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Abstract

Background: Phloroglucinol is an important chemical, and the biosynthesis processes which can convert glucose
to phloroglucinol have been established. However, due to approximate 80% of the glucose being transformed into
undesirable by-products and biomass, this biosynthesis process only shows a low yield with the highest value of
about 0.20 g/g. The industrial applications are usually hindered by the low current productivity and yield and also
by the high costs. Generally, several different aspects limit the development of phloroglucinol biosynthesis. The yield of
phloroglucinol is one of the most important parameters for its bioconversion especially from economic and ecological
points of view. The in vitro biosynthesis of bio-based chemicals, is a flexible alternative with potentially high-yield to in
vivo biosynthetic technology.

Results: By comparing the activity of acetyl-CoA synthetase (ACS) from Escherichia coli and Acetobacter pasteurianus,
the highly active ACS2 was identified in A. pasteurianus. Acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus
and phloroglucinol synthase (PhID) from Pseudomonas fluorescens pf-5 were expressed and purified. Acetate
was successfully transformed into phloroglucinol by the combined activity of above-mentioned enzymes and
required cofactor. After optimization of the in vitro reaction system, phloroglucinol was then produced with
a vyield of nearly 0.64 g phloroglucinol/g acetic acid, which was equal to 91.43% of the theoretically possible

maximum.

Conclusions: In this work, a novel in vitro synthetic system for a highly efficient production of phloroglucinol from
acetate was demonstrated. The system'’s performance suggests that in vitro synthesis of phloroglucinol has some
advantages and is potential to become a feasible industrial alternative. Based on the results presented herewith, it is
believed that in vitro biosystem will provide a feasible option for production of important industrial chemicals from
acetate, which could work as a versatile biosynthetic platform.
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Background

Phloroglucinol and its derivatives have been widely ap-
plied in pharmaceuticals, cosmetics, textiles, paints and
dyeing industries [1]. At present, the chemical synthetic
processes are neither cost-effective nor energy saving.
Additionally, the production of phloroglucinol and its de-
rivatives using engineered E. coli has been investigated by
many researchers [2, 3]. However, the productivity and
yield are currently still low and hence their industrial pro-
duction is economically unfeasible. Phloroglucinol is toxic
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to E. coli and its toxicity restrains the further increase of
productivity and yield [2]. One of the possible solutions to
this problem is to utilize an in vitro biosynthesis technol-
ogy which does not need the cells and only employs active
enzymes. Compared to in vivo living entity-based biosyn-
thetic technology, in vitro synthetic biosystem has broad
reaction environment (e.g. high temperature, organic
phase catalytic system), free choice of substrate, and po-
tential possibility to solve the problem of the toxicity
deriving from the intermediate or final products [4]. The
many undesirable side reactions are eliminated in the in
vitro biosynthetic processes, thus it becomes possible to
achieve about 100% theoretical yield [5]. Moreover, central
metabolism which is fundamental to cell survival can
be easily re-established through eliminating cellular
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constraints [6]. Recently, in vitro synthetic biochemis-
try approaches have been proposed to produce chemi-
cals and proteins [7-9]. In theory, phloroglucinol
could be also produced by in vitro synthesis system
with the precursor of acetate. Acetate could be con-
verted into acetyl coenzyme A (acetyl-CoA), which
can further transform into malonyl coenzyme A (mal-
onyl-CoA) and phloroglucinol.

Acetate had been previously utilized as a feedstock for
the production of biochemical or biofuel since it could
be transformed into acetyl-CoA. Acetate could be de-
rived from a variety of cheap sources, such as (i) prod-
ucts during syngas fermentation [10], hydrolysis under
acid or alkali pretreatment [11] and pyrolysis of lignocel-
lulosic biomass [12], (ii) intermediates from anaerobic
digestion of organic wastes [13], (iii) production by
methanol carbonylation [14], (iv) methane conversion
from natural gas or biogas [15]. It has been demon-
strated that Cryptococcus curvatus could be able to pro-
duce lipid using acetate as a major carbon source [16]
and engineered E. coli could convert acetate to succinic
acid, fatty acids and p-caryophyllene [17-19]. The
utilization of acetate as a nontraditional carbon source is
becoming one of the most interesting direction in indus-
try biotechnology due to obviously lower cost, sufficient
source, no direct competition for food supplies with
people, and price stability. However, high concentration
of acetate is toxic to cell growth since it damages trans-
membrane pH gradients, and which hence destroys
internal osmotic pressure, hinders recombinant protein
production and inhibits biomass growth [20]. In addition,
the formation of the by-products reduces the effective
utilization of substrate and also decreases the yield of tar-
get product. Considering the advantages of the in vitro
biosystem, it is major significant to assimilate acetate via
the in vitro synthetic biology.

