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Abstract: Hypoalbuminemia is associated with the acquisition and severity of infectious diseases,
and intact innate and adaptive immune responses depend on albumin. Albumin oxidation and break-
down affect interactions with bioactive lipid mediators that play important roles in antimicrobial
defense and repair. There is bio-mechanistic plausibility for a causal link between hypoalbuminemia
and increased risks of primary and secondary infections. Serum albumin levels have prognostic value
for complications in viral, bacterial and fungal infections, and for infectious complications of non-
infective chronic conditions. Hypoalbuminemia predicts the development of healthcare-associated
infections, particularly with Clostridium difficile. In coronavirus disease 2019, hypoalbuminemia corre-
lates with viral load and degree of acute lung injury and organ dysfunction. Non-oncotic properties of
albumin affect the pharmacokinetics and pharmacodynamics of antimicrobials. Low serum albumin
is associated with inadequate antimicrobial treatment. Infusion of human albumin solution (HAS)
supplements endogenous albumin in patients with cirrhosis of the liver and effectively supported an-
timicrobial therapy in randomized controlled trials (RCTs). Evidence of the beneficial effects of HAS
on infections in hypoalbuminemic patients without cirrhosis is largely observational. Prospective
RCTs are underway and, if hypotheses are confirmed, could lead to changes in clinical practice for
the management of hypoalbuminemic patients with infections or at risk of infectious complications.

Keywords: albumins/pharmacology; hypoalbuminemia; infections; innate immunity; bioactive lipid
mediators; community-acquired pneumonia; bacteremia; sepsis; healthcare-associated infection

1. Introduction

Albumin is abundant in human blood, and research has identified a wide range of
putative roles for the protein in modifying inflammation, maintaining vascular endothelial
integrity and acid-base balance, and ligating endogenous and exogenous compounds [1].
Albumin can offer protection from inflammatory processes and the associated damage to
microcirculation and tissues [2]. Albumin is involved as a carrier molecule in the distri-
bution and elimination of drugs [3]. The kinetics of albumin involve trans-capillary leak
and breakdown, leading to hypoalbuminemia, which is associated with worse outcomes
in a broad spectrum of conditions [4]. Hypoalbuminemia is often due to inflammation
but can also be caused by hepatocyte damage and decreased albumin synthesis, dietary
insufficiency of amino acids, or increased excretion of albumin [4].

The therapeutic use of human albumin solution (HAS) in critically ill or surgical pa-
tients and to correct hypoalbuminemia has been studied for decades. HAS was introduced
as a biopharmaceutical drug for plasma expansion in the 1940s but randomized controlled
trials (RCTs) at low risk of bias to investigate its effects first started in the 1970s. Conflicting
results from predominantly small studies of fluid therapy and volume resuscitation, to-
gether with increasing competition from synthetic colloids, contributed to great variability
in the use of HAS in different countries and healthcare settings [5]. Before the turn of the
century, clinical use of colloids shifted from albumin to artificial colloids, in particular
hydroxyethyl starch solutions. This, combined with consideration of the relative safety and
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costs of colloids in general when compared with crystalloids tended to decrease the overall
use of HAS [6]. More recently, however, growing evidence of safety and efficacy has led to
increasing interest in the therapeutic potential of HAS [7].

The role of therapy with HAS in patients with liver disease is well established. Guide-
lines and consensus recommendations favor use of HAS over either crystalloids alone or
synthetic colloids (in particular hydroxyethyl starch) in spontaneous bacterial peritonitis
(SBP) and other complications of cirrhosis [8,9]. In clinical studies, the use of HAS in
cirrhotic patients with peritoneal infection led to significant reductions in mortality and
renal impairment [10]. Recent evidence suggests that HAS administration in combination
with antibiotics in patients with cirrhosis and infections other than SBP reduced occur-
rence of new bacterial infection during follow up compared with antibiotics alone [11].
The mechanisms involved in this effect are not clear and final data from further studies
investigating the effects of HAS in preventing infections in patients with advanced liver
disease are not yet fully available [12,13].

This review focusses on albumin in the context of infections, including the roles of
hypoalbuminemia and of adjunctive treatment with HAS. A non-systematic search of
the literature was performed in EMBASE with the terms “(‘hypoalbuminemia’/exp OR
hypoalbuminemia) AND (‘infection’/exp OR infection)” to identify studies published since
2016 until October 2020 and by manually searching reference lists for literature published
before 2016. Approximately 2600 search hits were screened across a range of different
disease settings, and identified studies were included in this report when deemed relevant.

2. Etiology of Hypoalbuminemia

Albumin represents almost three-quarters of the antioxidant capacity of serum [14].
Hepatic synthesis maintains circulating albumin, which can access the interstitium and
tissues where it acts as an antioxidant and free radical scavenger [4]. Eventually, the liver
reduces or resynthesizes albumin to restore its antioxidant activity and there can be an
upregulation in the synthesis and anti-inflammatory functions of albumin depending on the
severity of inflammation (Figure 1) [4]. However, breakdown of albumin is also increased
in inflammatory states, which can lead to hypoalbuminemia. despite increased albumin
synthesis [4]. A combination of the inflammatory response and increased capillary escape of
albumin may also limit its oxidative influences in the interstitial space in infection, serious
illness, and trauma, but at the same time provide substrate for tissue regeneration [15].

2.1. Albumin Kinetics

Albumin synthesis in the liver is partly controlled by the oncotic pressure in the hepatic
interstitium. On the one hand, serum albumin mass is influenced by the hepatic fractional
synthesis rate, which may be reduced in inflammatory conditions but can also be normal
or even increased. On the other hand, capillary escape [16], increased breakdown [17],
and external losses occurring in nephrotic syndrome, protein-losing enteropathy due
to lymphatic blockage, and mucosal disease or extensive burns, reduce the half-life of
serum albumin [4]. In liver failure, fractional synthesis rate is mainly decreased because
production of albumin is affected by liver function [18]. Low serum albumin is a parameter
of the Child-Pugh Scoring system for assessing disease severity in decompensated cirrhosis,
and an indicator of prognosis [19].

