
used the same amplified cRNA samples. The comparison
indicated that the MBCB method, in combination with
quantile normalization, demonstrated a better correction
of variations between chips than the commonly used
median polish normalization (Figure 2). In subsequent
analyses, quantile normalization after implementation
of MBCB was always performed. We also performed
quantile normalization when using data without
background subtraction (RAW) and with the RMA
method.

TheMBCBmethod identifies more genes as differentially
expressed

Two different statistical models, widely used to identify
differentially expressed genes, were used to interrogate
normal spleen samples versus the AML samples. In the first
analysis the random variance F-test, developed by the
NCBI and implemented in BRB-ArrayTools, was used.
The default significance (P< 0.001) provided by the soft-
ware was used. In the second analysis, the SAM model, a
widely used algorithm developed by groups in Stanford
University, was used. The cutoff value for SAM is median
false discovery rate (FDR) <0.01. In both of the analyses,
more genes were identified as differentially regulated when
the MBCB versus either the RMA or RAWmethodologies
was used (Table 1). When compared to the RAW method,
there were 24 or 42% more genes identified when the
MBCB background subtraction model was used in
combination with either SAM or the BRB ArrayTools,
respectively. The RMA method also detected 20 or 42%
more genes than the RAWmethodology. Plot of FDRs and
numbers of significant genes generated from SAM output
indicated that the MBCB method facilitated the lowest
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Figure 2. Scatterplot of signal intensity for the same cRNA sample
(LHD5) hybridized on two arrays. (A) Two arrays normalized to the
median of each array after MBCB. (B) Quantile normalization was
implemented after MBCB.
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FDR for a given number of significant genes when
comparing all three background correction methods
(Figure 3).

MBCB-derived data correlates better with
quantitative RT–PCR results

QPCR for 14 randomly picked genes was performed in
order to validate the Illumina array results. Our compar-
isons indicate that the MBCB method has the best overall
correlation with quantitative PCR results than RMA and
RAW method (Figure 4). In the plot of Figure 4, each
gene was plotted according to the log-expression ratio
generated by RT–PCR and one of the three background
correction methods. The MBCB has the smallest mean
square error (MBCB: 0.09; RMA: 0.19; and RAW: 0.17).
Assuming a hypothetical perfect fit for array data versus
PCR data for the same genes, the slope of the fitted line
would be 1.0, with a y-intercept equal to 0. The fit of the
MBCB/PCR data are the closest to meeting that
hypothetical condition, see Figure 4. Both the RAW and
RMA fits have slopes that significantly deviate from 1.0
and both have y-intercepts that deviate from 0. The values
for each slope can be found in Figure 4.

AML-related gene-expression changes detected only
by theMBCBmethod

SAM analysis in combination with the MBCB model
identified 873 more genes as differentially regulated
between the two groups than the combination of RAW
and SAM (FDR< 0.01), and 44 of these 873 genes have an

association with AML according to the designations
identified by the IPA software package. If RMA was used
in combination with SAM analysis 32 of these 44 genes
were identified (Figure 5). In comparison, there were only
small portions of genes that could be detected by either

Table 1. Number of differentially expressed genes and the percentage

increase in detection over the RAW methodology in parentheses

Methods RAW+
Quantile

RMA+
Quantile

MBCB+
Quantile

BRB ArrayTool 2393 3391 (42%) 3398 (42%)
SAM 3648 4384 (20%) 4521 (24%)
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Figure 3. Plot of FDR and numbers of significant genes called by SAM
software. The data indicate that the MBCB method resulted in the
lowest FDR for a given number of significant genes.
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AML samples by SAM (FDR< 0.01) in the data set using different
background correction methods.
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RAW (four genes) or RMA (five genes) but not by MBCB
(Figure 5). Although there were major commonalities of
the three methods as shown in Figure 5, the 44 genes that
could not be detected by the RAW method represented
28% of all AML-related genes that changed and high-
lighted the fact that data compression can cause substantial
loss of biologically significant information (Table 2).
Included in the 44 genes not identified by the RAW/SAM
combination were: Aml1, which is frequently found
translocated and fused with the Eto gene to form the
Aml1-Eto fusion protein in AML and which was upregu-
lated by >5-fold in the AML samples; and Nqo-1, which is
reported as suppressed in leukemia, was downregulated in
the AML spleen samples. These data demonstrated again
that the MBCB model is much more sensitive in detecting
biologically relevant gene expression changes. Table 3 lists
12 genes that show significant expression differences
identified by MBCB, but not by either the RAW or RMA

methods. This list includes several important apoptosis-
related genes such as Tnfrsf6/Fas and Caspase 3.