Acetyl-CoA plays a central role both in catabolism and
anabolism, which is a branching point from the substrate
carbon into oxidation or biosynthesis pathways [21].
Acetyl-CoA could be also the precursor of many impor-
tant chemicals, such as fatty acid, succinic acid, 3-
hydroxypropionic acid, ethanol, amino acids. Therefore,
any biosynthetic process that can utilize acetyl-CoA may
become one of the most interesting directions for future
biotechnology. It would be important to efficiently con-
vert acetate into acetyl-CoA which is the building block
molecule. Until now, there is no report on in vitro bio-
system which can make used of acetate as the carbon
source to synthetize chemicals.

In this work, we attempted to construct an in vitro
system for the biosynthesis of phloroglucinol using
acetate as the substrate (Fig. 1). With the aim to en-
hance the utilization ability of acetate, acetyl-CoA
synthetases which derived from two different bacteria
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were screened with high activity. A. calcoaceticus was
used to clone genes of ACC. The fatty acids of A.
calcoaceticus is higher than most of the other bac-
teria, ACC of the bacterium maybe has high activity.
P. fluorescens Pf-5 which had been analyzed about
phloroglucinol synthesis pathway was a source of
PhID. The in vitro synthesis of phloroglucinol was
successfully demonstrated. In addition, the process of
multi-enzyme catalytic synthesis of phloroglucinol
were observed and optimized.

Methods

Stain, chemicals and culture conditions

All strains and plasmids used in this study are shown in
Table 1. E. coli DH5a was used as cloning host and E.
coli BL21(DE3) (Tiangen, China) was used as expression
of recombinant proteins. A. pasteurianus DSM 3509 and
A. calcoaceticus CGMCC 1.6186 were purchased from
DSMZ (Brauschweig, Germany) and CGMCC (Beijing,
China), respectively. Plasmid pET-28a(+) and Ni-NTA
His - Bind Column were purchased from Novagen. Pri-
meSTAR Max DNA Polymerase (Takara, Japan) was
used to amplify genes from plasmid or genomic DNA.
Restriction enzymes and T4 DNA ligase (Thermo
Scientific, USA) were used for cloning. Commercial en-
zymes, ATP, coenzyme A and NAD" were from Sigma.
Recombinant proteins were concentrated by using the
ultrafiltration membrane (Millipore). Bacteria were cul-
tured in Luria-Bertani (LB) liquid medium or LB agar
(50 pg/mL of kanamycin was used as the antibiotic for
each recombinant E. coli).

Plasmid construction

ACS gene was amplified from the wild-type E. coli
K-12. A. pasteurianus has two putative acetyl-CoA
synthetase genes (acsl and acs2). The genome was
extracted from strain A. pasteurianus and was used
to amplify ACS1 and ACS2 genes. ACS1 and ACS2
were separately cloned into the plasmid pET-28a(+)
to produce expression plasmids with a 6xHis tag for
purification. The four subunit (accA, accB, accC,
accD) genes of acetyl-CoA carboxylase from A. cal-
coaceticus CGMCC 1.6186 were cloned into ex-
pression vector pET-28a(+), respectively. The gene
encoding sequences of phloroglucinol synthase from
P. fluorescens Pf-5 were codon-optimized for E. coli
expression and synthesized by GeneWiz (Suzhou,
China). Then phloroglucinol synthase gene was
cloned into pET-28a(+) vector with a 6xHis tag for
purification, creating plasmid pET28a-phlD. All the
forward and reverse primers for the PCR amplifica-
tion were provided by GeneWiz.
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Fig. 1 The synthetic pathway of phloroglucinol. A: In vivo process for phloroglucinol fermentation from glucose; B: In vitro process for
the transformation of acetic acid to phloroglucinol. The used enzymes are acetyl-CoA synthetase (ACS), acetyl-CoA carboxylase (ACC),
phloroglucinol synthase (PhID), pyruvate dehydrogenase Complex (PDC)
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Enzyme expression and purification