2.2. Hypoalbuminemia in Acute Phase and Chronic Inflammation

Even in otherwise healthy individuals, chronic inflammation is a driving force of
reduced circulating albumin levels. Hypoalbuminemia reflects the physiological stress from
disease-related inflammation, may develop quickly even in adequately nourished patients
after trauma or acute illness, and commonly occurs in chronic inflammatory conditions
due to increased vascular permeability and interstitial volume [4]. With advancing age,
a progressive, systemic, but subclinical, inflammatory process develops which has been
named ‘inflammaging’ [20]. This low-grade inflammatory state potentially contributes to
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chronically reduced serum albumin in patients with no clinically apparent inflammatory
disease. In the elderly, increased concentrations of IL-6 and TNFα, are associated with
hypoalbuminemia, which in turn is a predictor of mortality [21].
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The severity of hypoalbuminemia reflects the severity of inflammatory stress in both
acute and chronic states. Chronic conditions associated with hypoalbuminemia also
complicate hospital treatment by mechanisms described as ‘second hit’ phenomena [22]. In
established chronic diseases, inflammation contributes to albumin loss, which can lead to
poorer outcomes [23]. A systemic inflammatory response and low serum albumin level is
associated with negative prognosis in patients with cancer, most likely through suppression
of the immune response [24]. Although the strength of the correlation is not clear, severe
inflammation is generally associated with progressively lower serum albumin levels and,
most importantly, low levels of serum albumin are associated with worse recovery in
acute conditions involving systemic inflammatory responses [25]. It may therefore be that
preexisting hypoalbuminemia contributes to the risk of acute infectious diseases, and that
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acute loss of albumin in systemic inflammatory reactions further complicates the clinical
course of all trauma, medical, and surgical conditions.

3. Bio-Mechanistic Relationship between Hypoalbuminemia and Infection

Infections are the most common trigger of acute phase hypoalbuminemia. Distinguish-
ing between appropriate development of hypoalbuminemia for controlling a widespread
infection and excessive capillary leakage is challenging, so treatment is often focused
on addressing the underlying cause without replacing albumin. The effects of albumin
in infectious disease are predominantly indirect and hypoalbuminemia may reflect the
poor health of the patient. Equally, critically ill patients are likely to have some immune-
mediated defects that are not secondary to hypoalbuminemia, and overall, it seems that
hypoalbuminemia is a reflection of disease or trauma-related inflammation [4]. There
is bio-mechanistic plausibility for a link between hypoalbuminemia and increased risks
of primary and secondary infections, although direct proof is not available to establish
causal relationships. Most of the in vitro evidence of a direct immunomodulatory effect
of albumin is old (published well before 2016) and outside of the scope of the literature
search used to prepare this review. Nevertheless, albumin physiology plays a critical role
in both an effective host immune response to pathogens and the devastating effect of
immune dysregulation characterized by cytokine storm [26]. The combination of acute-
phase hypoalbuminemia and endothelial cell death can lead to capillary leak syndrome,
with renal dysfunction further contributing to unfavorable edema formation—changes
that are similar to those observed in patients with cancer who are treated with high-dose
interleukin (IL)-2 [27].

Some studies suggest that therapeutic use of HAS may beneficially affect the patho-
physiology of immune dysregulation-initiated inflammatory events. Interestingly, in a
prospective randomized trial undertaken to compare crystalloid and colloid fluid resuscita-
tion for patients receiving bolus IL-2-based therapy for metastatic cancer, 5% HAS allevi-
ated hypoalbuminemia despite vascular leak and the incidence of oliguria was markedly
reduced by albumin infusion (2.8% vs. 32.5% with normal saline) [28]. Similarly, in a
multi-center RCT involving 193 patients with severe liver disease and sepsis unrelated
to spontaneous bacterial peritonitis, patients were randomized to receive either antibi-
otics plus HAS (1.5 g/kg on day 1 and 1 g/kg on day 3), or antibiotics alone. HAS did
not improve renal function or survival at 3 months; however, the short-term use of HAS
significantly delayed onset of renal failure [29].

3.1. Albumin and Immune Function

The ability of the albumin molecule to bind a variety of ligands is central to its im-
munomodulatory effects [1]. Albumin presents a high degree of microheterogeneity, which
is affected by physiological and pathological processes [30]. The oncotic effect of serum
albumin derives from its molecular weight and negative charge, but non-oncotic properties,
including protection against oxidative damage, and binding activities for mediators, drugs,
and toxins are related to other aspects of its molecular structure. The amino acid residue at
position 34 from the N-terminus is a cysteine with a mercapto group (sulfhydryl group)
(Figure 2), which deoxidizes other substances according to the degree of oxidative stress.
Oxidative damage subsequently impairs the binding properties of albumin as found in
healthy [31,32] and diseased subjects, including patients with cirrhosis of the liver, kidney
disease, and sepsis [33].
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Figure 2. Illustration of the tertiary structure of human serum albumin. The three domains of albumin
are shown in purple (IA), red (IB), green (IIA), orange (IIB), blue (IIIA), and violet (IIIB). Yellow
sticks depict disulfide bridges, and yellow spheres highlight the available cysteine 34 in domain
IA. Reproduced without modification from Larsen et al. 2016 [34], under a Creative Commons
Attribution 4.0 International (CC BY 4.0) License (https://creativecommons.org/licenses/by/4.0/
(accessed on 25 April 2021)). No copyright, as the Creative Commons Public Domain Dedication
waiver (https://creativecommons.org/publicdomain/zero/1.0/ (accessed on 25 April 2021)) applies.
This reuse has not been endorsed by the original authors. The source reference is “Albumin-based
drug delivery: harnessing nature to cure disease” in Mol Cell Ther and is available at https://
molcelltherapies.biomedcentral.com/articles/10.1186/s40591-016-0048-8 (accessed on 25 April 2021).