Improved sensitivity for signaling pathway analysis
with theMBCBmethod

IPA was used to study gene signaling pathway that was
involved in biological processes of AML. Differentially
expressed genes and their fold changes that were obtained
by using the MBCB, RMA or RAW method, were
uploaded into IPA for analysis. The results showed that
in most gene groups, the MBCB method detected more
genes than the RAW method (Figure 6A). One ontology
category that showed the greatest difference in gene
identified was the death receptor signaling pathway.
With the MBCB method, Tnfr2 and NF-kappaB mediated
signaling pathway was clearly activated, while the RMA
and RAW methods failed to allow the detection of this

Table 2. AML-related genes, and their expression ratios, identified through the use of the MBCB methodology and not seen when no background

correction was performed

Gene Ratio (AML versus Normal) Description

Gfi1 14.24 Mus musculus growth factor independent 1 (Gfi1).
Ccl3 9.97 Mus musculus chemokine (C-C motif) ligand 3 (Ccl3).
Nfil3 7.54 Mus musculus nuclear factor, interleukin 3, regulated (Nfil3).
Cdkn2a 5.63 Mus musculus cyclin-dependent kinase inhibitor 2A (Cdkn2a).
Scgf 5.34 Mus musculus stem cell growth factor (Scgf).
Aml1 4.94 Mus musculus runt-related transcription factor 1 (Runx1).
Cdkn1a 4.23 Mus musculus cyclin-dependent kinase inhibitor 1A (P21) (Cdkn1a).
Cebpb 3.97 Mus musculus CCAAT/enhancer binding protein (C/EBP), beta (Cebpb).
Myb 3.19 Myeloblastosis oncogene
Etv6 2.67 Mus musculus ets variant gene 6 (TEL oncogene) (Etv6).
PTPe 2.57 Mouse mRNA for protein tyrosine phosphatase epsilon, complete cds.
Nfkbia 2.35 Mus musculus nuclear factor of kappa light chain gene enhancer in B-cells inhibitor, alpha (Nfkbia).
Pscdbp 2.17 Mus musculus pleckstrin homology, Sec7 and coiled-coil domains, binding protein (Pscdbp).
Apaf1 2.06 Mus musculus apoptotic protease activating factor 1 (Apaf1).
Fli1 2.05 Mus musculus Friend leukemia integration 1 (Fli1).
Atm 2.01 Mus musculus ataxia telangiectasia mutated homolog (human) (Atm).
Rps6ka1 1.98 Mus musculus ribosomal protein S6 kinase polypeptide 1 (Rps6ka1).
Chic2 1.92 Cysteine-rich hydrophobic domain 2
Chk 1.88 Choline kinase
Ripk1 1.78 Mus musculus receptor (TNFRSF)-interacting serine-threonine kinase 1 (Ripk1).
Il15ra 1.57 Mus musculus interleukin 15 receptor alpha chain isoform 2D mRNA, complete cds, alternatively spliced.
Ncor1 1.49 Mus musculus nuclear receptor co-repressor 1 (Ncor1).
Nqo1 0.69 Mus musculus NAD(P)H dehydrogenase, quinone 1 (Nqo1).
Gzmb 0.64 Mus musculus granzyme B (Gzmb).
Cd68 0.60 Mus musculus CD68 antigen (Cd68).
Itga4 0.59 Mus musculus integrin alpha 4 (Itga4).
Lasp1 0.58 Mus musculus LIM and SH3 protein 1 (Lasp1).
Itgae 0.57 Mus musculus integrin, alpha E, epithelial-associated (Itgae).
Csf3 0.57 Mus musculus colony stimulating factor 3 (granulocyte) (Csf3).
Acp1 0.56 Acid phosphatase 1, soluble
Fyn 0.56 Mus musculus Fyn proto-oncogene (Fyn).
Hdac11 0.55 Mus musculus histone deacetylase 11 (Hdac11).
Igf1 0.54 Mus musculus insulin-like growth factor 1 (Igf1).
Tnfrsf25 0.53 Mus musculus tumor necrosis factor receptor superfamily, member 25 (Tnfrsf25).
Top2a 0.52 Topoisomerase (DNA) II alpha
Brca1 0.50 Mus musculus breast cancer 1 (Brca1).
Acsl6 0.49 Mus musculus acyl-CoA synthetase long-chain family member 6 (Acsl6).
Ssh1 0.48 Slingshot homolog 1 (Drosophila)
Adam10 0.48 Mus musculus a disintegrin and metalloprotease domain 10 (Adam10).
Igfbp3 0.47 Mus musculus insulin-like growth factor binding protein 3 (Igfbp3).
Ifnar2 0.46 Mus musculus interferon (alpha and beta) receptor 2 (Ifnar2).
Cat 0.46 Mus musculus catalase (Cat).
Ccnd1 0.45 Mus musculus cyclin D1 (Ccnd1).
Casp3 0.36 Mus musculus caspase 3, apoptosis-related cysteine protease (Casp3).
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Table 3. AML-related genes, and their expression ratios, identified through the MBCB methodology that were not detected when the RMA