According to the previous protocol [22], all proteins
were expressed in E. coli BL21(DE3) and then were puri-
fied. The single clone grown on LB agar was chosen and
inoculated in 20 mL LB seed medium. Seed cultures
were used as 1% inoculum in 1 L LB liquid medium; the
cells were grown in medium until ODgqq to 0.65 at 37 °C
and then induced by 0.25 mM IPTG. Protein expression
was performed under the condition of 20 °C for 12 h.
Cells were harvested from 1 L of culture by centrifuga-
tion at 4 °C, washed twice using PBS buffer (10 mM
Na,HPO,, 2 mM KH,PO,4, 137 mM NaCl, 2.7 mM KC],

Table 1 Plasmids and strains used in this study

Name Description
Stains
E. coli K-12 For amplification of gene acs

A. pasteurianus For amplification of gene acs! and acs2

A. calcoaceticus For amplification of four subunits of gene acc

Plasmids

pET-28a(+) Kan" oripBR322 lacl? T7p

pET28a-acs pET-28a(+) carrying acs from E. coli K-12, Kan"
pET28a-acs1 pET-28a(+) carrying acs1 from A. pasteurianus, Kan"

pET28a-acs2
pET28a-accA
pET28a-accB
pET28a-accC
pET28a-accD
pET28a-phID

pET-28a(+) carrying acs2 from A. pasteurianus, Kan"

pET-28a(+) carrying accA from A. calcoaceticus, Kan"

pET-28a(+) carrying accC from A. calcoaceticus, Kan"

)

)

(+)

)
pET-28a(+) carrying accB from A. calcoaceticus, Kan"

(+)
pET-28a(+) carrying accD from A. calcoaceticus, Kan"
)

pET-28a(+) carrying phiD from P. protegens, Kan"

pH 7.4), and re-suspended in 15 ml of 50 mM NaH,PO,,
300 mM NaCl, pH 7.5. The cells were lysed by soni-
cation on ice and the suspension was centrifuged at
13,000 g for 30 min at 4 °C in order to remove cell deb-
ris. Ni-NTA columns were used to purify protein from
clear cell lysate following the manufacturer’s protocol.
The eluted protein was desalted by ultrafiltration, and
stored in the buffer containing 100 mM Tris-HClI,
100 mM NaCl, pH 7.5 at 4 °C. Bradford assay was used
to measure protein concentration using bovine serum al-
bumin (BSA) as a standard. The purified proteins were
analyzed by SDS-polyacrylamide gel electrophoresis
(PAGE) and visualized through Coomassie Blue staining.

Enzyme activity assays
The specific activity of acetyl-CoA synthetase was mea-
sured using Varian Cary50 Bio UV-Visible spectropho-
tometer at 340 nm according to the previous report [23].
The catalytic activity was determined using the assay
mixture at pH 7.4 and 37 °C. The assay mixture (1 mL)
contained 1 pmol of NAD", 0.2 pmol of CoA,10 umol of
MgCl,, 8 pmol of ATP (pH 7.5), 10 pmol of L-malate
(pH 7.4), 100 pmol of Tris-HCl (pH 7.4), 3 units of mal-
ate dehydrogenase, 6 units of citrate synthase, 100 pmol
of potassium acetate (omitted from controls) and
0.02 nmol of purified protein. The reaction was initiated
by adding ATP. The Enzyme activities were calculated
according to the speed of NADH accumulation. Kinetic
data were further analyzed using software Origin 8.0,
and the highest activity of ACS was determined.

The activity of acetyl-CoA carboxylase was determined
according to the speed of NADPH oxidation [24].
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NADPH concentration was monitored at 365 nm using
Varian Cary50 Bio UV-Visible spectrophotometer. The
assay mixture (1 mL) contained 0.1 mmol of Tricine-
KOH (pH 8.0), 1 umol of dithiothreitol, 1 umol of ATP,
2.5 umol of MgCl,, 50 pmol of KCI, 30 pmol of
NaHCO3;, 0.3 pmol of acetyl-CoA (omitted from con-
trols), MCR-C (C-terminal region of malonyl-CoA re-
ductase) [25] and purified acetyl-CoA carboxylase
(weight ratio, accA:accB:accC:accD ~ 1:1.02:1.66:1.08)
[26, 27]. Samples were pre-incubated at 30 °C for 1 min
to start the reaction, followed by addition of acetyl-CoA,
and then incubated at 30 °C after mixing.