In patients with decompensated cirrhosis, serum albumin shows structural abnormali-
ties, most often involving reversible oxidation and glycation [35], which lead to impaired
binding capacity in albumin and increased risk of liver failure [36]. By combining liq-
uid chromatography-electrospray ionization-mass spectrometry and standard methods
of albumin determination, ‘effective’ albumin has been defined as the albumin isoform
presenting structural and functional integrity as differentiated from ‘total’ albumin, which
includes modified albumin. Most importantly, it has been suggested that serum levels of
‘effective’ albumin may be a better prognostic indicator than ‘total’ albumin in patients
with decompensated cirrhosis [36].

Immune responses to invasive pathogens include elevations of nonspecific markers
of inflammation such as C-reactive protein (CRP) [37]. A variety of mediators provide
regulatory signals that coordinate antimicrobial effector cells of the innate and adaptive
immune functions [26]. Trans-capillary leakage of serum albumin correlates with infection
severity and increases interstitial levels of albumin [16]. The antioxidative and other
non-oncotic properties of albumin may be of critical importance in antimicrobial defense
and injury repair mechanisms, and more significant hypoalbuminemia can therefore have
systemic effects and cause collateral damage to vital organ systems [1,3,38]. Experimental
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evidence suggests that antioxidant treatment after injury may be beneficial against bacterial
infection in suppressing second-hit responses [39].

3.1.1. Effects of Albumin on Leukocytes

Neutrophilic granulocytes form extracellular webs of chromatin, microbicidal proteins
and oxidant enzymes known as neutrophil extracellular traps (NETs) as an immune defense
mechanism to contain infections and albumin inhibits NETosis by the scavenging of acti-
vators such as bacterial lipopolysaccharides [40]. Infectious diseases can be characterized
by increased serum levels of cell-free DNA, reflecting NETosis and decreased levels of
albumin [41,42]; however, the degree of inverse correlation still needs to be investigated.
Casulleras et al. [43] used peripheral blood leukocytes from patients with cirrhosis of the
liver and showed that albumin administration inhibited cytokine production induced by
bacterial 5’-C-phosphate-G-3′-DNA. Albumin was taken up by leukocytes and localized
in endosomes, where it inhibited Toll-like receptor signaling. In patients with acutely
decompensated cirrhosis, albumin administration has been shown to reduce inflammation,
and may therefore involve a direct effect of albumin on leukocytes [44].

3.1.2. Interactions of Albumin with Sphingosine 1-Phosphate and Heparin-Binding Protein

Preclinical studies demonstrate that albumin is more effective than hydroxyethyl
starch and other artificial colloids in preserving the endothelial glycocalyx, reducing
vascular permeability, and reducing adhesion of platelets and leukocytes [45]. Low protein
content in plasma causes matrix metalloproteinase (MMP) cleavage of the glycocalyx
components from the underlying endothelium [45].

Protection against endothelial glycocalyx shedding might be mediated by the protein-
bound lipid mediator sphingosine 1-phosphate (S1P) through inhibition of MMP cleavage
of the endothelial glycocalyx and restoration through mobilization of intracellular glycoca-
lyx components [45]. Circulating S1P has been found to be a key regulator of lymphocyte
trafficking, endothelial barrier function, and vascular tone [46] Erythrocytes and platelets
are major sources of S1P in the body, and albumin can facilitate the release of and transport
S1P [46]; in the absence of albumin, S1P release from erythrocytes is dramatically reduced
and it seems that albumin plays an import role in providing a significant amount of S1P to
the endothelium. [47].

Heparin-binding protein (HBP) is also involved in the pathophysiology of severe
bacterial infections and may have a role in their management [48]. A high level of HBP
in plasma might be a useful diagnostic marker for detecting organ dysfunction among
patients ranging from suspected infections to septic shock [49]. In clinical studies, high
plasma HBP levels in patients with sepsis were associated with a higher early fluid balance,
increased organ failure within 5 days, and higher 28-day mortality [50]. Fisher et al. [51]
reported that patients in septic shock in whom acute kidney injury developed or worsened
had significantly higher HBP-to-albumin ratio and HBP levels in plasma than patients with
no acute kidney injury. The highest HBP-to-albumin ratio and HBP levels were significantly
associated with development or worsening of acute kidney injury, positive fluid balance,
and levels of inflammatory cytokines. In vitro albumin inhibited HBP-increased endothelial
cell permeability, suggesting that HBP may be a mechanism of efficacy in septic shock [51].

Interestingly, in coronary bypass surgery, incidence of acute kidney injury is elevated
and plasma levels of HBP are known to increase, [52,53] preoperative serum albumin
levels are inversely related to postoperative risk of acute kidney injury development, [54]
and in an RCT, preoperative correction of hypoalbuminemia with administration of HAS
significantly reduced the occurrence of acute kidney injury [55].

3.1.3. Interaction of Albumin with Bioactive Lipid Mediators

The cell membrane is rich in polyunsaturated fatty acids that give rise to both pro-
inflammatory and anti-inflammatory eicosanoids [56]. Hypoalbuminemia might alter the
metabolism of arachidonic acid, and lower arachidonic acid level has been reported to
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be an important determinant of outcome in sepsis patients [57]. Albumin enhances the
formation of anti-inflammatory lipoxins, resolvins and protectins that facilitate resolution
of disease processes (Figure 3) [58]. This is consistent with the findings of previous studies
which reported that elevated prostaglandin E2 (PGE2) combined with hypoalbuminemia
mediates immunosuppression in patients with acute decompensated and end-stage liver
disease, which can be reversed with 20% HAS infusions [12].
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pro-inflammatory [59]. Interventions that prevented an increase in serum unsaturated fatty
acids in mice prevented renal injury, lung injury, systemic inflammation, hypocalcemia,
reduced pancreatic necrosis, and mortality [60]. Albumin can bind unsaturated fatty acids
and reduce inflammation injury [61]. The observed regulation of lipotoxicity by albumin
may be particularly relevant in coronavirus disease 2019 (COVID-19) patients with obesity
and significant hypoalbuminemia [62].