methodology was used

Gene Ratio (AML versus Normal) Description

Eif5a 2.40 Eukaryotic translation initiation factor 5A (Eif5a)
Nfkbia 2.35 Nuclear factor of k-light chain gene enhancer in B-cells inhibitor, a (Nfkbia)
Tnfrsf6 1.94 Tumor necrosis factor receptor superfamily, member 6 (Tnfrsf6)
Ripk1 1.79 Receptor (TNFRSF)-interacting serine-threonine kinase 1 (Ripk1)
Cd68 0.60 CD68 antigen (Cd68)
Gzmb 0.60 Granzyme B (Gzmb)
Acp1 0.55 Acid phosphatase 1, soluble
Igf1 0.54 Insulin-like growth factor 1 (Igf1)
Igfbp3 0.47 Insulin-like growth factor binding protein 3 (Igfbp3)
Casp3 0.35 Caspase 3, apoptosis related cysteine protease (Casp3)
Lck 0.25 Lymphocyte protein tyrosine kinase (Lck)
Cxcl12 0.18 Chemokine (C-X-C motif) ligand 12 (Cxcl12), transcript variant 2
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pathway (Figure 6B–D). Although the RMA method
showed differential expression of several genes in this
pathway, it failed to detect one of the key molecules in
this pathway, that being NF-kappaB up-regulation
(Figure 6C). The NF-kappaB, Ikk and Tnfr2 expression
changes were confirmed by western blot (Figure 7).

DISCUSSION

Traditional methodologies involving subtraction of local
background or nonspecific control spots often generate
negative intensities. These signals are often filtered out and
subsequently result in missing values (15,16). There have
been studies suggesting that performing a background
correction should be avoided (17,18), and this holds good
for data generated by Illumina arrays as suggested by a
previous study (12). On the other hand, not performing
background subtraction can exacerbate the problem of
data compression, which can then result in an under-
estimation of signal. There are numerous reports where
<50% of genes on an array have detectable signal (19–21).
And while this could very well be true, it is likely that data
compression had led to an increase in false negative genes
which are then ignored in subsequent analyses such as
predicting group membership or signal pathway and
regulatory network discoveries.
Illumina BeadArrays have more than 50 000 beads

linked with nonspecific oligonucleotides, which constitute

a large population of true negative controls for hybridiza-
tion. These beads are the same carriers of the gene-specific
oligo probes. It is likely that a background correction
method using these controls will outperform methods that
subtract background from the localized array attachment
substrate, be it glass, silica or other (7). There are two
models available that consider the nonspecific probes as
background controls aside from the local substrate. One is
the model described by Li and Wong (13) and the other is
RMA, both of which are widely used for Affymetrix
GeneChip analysis. The Li and Wong model-based expres-
sion analysis approach in dCHIP is not directly applicable
to Illumina arrays because there are no sensitivity dif-
ferences amongst beads within the same bead type.
Therefore, we modified the RMA method and adapted it
for use on the Illumina platform. However, the RMA
model is limited because it completely ignores information
from nonspecific control beads. The data from this
experiment and simulation results (22) suggested that
RMA overestimated background values. This resulted in
excess background subtraction and increased variances in
arrays.

To overcome these limitations, we have described a
model-based background correction method for Illumina
BeadArrays. Our model was motivated by the different
distributions of the observed intensity level for both genes
and negative controls. We verified that this difference of
distributions is typical for Illumina expression arrays as
we could observe it in all hybridizations (data not shown).
Our model makes use of the negative control beads of the
arrays and the parameter estimation was based on the
Markov chain Monte Carlo simulations (23). This method
provides the positive estimation of background corrected
expression level for each gene. We demonstrated that our
MBCB model had a better correlation with QPCR results.

Our results clearly showed that both RMA and MBCB
methods out-performed a no background correction
approach. Although adopting RMA to Illumina back-
ground correction is still relatively new, MBCB incorpo-
rates the negative control beads, which is not available for
the RMA method. MBCB improves the parameter
estimation compared to the RMA method and we
therefore, recommend the MBCB method for Illumina
background correction.

We applied two popular significance analysis methods,
SAM and BRB ArrayTools, to further validate the
performance of our model. Both of the methods resulted
in detecting the most differentially expressed genes when
using the MBCB model when comparing with RMA and
RAW methods, demonstrating improved sensitivity for
gene discovery through the use of the MBCB model.