The specific activity of the PhlD was measured using
the a-ketoglutarate dehydrogenase (KGDH) according to
the reported study [22]. CoASH-dependent oxidation of
a-ketoglutarate was accompanied by the reduction of
NAD" to NADH. The rate of NADH (e = 6220 M"'cm™)
formation was monitored at 340 nm. Assay solutions
containing 2 pmol o-ketoglutarate, 100 umol malonyl-
CoA (omitted from controls) were added to a premix of
0.2 U KGDH, 0.3 pmol NAD", 30 ug PhID to a final vol-
ume of 1 mL in potassium phosphate buffer (50 pmol,
pH =7.0).

In vitro synthesis of phloroglucinol

For the enzymatic synthesis of phloroglucinol from acet-
ate, the assay mixture with the final volume of 1 mL
contained 10 mM MgCl,, 10 mM KCIl, 30 mM ATP,
3 mM CoA, 30 mM sodium bicarbonate (NaHCO;),
10 mM potassium acetate, 100 mM Tris-HCI pH 7.4,
purified ACS2, ACC and phlD, and ampicillin (0.1 mg/
mL). To analyze the sensitivity for the concentration of
each enzyme, ACS2, ACC, phlD were individually ti-
trated into the reaction system described above. The re-
actions were executed in 12 mL bottles containing 1 mL
of reaction solution. The reaction solution was shaken at
100 rpm in order to exchange substance and energy.
The reaction temperature and time were set at 30 °C
and 10 h, respectively.

The concentration of acetate and phloroglucinol was
analyzed by HPLC. In brief, samples were centrifuged at
12,000 g for 5 min, and the supernatants were filtered
using a 0.20 pm nitrocellulose filter and analyzed by a
Summit HPLC (Agilent 1200 series, CA, USA) equipped
with UV/vis and refractive index detectors. The column
(Aminex HPX-87H, 300 mm x 7.8 mm, Bio-Rad, CA,
USA) was eluted at 55 °C using 5 mM H,SO, as the mo-
bile phase at a flow rate of 0.5 mL/min.

The total phloroglucinol amount was calculated based
on the measured concentration by HPLC. The phloroglu-
cinol yield was calculated according to acetate consump-
tion based on the following equivalents: 3 acetate ~3
acetyl-CoA ~ 3 malonyl-CoA ~ phloroglucinol.
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Results and discussion

Kinetic analysis of acetyl-CoA synthetase

Three kinds of acetyl-CoA synthetases were analyzed
with Coomassie brilliant blue staining after purification
(Fig. 2). The kinetic analyses were carried out in vitro by
spectrophotometric method. The catalytic activities of
ACS, ACS1 and ACS2 were obtained for 2.2, 1.3 and
4.2 mmol/min/umol protein, respectively (Fig. 3a), show-
ing that ACS2 has the highest affinity for acetate and
higher catalyzing efficiency compared with ACS and
ACS1 protein. Acetyl-CoA synthetase can assimilate
acetate into acetyl-CoA via two irreversible enzymatic
steps [28]. Firstly, acetate reacts with adenosine triphos-
phate (ATP) to produce acetyl-adenosine monopho-
sphate (AMP). Then the reaction of acetyl- AMP with
CoA forms acetyl-CoA-releasing AMP. Acetyl-CoA syn-
thetase has high affinity for acetate, which allows it to
function at the low concentration of acetate. Acetobacter
aceti has two putative acetyl-CoA synthetase genes (acsl
and acs2). The acsl gene was up-regulated during
ethanol-oxidation phases, while the acs2 gene was sig-
nificantly up-regulated when cells entered to the acetate-
oxidation phase [29, 30]. ACS2 was inferred to play a
more important role to assimilate acetate. Many valuable
products during biosynthesis pathways can originate
from the acetyl-CoA node located in the center of meta-
bolic network, and therefore efficient conversion of acet-
ate to acetyl-CoA is of great significance.