4. Hypoalbuminemia and Disease Outcomes

Inflammation can affect the success of treatment because it reduces the effectiveness
of biological responses in trauma or disease. In many chronic, progressive conditions,
hypoalbuminemia worsens along with the severity of inflammation and risk of mortal-
ity [63]. Preexisting hypoalbuminemia is a prognostic indicator of worse outcome for
a broad spectrum of diseases ranging from medical conditions [64–66] to surgery [67].
Evidence in support of a prognostic role of serum albumin level is abundant and estab-
lished for orthopedic [68–71], cardiovascular [72,73], gynecologic [74,75], and visceral
surgery [76–78].

Serum levels of albumin predict outcome in first-hit acute inflammatory conditions
such as primary trauma [79], burns [80], or acute infections [81]. Acute inflammation
elicits an acute phase reaction characterized by changes of albumin and other markers of
inflammation [82] including CRP, which increases within hours after major surgery [83].
Circulating CRP levels predict outcome in surgery and acute medical conditions [84].

There is a close correlation between increases in CRP and decreases in serum albumin
levels. In patients undergoing elective open colorectal surgery, it has been reported that
preoperative CRP was useful in predicting the development of hypoalbuminemia on
postoperative days 3 and 7 [85]. Serum albumin concentration on the first postoperative
day has also been shown to be a better predictor of surgical outcome than other preoperative
risk factors [86]. The predictive value of serum albumin levels is the rationale to include
serum albumin levels in physiological scoring systems for critically ill hospitalized adults
such as APACHE III [87] and also in a simplified critical illness severity scoring system
(CISSS) that was validated recently [88].

To increase the predictive value of albumin and CRP, the two markers have been
combined, with the ratio of serum levels of albumin and CRP known as the ‘Glasgow
Prognostic Score’ [89]. If and how the Glasgow Prognostic Score will be able to increase the
predictive power for outcome is being studied intensively in different fields and patient
populations [90]. Detailed discussion of this and other biomarker ratios is beyond the
scope of this review.

Data from the first US Health and Nutrition Examination Survey (NHANES I) show
that albumin concentrations are related to lean body mass in healthy males [91]. Older
people with low albumin levels can show loss of muscle mass, and hypoalbuminemia is
sometimes considered to be an indicator of malnutrition, but there are other factors that
affect serum albumin levels [21]. A study in life insurance applicants showed that across a
wide range of values, albumin levels independently predicted mortality risks in healthy
men and women of all ages [63], and other data show that, regardless of its cause, low
serum albumin is a strong predictive factor for mortality and morbidity [92].

Liver cirrhosis, malnutrition, nephrotic syndrome, and sepsis are known to be strongly
associated with hypoalbuminemia and frequently require hospitalization [92], and there
are links between hypoalbuminemia on admission and in-hospital mortality in a range
of illnesses, including sepsis [93]. Because low serum albumin levels reflect severity of
inflammation, in seriously ill patients, changes in serum albumin levels in the absence of
albumin administration can indicate either recovery or deterioration [4].

5. Hypoalbuminemia and Prognosis in Infections

Associations of serum albumin levels with development and severity of infectious
diseases may be sufficiently explained by the effects of systemic inflammation on albumin
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kinetics making low serum albumin levels a surrogate marker. If low serum albumin levels
can be shown to directly affect innate immunity and antimicrobial defense, associations
with infectious diseases might also lead to the identification of low albumin mass as
culprit, causally contributing to both acquisition and development of complications of
infections [94].

The prognostic value of low serum albumin levels has been demonstrated not only for
the development and complications of acute viral, bacterial, and fungal infections [95], but
also for infectious complications in chronic conditions including malignant diseases [66,96],
chronic inflammatory diseases [97,98], diabetes [95], hemodialysis [99], and solid organ
transplantation [100]. In chronic infectious diseases, hypoalbuminemia is associated with
disease reactivation/recurrence and secondary infections [101–103].

As shown in patients during the initial phase of bacteremia, after an initial increase in
CRP, levels drop over several days, whereas after the sudden drop of serum albumin levels
due to trans-capillary leakage, serum levels remain low for a much longer period [16]. Pa-
tients who present with community-acquired bacterial or viral infections are more likely to
require intensive care unit (ICU) treatment if serum albumin levels on admission to hospital
are low [104,105]. Patients with colorectal cancer who develop infectious complications
after laparoscopic surgery have more pronounced postoperative hypoalbuminemia on
days 2 and 3 than patients with uncomplicated surgery [106], suggesting that measurement
of serum albumin levels may be helpful in the early recognition of postoperative infection.
Hypoalbuminemia is associated with the severity of different kinds of infections, including
those caused by Pseudomonas aeruginosa, Clostridium difficile, and influenza [101,107,108],
and albumin levels are predictive of infection complications as shown in scrub typhus [109].

In particular, hypoalbuminemia is an independent risk factor for mortality in Clostridium
difficile infection, along with older age, immunosuppression, and antibiotic use [107,110–113].
Bell et al. reported that hypoalbuminemia was a risk factor for increased risk 90-day
incidence of Clostridium difficile infection after spine surgery, along with preoperative
fluoroquinolone use, advanced age, chronic kidney disease, and decompensated chronic
liver disease [107]. Knafl et al. reported on 144 consecutive symptomatic patients with
a positive stool test for Clostridium difficile in whom ATLAS score (Age, Temperature,
Leukocyte count, Albumin, Systemic antibiotics, Serum creatinine) was calculated [112].
This found that both serum albumin and ATLAS were predictors of disease complications
and mortality from Clostridium difficile infection while only serum albumin was significantly
associated with 90-day disease recurrence.

It is known that the effects of Clostridium difficile are related to production in the
intestine of protein toxins known as TcdA and TcdB [114] and it has been shown that
human serum albumin binds to these toxins and causes their proteolytic cleavage outside
intestinal epithelial cells [115]. This occurs at physiological concentrations and impacts
the ability of the toxins to enter the host cells and affect GTPases to produce cytotoxic
effects, thereby providing a possible explanation for the observed correlation between
serum albumin levels and the severity of Clostridium difficile infection [115].