Through a literature search and with help of IPA
software, we showed that the MBCB background correc-
tion model detected 44 more AML-associated genes
considered to be differentially regulated than were found
when the RAW methodology was used. As shown in
Table 2, Aml1 is a gene that has been shown frequently
translocated and forms fusion protein with Eto (24,25). In
our MBCB model, Aml1 was overexpressed >5-fold in the
AML samples when compared to nonleukemic samples,
whereas in RAW data set, there was no significant

AML Normal

NF-kappaB

Actin

Tnfr2

Actin

Ikk

Actin

Figure 7. Western blot of proteins involved in the Tnfr2 and NF-
kappaB signaling pathway. The figures indicate upregulation of Tnfr2
and NF-kappaB, and downregulation of Ikk. These results were
consistent with gene-expression analysis using the MBCB data set and
suggest active involvement of this pathway in mouse AML samples.
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change of Aml1. Aberrations in cell cycle regulation and
p53-dependent apoptosis have been frequently found in
hematological malignancies and we found in the
MBCB generated data set that several cell cycle and
apoptosis-related genes, such as Cdkn1a, Cdkn2a, Brca1
and Nfil3, were significantly changed in leukemic mice.
These genes were not detected in the RAW data set. Brca1
has been reported to be hypermethylated in therapy-related
AML (26) and our results suggest that BRCA1 expression
was suppressed in radiation-induced mouse AML model.
On the other hand, lack of methylation was found for p21
in AML (27), and our data showed an increased expression
for this gene. Myb is associated with differentiation and
proliferation in leukemia cell lines (28) and our data
indicate a 3-fold overexpression in the leukemic samples.
Also on the list, Nqo1 a member of the NAD(P)H
dehydrogenase (quinone) family, which encodes a cyto-
plasmic 2-electron reductase, was underexpressed in the
leukemic samples in line with the notion that no or low
Nqo1 activity is associated with an increased risk of de novo
acute leukemia in humans (29). The data above clearly
indicate that if one chose not to perform a background
subtraction there is a risk for significant loss of biological
information. By using the RMA methodology, 32 of the
44 genes identified by the MBCB method were detected.
Within the remaining 12 genes were several important
apoptosis-associated molecules, such as Tnfrsf6/Fas,
Nfkbia, Casp3 and Ripk1. In fairness, there were six genes
that showed significant change in either the RAW (four
genes) or RMAmethods (five genes) that were not detected
when the MBCB method was used. In summary, our data
supported the conclusion that MBCB discovered more
biologically relevant findings than the other two methods.

Our data demonstrated that the new MBCB back-
ground correction model enhanced sensitivity and in the
mean time, remained highly specific during the gene
discovery process. This is evident by the fact that more
differentially expressed genes were detected and had better
correlations with QPCR data. We also demonstrated an
enhanced ability to perform functional pathway analysis
due to the higher sensitivity. By using the MBCB model,
we were able to discover that Tnfr2 and NF-kappaB
mediated death receptor pathway was activated in the
radiation-induced AML samples. Activation of the NF-
kappaB pathway has been reported in human leukemia to
support cancerous proliferation, resistance to apoptosis
and sustain angiogenesis (30). Targeting NF-kappaB
pathway activation via pharmacological inhibition
induced apoptosis in human AML cells (31–33). It has
been shown in human leukemia cells that the TNF signal
machinery is necessary to switch cells between a pro-
liferative versus an apoptotic phenotype (34,35). Sustained
Tnf/Tnfr2-induced NF-kappaB signaling and transcription
allow the cells to survive and proliferate. On the other
hand, switching the NF-kappaB pathway off results in Tnf/
Tnfr1-driven stimulation of proapoptotic pathways, such
as sustained Jnk and p38 MAPK activity. In our mouse
AML expression profile generated without background
subtraction (RAW), there was no suggestion of any NF-
kappaB pathway activity. The RMA method indicated
partial activation but failed to detect NF-kappaB

upregulation. Using the MBCB model, it was clearly
shown that the Tnfr2 and NF-kappaB death receptor
pathway was activated given the differential expression of
Tnfr2, Ikk and NF-kappaB. Since the activation of this
pathway has not been systemically confirmed in mouse
AML models, western blotting was performed to validate
the protein expression of these genes. The results were
consistent with the gene-expression profile.
In summary, we have demonstrated that appropriate

background correction (MBCB) will lead to better
detection of differentially expressed genes, which then
results in an improved sensitivity for performing gene
function and pathway analysis. The MBCB is a robust
model that avoids the problem of generating negative
values after background subtraction, and substantially
reduces data compression that occurs when using RAW
data without background correction. Our data indicate
that the large population of negative control features
found on Illumina arrays are useful for estimating noise
value and should be considered in array designs.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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