The optimal pH of ACS2 was tested in NayHPOy-
KH,PO, and Tris-HCI buffers with different pH (pH 5,
6, 7 and 8 and pH 7, 8 and 9), respectively. The optimal
pH for ACS2 activity was about pH 7.0 (Fig. 3b). To de-
termine the optimal temperature for ACS2, the reactions
were incubated at a series of temperatures (20, 25, 30,
35, 37, 40, 45, 50 and 55 °C). The results showed that
the highest enzyme activity was identified at about 37 °C

and enzyme activity was fairly stable over the
temperature range of 25-45 °C (Fig. 3c).
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Fig. 2 Coomassie brilliant blue-stained SDS-PAGE analysis of purified
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Effects of individual protein concentration on the
phloroglucinol reactions

The ACS2, accA, accB, accC, accD and PhlD were
prepared, and the purified proteins were analyzed by
SDS-PAGE. Enzyme activity analysis showed that all
the purified enzymes were active (Table 2). A suffi-
cient amount of protein was collected in order to
carry out in vitro reaction.

To analyze the sensitivity of the concentration of each
enzyme, ACS2, ACC and PhlD were individually titrated
into the in vitro system described above. The concentra-
tion of phloroglucinol formation in vitro was quantified
when the reaction was terminated at 10 h. Titration re-
sults revealed that three enzymes in the biosystem were
divided into two categories. ACS2 and ACC enhanced
the rate of phloroglucinol synthesis in a dose-dependent
manner (Fig. 4a and b). ACC had a more remarkably ef-
fect on the in vitro synthesis system, whereas increased
ACS2 concentration has relatively less effect. The high-
est achievable concentration of phloroglucinol was about
170 mg/L when the concentration of ACC varied from
1.5 uM to 10 uM. In contrast, PhID did not obviously in-
fluence the rate of phloroglucinol synthesis, although
their individual concentration was varied relative to the
reference concentration of 1.5 pM (Fig. 4c). Therefore,
the catalyzed reaction of ACC is the rate-limiting step
during synthesis of phloroglucinol from acetate. The
similar result was also observed during fatty acid

synthesis in vivo in the previous study which showed
that up-regulation of ACC activity can increase the rate
of fatty acid biosynthesis [27]. It is reported that the rate
of fatty acid biosynthesis can be increased by 100-fold
when ACC was titrated into the cell-free extract from
E. coli [31], thus high rate of fatty acid synthesis is
realizable by increasing the activity or quantity of
acetyl-CoA carboxylase. Our results showed the simi-
lar importance of acetyl-CoA carboxylase during syn-
thesis of phloroglucinol from acetate in vitro.

In vitro synthesis of phloroglucinol from acetate

Based on the results of titration studies, an optimal
molar ratio of approximately 3 ACS2 : 5 ACC : 1 phlD
(6 uM : 10 uM : 2 puM) was observed under the reaction
conditions of 30 °C for 10 h. Finally, 10 mM acetate was
converted into 2.93 mM (369.18 mg/L) phloroglucinol at
the optimized condition (Fig. 5a). Therefore the opti-
mized molar protein ratio is beneficial to in vitro synthe-
sis system.

The synthesis process required ATP consumption and
CoA cycle, and thus the ATP and CoA concentrations
might influence the in vitro biosynthetic process. ATP
and CoA concentrations would be double in order to ex-
tend the duration of phloroglucinol production in the
reaction system. As shown in Table 3 and Fig. 5a, the
results showed that ATP and CoA concentration have
little influence on the phloroglucinol synthesis at the

Table 2 Enzyme used in the in vitro synthesis of phloroglucinol from acetate

Enzyme EC Source Activity (U/mg) T-Optimun (°C) pH-Optimun References
ACS2 6.2.1.1 A. pasteurianus 291 37 7.0 This study
ACC 64.1.2 A. calcoaceticus 0.55 30 8.0 [24, 36]
PhID 23.1.253 P. fluorescens 1.03 37 7.0 [3, 22]
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concentration of 10 mM potassium acetate. Under the
condition of double concentration, the effect of varying
the initial acetate concentration was further examined.
Finally, 20 mM acetate was converted into 5.87 mM
(739.13 mg/L) phloroglucinol at the optimized condition
(Table 2, Fig. 5b), while 40 mM acetate was only con-
verted into 4.17 mM (525.42 mg/L) phloroglucinol. As
shown in Table 2, the final amount and vyield of phloro-
glucinol decreased when the initial acetate concentration
increased to 40 mM. The results indicated that higher
substrate may have many negative impacts on the in
vitro synthesis system. The further increase of efficiency
and productivity will likely require a coordinated in-
crease at the levels of multiple proteins.