5.1. Sepsis

In sepsis, acute and chronic states of low serum albumin are independently associated
with increased risk of mortality. Sepsis is a common cause of mortality in ICUs, and low
serum albumin levels in the acute phase are associated with increased risks of severity [116]
and death in patients who develop severe sepsis and organ failure [81,117–119]. The
predictive value of low serum albumin is independent of the site of infection [120–122] and
independent of the patients’ age, even considering newborn and pediatric patients with
sepsis [123–125]. Serum albumin of 2.45 g/dL was identified as the cut-off value to define
hypoalbuminemia that was optimal for the prediction of short and long-term mortality in
patients with septic shock [126].

Preexisting chronic hypoalbuminemia is an established component in the ‘predispo-
sition, infection/insult, response, and organ dysfunction’ (PIRO) sepsis staging system
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(Table 1) [127]. In a Danish population-based study in 1844 patients with community-
acquired bacteremia, a single plasma albumin measurement on the date bacteremia was
identified was a better predictor of short-term mortality than a sepsis severity score [38].
For each 0.1 g/dL decrease in serum albumin level, the odds ratio (95% confidence inter-
vals) of mortality in the period of 0–30 days after bacteremia was 0.86 (0.84–0.88). In that
study, the latest albumin measurement was taken 8–30 days before the date of bacteremia
in 422 patients, and a higher proportion of patients died within 30 days if the albumin level
decreased between days 8–30 prior to bacteremia and the eventual date bacteremia was
identified [38].

Table 1. Score value of the ‘predisposition, infection/insult, response, and organ dysfunction’ (PIRO) staging system for
community-acquired sepsis in the emergency department. Adapted from Chen and Li 2013 [127].

Component Parameter Threshold Weighted Score

Predisposition (P)
Age >70 2
Chronic obstructive pulmonary disease Yes 1
Serum albumin <2.5 g/dL 2

Infection (I) Central nervous system infection Yes 9

Response (R)
Temperature <36 ◦C or >38.5 ◦C 2
Procalcitonin >0.5 ng/mL 7
Brain natriuretic peptide >113 pg/mL 7

Organ dysfunction (O)
Troponin I >0.075 ng/mL 2
Mean arterial pressure <70 mmHg 2
Glasgow coma scale ≤14 4

In inflammatory bowel disease with chronic inflammation, surgical stress increases
the risk of postoperative sepsis if preoperative serum albumin levels are low [128,129].
Similarly, in hemodialysis, hypoalbuminemia affects the risk of sepsis in catheter-related
bloodstream infection [130]. The mortality risk increases in septic patients if other con-
ditions/markers that have predictive value are combined with serum albumin levels, as
shown for ratios between serum albumin and blood glucose [131], serum albumin and
lactate levels [132,133], or serum albumin and immature neutrophil counts [134].

5.2. Community-Acquired Pneumonia and Bacteremia

Hypoalbuminemia is associated with acquisition and severity of community-acquired
pneumonia (CAP) [135–137]. In a total of 3463 patients hospitalized with CAP, the median
serum level of albumin on admission was 3.1 g/dL (interquartile range 2.8 to 3.5), with
decreased levels significantly associated with increased time to clinical stability, longer
hospital stay, admission to the ICU, mechanical ventilation and 30-day mortality [135].
Serum albumin levels are one of the criteria in the SMART-COP (systolic blood pressure,
multi-lobar chest radiography involvement, albumin level, respiratory rate, tachycardia,
confusion, oxygenation, and arterial pH) prediction rule that is validated for identifying
patients with CAP who need vasopressor and/or respiratory support [138].

The development of bacteremia in patients with CAP is associated with increased
risk of septic shock or mortality [139], and hypoalbuminemia is an independent risk factor
for the development of bacteremia in patients with CAP [140] and bacteremia-related
mortality [141–143].

5.3. Healthcare-Associated Infections

Healthcare-associated infections have been defined as those occurring while receiving
(or within 30 days of receiving) healthcare, or in a hospital or healthcare facility that
first appear ≥48 h after admission [144]. Many healthcare-associated infections affect
surgical sites, but others are due to central line bloodstream infections, catheter-associated
urinary tract infections, ventilator-associated pneumonia, septicemia, and gastrointestinal
infections. [144]. S. aureus, Enterococcus spp., E. coli and coagulase-negative Staphylococci
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are among frequently detected microorganisms and up to 20% of microorganisms are
multidrug resistant [144].

In the elderly, hypoalbuminemia is among the clinical parameters associated with poor
clinical outcome of both community-acquired and healthcare-associated bacteremia [16,145–147].
Similar findings on the predictive value of hypoalbuminemia are reported for patients with
bacteremia due to acute bacterial infections of the skin [148]. Low serum levels of albumin
along with inappropriate antibiotic therapy are associated with increased 30-day mortality
in patients with vancomycin-resistant Enterococcus bacteremia [149]. As described earlier,
hypoalbuminemia is an independent risk factor for mortality in Clostridium difficile infection,
along with old age, immunosuppression, preexisting conditions including bloodstream
and preoperative infection, as well as antibiotic use [107,110–113].

5.3.1. Surgical Site Infection

Surgical site infection has been defined as infection related to a surgical procedure that
occurs at or near the surgical incision within either 30 days or within 90 days if prosthetic
material is implanted [150,151]. Antimicrobial prophylaxis aims to prevent surgical site
infections and should be combined with infection-control strategies, and perioperative
management of the underlying medical condition of the patient (which may involve
reduced serum levels of albumin) may also have an impact on surgical infection rates [152].
However, it has not yet been reported whether hypoalbuminemia impairs the effectiveness
of antimicrobial prophylaxis.

An increased risk of surgical site infection is associated with many patient-related
factors that have been associated with hypoalbuminemia, including age, nutrition, obesity,
diabetes mellitus, smoking, existing infections, immunosuppressant or corticosteroid
therapy, undergoing a recent surgical procedure, duration of hospitalization before surgery,
and colonization with drug-resistant bacteria [150]. Hypoalbuminemia can be present
before surgery due to illness, insufficient hepatic synthesis, or poor preoperative nutritional
status, and can occur after surgery due to inflammation, bleeding or capillary leakage [153].

Surgical site infection is a rare complication in hernia repair surgery, with an incidence
of 0.4% (254/57,951) in a large database study; serum albumin was not independent of
diabetes, body mass index >35, and smoking as a predictor of the risk of this complica-
tion [154].

An albumin level <3.5 g/dL was associated with ~2.5-fold increased risk of sur-
gical site infections in orthopedics [155]. Hypoalbuminemia was independently associ-
ated with surgical site infections in several observational studies involving orthopedic
surgery [79,155,156], but this has not yet been confirmed in prospective cohort studies.

Surgical site infection in spine surgery is associated with both patient- and procedure-
related risk factors. Patient-associated risk factors, many associated with hypoalbuminemia,
include diabetes mellitus, obesity, subcutaneous fat thickness, comorbidities, tobacco use,
and malnutrition [157]. Hypoalbuminemia is more common in revision spine surgery for
septic reasons than in aseptic revision surgery [158] and increased the length of hospital
stay for postoperative acute surgical site infection after spinal surgery [159].

In gynecologic surgery, a registry study in 777 women undergoing surgery for vulvar
cancer reported that major postoperative wound complications occurred with an incidence
of 10.4% and were associated with preoperative hypoalbuminemia [160]. In another
registry study of gynecologic cancer surgery, 369/6854 (5.4%) of patients were identified
with surgical site infections which were associated with longer stays in hospital, more
frequent need for reoperation, and higher rates of sepsis and wound dehiscence [161].
Hypoalbuminemia was among the predictors for occurrence of both deep and organ-space
surgical site infections.

In head and neck surgery, postoperative wound infections after laryngectomy cause
substantial morbidity. In a registry study of more than 2000 patients who underwent
laryngectomy, the overall wound complication rate was 10.0% and in adjusted analyses
hypoalbuminemia (odds ratio, 1.90; 95% confidence interval, 1.32–2.74) was independently
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associated with postoperative wound complications; other risk factors were an operative
time of more than 10 h, prior exposure to radiation therapy, presence of diabetes, pre-
operative anemia, and thrombocytosis [162]. In a study of cancer patients undergoing
head and neck surgery, there was a surgical site infection rate of 104/399 (28%); patients
with preoperative hypoalbuminemia (<3.3 g/dL) had a 3-fold higher risk of surgical site
infection [163]. In oral cancer surgery, it has also been reported that early postoperative
hypoalbuminemia (<2.5 g/dL) is an independent risk factor for the development of surgical
site infections. The mean time to infection manifestation was 10 days and the duration
of hospital stay was negatively correlated with postoperative albumin, suggesting that
identification of hypoalbuminemia could be used to alert clinicians about postoperative
care needs [164].

In vascular surgery, it has been shown that surgical site infections are frequent after
lower extremity bypass and are associated with early graft failure and sepsis [165]. In a
registry study of 7595 bypasses, surgical site infections occurred in 11% of overall cases
and preoperative hypoalbuminemia was an independent risk factor [165]. Furthermore,
in 106 consecutive patients with peripheral arterial disease who underwent lower limb
amputations, the 30-day mortality rate was 7.6%, with multivariate analysis showing that
a low serum albumin concentration was a risk factor (hazard ratio, 3.87; 95% confidence
interval, 1.12–16.3) [166]. The most frequent causes of 30-day mortality were pneumonia,
sepsis, and cardiac death.

In patients with intra-abdominal infections, host-related factors dominate over the
type, extent, and source of infection in determining prognosis, and low serum albumin is
one of few identified risk factors for mortality [167]. Preoperative or perioperative hypoal-
buminemia is an independent risk factor for the development of surgical site infection in
patients undergoing gastrointestinal surgery [168–173]. Inclusion of preoperative serum
albumin levels enabled development of a validated stratification scoring system to predict
accurately the risk of surgical site infection after esophagectomy in patients with esophagus
carcinoma [173]. Patients with hypoalbuminemia are at increased risk of developing surgi-
cal site infections after gastric [170] and colorectal [172] cancer surgery. In a retrospective
study of 524 patients undergoing gastrointestinal surgery, preoperative hypoalbuminemia
(<3 g/dL) was associated with an increased rate of deep surgical site infections compared
with superficial infections [169]. Hypoalbuminemia was not identified as an independent
risk factor for either incisional or organ-space infectious complications after liver resection
surgery [174].

5.3.2. Catheter-Related Bloodstream Infection

Hypoalbuminemia and anemia have been associated with poor prognosis in patients
with bloodstream infection, which occur more readily in immunocompromised patients
and those with a high APACHE II score on admission [101]. Immunosuppression, anemia,
and hypoalbuminemia are prominent risk factors of access-related bloodstream infection in
patients with end-stage renal disease [99,130]. The combination of preoperatively increased
CRP and decreased serum albumin levels (i.e., Glasgow Prognostic Score) was strongly as-
sociated with perioperative and postoperative central venous catheter-related bloodstream
infection in colorectal cancer patients receiving intravenous parenteral nutrition [175].
Similarly, hypoalbuminemia at the time of port placement was a predictor of early port
infections in adult patients with hematologic malignancies [176].

5.3.3. Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia

Hospital-acquired and ventilator-associated respiratory infections are the most preva-
lent nosocomial infections in ICUs [177]. Although hypoalbuminemia is not identified as
an independent risk factor of nosocomial pneumonia, many patient-related risk factors
are characterized by low serum albumin levels associated with acute or chronic severe
disease and comorbidities [178]. Prolonged and/or inappropriate antibiotic treatment
is among the most recognized procedure-related risk factors, and inadequate empirical
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antimicrobial therapy increases nosocomial pneumonia-related hospital mortality [179].
Hypoalbuminemia is associated with inappropriate antimicrobial treatment [180,181] and
may be implicated by contributing to patient-related risk factors and other mechanisms
relating to the pharmacokinetic and pharmacodynamic roles of albumin.