In this study, the comparison of the total amounts of
transformation and production revealed the high per-
formance of the enzymatic production system. The
system shows a much higher yield in comparison to
fermentation processes with yields of about 15% [2].

Although the results presented in this work are very
promising, several problems should be paid attention.
Typically, the productivity was low due to the inhibition

of substrate, intermediate or product and the stability of
the enzymes was low. The total productivity of the in
vitro biosystem is still low (<1 g/L) compared to the re-
ported fermentation processes with productivity of about
4 g/L [2]. The in vitro biosynthetic process for phloro-
glucinol still needs to further optimize reaction and con-
dition in order to realize the technological applicability.
To decrease costs, in vitro biosystem should be operated
continuously which can realize the minimal addition of
feedstock chemicals. Considering that the consumption
of expensive ATP and CoA will increase production
costs, low-cost ATP regeneration module need to be de-
signed, and also low-cost and high-stability CoA ana-
logues need to be explored or synthetized [32]. Another
possible solution is the construction of efficient enzyme
cascade and substrate channeling for in vitro biosyn-
thesis in order to overcome the typical disadvantages for
in vitro biotransformation [5, 33] (e.g. the inhibition by
the substrate, intermediate, and/or product, and degen-
eration and diffusive losses of intermediate or cofactors
in the reaction). For example, the enzyme cascades were
constructed by attaching enzymes to DNA scaffold in
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Table 3 Effect of initial substrate concentration

Page 7 of 8

Initial acetic acid concentration Acetic acid measured (mg/L)

Phloroglucinol measured (mg/L) Weight yield (%)

10 mM (=0.6 g/L) 1213
20 mM (=12 g/L) 36.27
40 mM (=24 g/L) 135661

376.74 64.09%
739.13 63.51%
52542 50.36%

In vitro reaction system was incubated with varying amounts of acetic acid. ATP and CoA concentration were 60 mM ATP and 6 mM CoA

the previous work [34], leading to the high reaction rate.
It is also important to develop multi-enzyme
immobilization cascades and stable enzymes for long-
running of in vitro biosynthesis.

Conclusions

This study was the first successful attempt to synthesize
phloroglucinol via in vitro system using acetate as the
only carbon source. In comparison to fermentation pro-
cesses from glucose, a novel approach to produce phlor-
oglucinol from acetate was achieved, which showed a
high yield of near 65% through the in vitro biosynthetic
process. Considering that the proportion of substrate
consumption could be 50% or even more of the total
production costs, the overall economy primarily depend
on the efficiency of substrate utilization in biochemical
processes. In this study, the use of acetate as substrate
which is a kind of renewable material provides the po-
tential to reduce the costs of phloroglucinol production.
However, some problems need to be solved in the batch
production of phloroglucinol. Most notable one is that
the used enzymes were not cost effective and recycled.
Generally, low costs of enzyme can be realized by dis-
covering stable enzymes suitable for long-term produc-
tion, designing methods for recycling the enzymes, and
developing low-cost methods for protein purification.
Therefore, it is suggested that the efforts to develop in
vitro biotechnology for the synthesis of bio-based chemi-
cals are further needed.

In this work, the simple artificial multi-enzyme cas-
cade reaction was constructed in an in vitro system
based on acetate, and other important bio-based chemi-
cals and bioenergy can also be produced based on the in
vitro flexible biosynthesis system. Acetyl-CoA is a cen-
tral metabolite precursor during biological metabolic
processes and can be transformed into other industrial
chemicals (e.g. 3-hydroxypropionate and fatty acid) [25,
35], and therefore the in vitro biosynthetic technology
based on acetate has the potential to work as a versatile
synthetic platform. In brief, in vitro synthesis of phloro-
glucinol from acetate could be an interesting model sys-
tem for biosynthesis of other chemicals.
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