5.4. Coronavirus Disease 2019

Reduced serum levels of albumin are associated with poorer outcomes in patients
with COVID-19 [41]. It has been reported that patients had different probabilities of disease
progression based on age, residence in nursing home, comorbidities, obesity, respiratory
rate and presence of respiratory symptoms, fever, lymphocyte count, troponin level, CRP
level, and hypoalbuminemia [182]. The viral load of SARS-CoV-2 detected from patients’
respiratory tracts in a case series of 12 patients has been linked to lung disease severity, and
serum albumin and markers of systemic inflammation were highly correlated to acute lung
injury [183]. Hypoalbuminemia has also been reported to be present in pediatric patients
with Kawasaki-like syndrome associated with COVID-19 [184,185].

6. Hypoalbuminemia and Antimicrobial Treatment

In a prospective cohort study evaluating the relationship between antimicrobial treat-
ment for bloodstream infections and clinical outcomes among 492 patients requiring ICU
admission, 174 patients received inadequate antimicrobial treatment and had a signifi-
cantly increased hospital mortality rate. Multiple logistic regression analysis demonstrated
that decreasing serum albumin concentration (1 g/dL decrements) was independently
associated with the administration of inadequate antimicrobial treatment (adjusted odds
ratio, 1.37; 95% confidence interval, 1.21 to 1.56; p = 0.014) [181]. Similarly, in 222 adult
patients hospitalized with Staphylococcus aureus bacteremia, treatment failure at 30 days
was independently associated with serum albumin levels (adjusted odds ratio, 0.88; 95%
confidence interval, 0.80 to 0.96; p = 0.003) [180]. A recent prospective cohort study of
clinical pharmacist-led antimicrobial treatment consultation in 2663 patients confirmed
that hypoalbuminemia is independently associated with a decrease in effective response
rate to antimicrobial treatment (adjusted odds ratio, 0.69; 95% confidence interval, 0.52 to
0.92; p = 0.012) [186].

Failure of antimicrobial treatment may occur because of failure to achieve adequate
drug concentrations at the infection site because disease pathology alters pharmacoki-
netics. Protein binding is an important factor impacting pharmacokinetic parameters
of antimicrobial drugs [187] because the unbound concentration is responsible for drug
efficacy and potential drug toxicity [188]. Some antibiotics, such as β-lactams, aminogly-
cosides, and glycopeptides, have a higher risk of fluctuations in plasma levels because
of their hydrophilic properties than more lipophilic antimicrobials such as macrolides,
fluoroquinolones, tetracyclines, chloramphenicol, and rifampicin [189].

6.1. Antibiotics
6.1.1. Beta-Lactams

Ceftriaxone is a ß-lactam antibiotic with extensive protein binding of 85% to 95% [190,191].
Low albumin levels increase the ceftriaxone unbound fraction, affect pharmacodynamic
target attainment [192], and may lead to adverse drug reactions [193]. Hypoalbuminemia
is a risk factor for treatment failure with cefotiam in bacteremia caused by gram-negative
bacteria [194]. It has also been recommended that because of the high prevalence of hy-
poalbuminemia in critically ill patients, dose adjustments of flucloxacillin should be based
on monitoring unbound concentrations to account for non-linear protein binding [195].

Ertapenem is highly protein-bound (92–95%), and data suggest that in critically ill
patients with hypoalbuminemia, ertapenem dosed according to current guidelines is
associated with higher mortality than alternative carbapenems [196]. Dose adjustment
for ertapenem should therefore be guided by serum albumin concentrations, with dose
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intervals or continuous infusion considered with the aim of achieving optimal free drug
concentrations in patients with severe hypoalbuminemia [197].

6.1.2. Aminoglycosides, Glycopeptides, and Polymyxins

Serum albumin concentration is an important predictor of amikacin nephrotoxic-
ity [198]. In septic, critically ill patients with severe hypoalbuminemia, administration of
vancomycin loading doses can lead to potentially toxic serum concentrations [199]. Throm-
bocytopenia is one of the most common adverse reactions developed in critically ill adult
patients treated with teicoplanin, and concurrent severe hypoalbuminemia significantly
increases the risk [200].

Decreased serum albumin is a significant risk factor for the nephrotoxicity of polymyxin
E (colistin), but this drug has been used to treat multidrug resistant Gram-negative
pathogens [201]. Severe hypoalbuminemia independently predicted acute kidney injury
during colistin therapy in a large cohort of patients with bloodstream infection [202].

6.2. Therapeutic Drug Monitoring

As dosing strategies designed to optimize antimicrobial pharmacokinetics/
pharmacodynamics have been associated with clinical cure and survival in critically ill
patients, therapeutic drug monitoring incorporating measurement of serum albumin levels
has been recommended [203,204]. French guidelines suggest measuring serum albumin
levels (or at least plasma proteins) at least once at the onset of treatment with beta-lactam an-
tibiotics and in combination with therapeutic drug monitoring for additional interpretation
of the results [205].

7. Therapeutic Effects of Human Albumin Infusion on Infection

Bacterial infection is one of four distinct clinical events that are precipitants consistently
related to acute decompensation of cirrhosis [206]. Prevention of development of ascites
and hepatorenal syndrome during an episode of SBP in patients with decompensated
cirrhosis of the liver by short- and long-term infusion of HAS is an approved systemic
therapy [207,208]. In a study of HAS administration in patients with cirrhosis and infections
other than SBP, patients receiving albumin were less likely than controls to develop new
bacterial infections during the follow-up period (9.8% vs. 24.6%, respectively; p < 0.03) [11].
Reduced systemic inflammation by HAS therapy in patients with decompensated cirrhosis
may be responsible for the beneficial effects on outcomes, including in patients with
infections other than SBP [209]. According to recent meta-analysis, there is no evidence of
significant mortality or renal dysfunction benefits of using HAS for cirrhotic patients with
extra-peritoneal infections [210].

A retrospective study of 306 older patients (≥65 years) with serum albumin levels
<3.5 g/dL suffering femoral neck fracture and undergoing hip replacement examined the
effects of HAS infusion alone or in combination with nutritional supplements to correct
hypoalbuminemia (to ≥3.5 g/dL). Lower rates of surgical site infection (5.5% compared
with 13.0% [adjusted odds ratio 0.40, 95% confidence interval, 0.17 to 0.91, p < 0.05]),
and peri-prosthetic joint infection (2.8% compared with 9.9% [adjusted odds ratio 0.26,
95% confidence interval, 0.08 to 0.79, p < 0.05]) were seen in patients receiving albumin
infusion combined with nutritional supplements. Postoperative day 5 serum albumin
levels were 3.3 ± 0.16 g/dL for HAS infusions alone vs. 3.5 ± 0.15 g/dL for infusions
combined with nutritional supplements (p < 0.001) [211]. Retrospective observational
evidence has also suggested that hypoalbuminemia after spinal surgery is not associated
with surgical site infection, and that supplementing human serum albumin increased the
rate of surgical site infection [212]. The main limitations of such contradictory studies
are the retrospective observational design, missing variables, and low patient numbers,
precluding meaningful conclusions.

In a prospective, randomized, open-label, pilot study, 50 shock patients requiring nore-
pinephrine (74% septic and 26% non-septic shock) with serum albumin levels <2.0 g/dL
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were allocated to receive either continuous 4% HAS or intermittent 20% HAS [213]. Con-
tinuous 4% HAS was effective in reducing healthcare-related infections compared with
20% HAS intermittently (2 vs. 13 episodes; p = 0.002), although circulating concentrations
of serum albumin reached similar levels. At the same time, availability of antimicrobial
vasostatin-I was increased, possibly related to the importance of continuously having
available antioxidative capacity through therapeutic albumin, thus maintaining the an-
timicrobial domain 17–40 of vasostatin-I [213]. Although limited by small sample size,
these data provide support for pharmacologic interventions to restore antioxidative ca-
pacity using a continuous infusion of 4% HAS. This, however, requires confirmation in
further studies.

Outlook on Future Studies of Hypoalbuminemia and Infection

Future clinical studies at low risk of bias will improve the level of evidence on the
effects of HAS infusion in patients with hypoalbuminemia and infections. These include a
prospective, phase III RCT that will study the effect of HAS administration on outcomes in
hypoalbuminemic patients hospitalized with CAP [214]. The Albumin Replacement ther-
apy In Septic Shock (ARISS) study will investigate whether maintenance of serum albumin
levels of ≥3.0 g/dL with HAS for 28 days improves survival in patients with septic shock
when compared with resuscitation and volume maintenance without albumin [215]. A
single-center RCT in an adult surgical population is investigating the effect of goal-directed
albumin substitution (aiming at a serum level >3.0 g/dL) and will analyze the frequency
of postoperative complications using the Postoperative Morbidity Survey (POMS), which
includes an infectious domain [216].

8. Conclusions

Hypoalbuminemia is associated with the acquisition and severity of viral, bacterial,
and fungal infections and predicts infectious complications in non-infective disease. Sys-
temic inflammation in severe infection alters the function and kinetics of albumin, which
in turn can increase the risk of worse clinical outcome. This is confirmed by prospective
RCTs at low risk of bias showing that supplementation of albumin with HAS can affect
innate and adaptive immune responses with beneficial outcome. In COVID-19, interaction
of albumin with bioactive lipid mediators may play a particular role in the occurrence of
cytokine storm and organ failure. Hypoalbuminemia alters pharmacokinetics and phar-
macodynamics of antimicrobial drugs, necessitating therapeutic drug monitoring and
measurement of albumin serum levels, as has been recommended in guidelines for opti-
mizing treatment. Infusion of HAS effectively supplements functioning albumin molecules,
which is of proven benefit for infection control in patients with cirrhosis. Prospective RCTs
are underway that will investigate the effects of HAS infusion on infectious diseases in
patients with hypoalbuminemia. If hypotheses are confirmed, these studies could lead to
a change in clinical practice for the management of hypoalbuminemia in patients at risk
from infections.
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Abbreviations

AA Arachidonic acid
A-FABP Adipose-fatty acid binding protein
ALA Alpha-linolenic acid
APACHE Acute physiology and chronic health evaluation
ARISS Albumin replacement therapy in septic shock
ATLAS Age, Temperature, Leukocyte count, Albumin, Systemic antibiotics, Serum creatinine
CAP Community-acquired pneumonia
CISSS Critical illness severity scoring system
COVID-19 Coronavirus disease 2019
CRP C-reactive protein
DGLA Dihomo-gamma-linolenic acid
DHA Docosahexaenoic acid
DNA Deoxyribonucleic acid
eNO, Endothelial nitric oxide
EPA Eicosapentaenoic acid
GLA Gamma-linolenic acid
HAS Human albumin solution
HBP Heparin-binding protein
HMGB1 High-mobility group box 1
ICU Intensive care unit
IL Interleukin
LA Linolenic acid
LT Leukotriene
MMP Matrix metalloproteinase
NETs Neutrophil extracellular traps
PG Prostaglandin
PlGF Placental growth factor
PGI Prostacyclin
PIRO Predisposition, infection/insult, response, and organ dysfunction
POMS Postoperative morbidity survey
PUFA Polyunsaturated fatty acid
ROS Reactive oxygen species
S1P Sphingosine 1-phosphate
SBP Spontaneous bacterial peritonitis
sFlt1 Soluble fms-like tyrosine kinase 1
SMART-COP Systolic blood pressure, multilobar chest radiography involvement, albumin level,

respiratory rate, tachycardia, confusion, oxygenation, and arterial pH
TcdA Clostridium difficile toxin A
TcdB Clostridium difficile toxin B
TNFα Tumor necrosis factor-alpha
TX Thromboxane
VEGF Vascular endothelial growth factor
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