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Abstract: (1) Background: Small, lightweight, low-cost optical particulate matter (PM) monitors are
becoming popular in the field of occupational exposure monitoring, because these devices allow for
real-time static measurements to be collected at multiple locations throughout a work site as well as
being used as wearables providing personal exposure estimates. Prior to deployment, devices should
be evaluated to optimize and quantify measurement accuracy. However, this can turn out to be
difficult, as no standardized methods are yet available and different deployments may require
different evaluation procedures. To gain insight in the relevance of different variables that may affect
the monitor readings, six PM monitors were selected based on current availability and evaluated in
the laboratory; (2) Methods: Existing strategies that were judged appropriate for the evaluation of
PM monitors were reviewed and seven evaluation variables were selected, namely the type of dust,
within- and between-device variations, nature of the power supply, temperature, relative humidity,
and exposure pattern (peak and constant). Each variable was tested and analyzed individually and,
if found to affect the readings significantly, included in a final correction model specific to each monitor.
Finally, the accuracy for each monitor after correction was calculated; (3) Results: The reference
materials and exposure patterns were found to be main factors needing correction for most monitors.
One PM monitor was found to be sufficiently accurate at concentrations up to 2000 µg/m3 PM2.5,
with other monitors appropriate at lower concentrations. The average accuracy increased by
up to three-fold compared to when the correction model did not include evaluation variables;
(4) Conclusions: Laboratory evaluation and readings correction can greatly increase the accuracy of
PM monitors and set boundaries for appropriate use. However, this requires identifying the relevant
evaluation variables, which are heavily reliant on how the monitors are used in the workplace.
This, together with the lack of current consensus on standardized procedures, shows the need for
harmonized PM monitor evaluation methods for occupational exposure monitoring.
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1. Introduction

Low-cost lightweight optical monitors for measuring airborne particulate matter (PM)
concentrations in near real-time are becoming available and may be applied to a multitude of
purposes, including occupational exposure monitoring [1,2]. The term “monitor” is used here to
refer to either the sensing part of any monitor (e.g., optical sensing elements of an optical particle
counter and photometer) or the monitor itself (complete, ready-to-use device that generally includes
a battery, data storage or communication system and one or more sensors). Low-cost optical PM
monitors (hereafter referred to as simply “PM monitors”) could potentially provide substantial
benefits to the monitoring of PM in occupational settings compared to traditional gravimetric PM
exposure assessment methods, which rely on sampling pumps and filters. These methods are based on
collecting PM on a filter followed by gravimetrical analysis. One advantage of these PM monitors
is the ability to collect data at greater spatiotemporal resolutions (measurements every few seconds
compared to one average concentration over several hours). This higher time-resolved data may
provide new insights into exposure dynamics. For instance, knowing whether exposure occurs
during specific events or is constant throughout the day can be used to deploy control measures more
effectively [3]. Also, most monitors can report and process the data as soon as it is collected and
while the instrument is still deployed. This allows direct feedback and intervention systems that can
immediately prevent further exposure. Once deployed, this technology requires minimal efforts at
lower cost compared to traditional sampling methods which have additional analytical and labor
costs. In addition, the acquisition costs are considerably lower compared to currently used real-time
devices in occupational settings (roughly thousands of euros for validated devices such as photometers
and up to tens of thousands for validated research-grade equipment), which allows more units to be
deployed simultaneously for comprehensive spatial exposure monitoring. A more detailed description
of the potential applications of low-cost monitors is given by Goede et al. (2020, manuscript in
press). The reduced cost, ease of deployment, direct reading capabilities together with the wireless
network ability of this technology mean that new ways of collecting and sharing occupational hygiene
information between employers, employees and regulators become possible.

Despite the new opportunities and potential advantages, the use of low-cost monitors for exposure
monitoring also brings new challenges [2]. Generally, PM monitors are less accurate compared to
high-end devices [4,5], the reported size fractions are generally different from workplace occupational
relevant fractions and once deployed it becomes difficult to confirm remotely that monitors remain in
calibration, in working order, and have not been tampered with. Therefore, we did not expect the current
technology to be suitable for exposure assessment studies nor for direct comparison with occupational
exposure limits, but nonetheless to be particularly useful for detecting exposure events in the workplace
as they occur. Although accurate measurements are important for monitoring occupational exposure,
the previously described advantages may outweigh some of these disadvantages. To gain insight
in the accuracy of the PM monitors, an evaluation should be performed [4]. During the evaluation,
the PM monitor readings may be corrected to better align with a trusted reference. However, this basal
correction may not be sufficient if internal and external factors are at play that could affect the monitor
readings. The impact of these factors on the monitor readings may be corrected for using a statistical
model, which will be defined thereafter as a correction model.

The accuracy of PM monitors has been investigated in several scientific studies, mainly in
environmental settings [6–10] with a few in occupational settings [1,11]. However, no evaluation
methods have been described for PM monitors to be deployed in the workplace. This is in part because
the evaluation processes must be developed and optimized for each target workplace process taking
place. This is required because monitor responses are likely to differ for different substances (e.g., due to
varying particle size distributions and refractive indices), concentration ranges, exposure dynamics,
and environmental conditions [11–13]. The large variability in the conditions and processes found
in the workplace are the main challenge faced compared to environmental purposes. Because of the
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unique characteristics of the workplace, environmental evaluation protocols are only partly suitable
for occupational settings.

The aim of this study was to perform an evaluation of a selection of PM monitors to be used for
monitoring occupational exposure situations. More specifically, this involved identifying from literature
evaluation variables (e.g., environmental variables such as temperature and relative humidity) related
to possible workplace conditions and likely to affect monitors readings, testing them experimentally
and including them in correction models. To determine the performance of each correction model,
and therefore each PM monitor output after correction, the final accuracy was calculated. The added
value of the evaluation was further investigated by comparing the accuracies of each correction model
with and without the evaluation variables, and therefore demonstrating to which extent correcting,
for example, for the effect of temperature and relative humidity on the monitors readings improve
the monitors output. This study is a first step towards the development of an appropriate and
fit-for-purpose evaluation strategy for the successful deployment of low-cost PM optical monitors in
the workplace.

2. Methods

The evaluation was based on the methods described by Spinelle et al. [14], NIOSH [15],
CEN Standards 16013–1:3 [16–18], and ISO Standard 11095 [19]. From these sources of information,
“evaluation variables” was defined as a term that describes the environmental or non-environmental
conditions that can vary in the workplace and may affect the monitor readings. Examples are the
measured material, drift, and humidity. The evaluation described in this study focuses on the effects of
different evaluation variables on the accuracy of the monitors.

To gain insight in the different evaluation needs for different types of devices, six distinct PM
monitors were tested. Experiments were conducted in a customized exposure chamber where the
evaluation variables could be controlled and adjusted to relevant levels. Results from traditional
gravimetric analysis after sampling of the airborne particles and readings from laboratory grade
real-time equipment were used as reference measurements.

Monitors were simultaneously investigated in the chamber. Data preparation steps included
defining concentration limits for the PM monitors (e.g., at which concentration the output was not
reliable) and normalization of the dataset, which was required for the subsequent analysis. Modelling
approaches were used to assess each evaluation variable individually, as well as for the generation of
the final correction models. These models use the PM monitor measurements, correct for the evaluation
variables and predict the “true” reference concentration determined by an aerodynamic particle sizer
(APS from TSI, Shoreview, MN, USA). The final accuracy of the monitors was calculated considering
the bias (the deviation of the measurements from the “true” concentration) and precision (random
spread of measurements) using a dataset in which the levels of multiple evaluation variables varied.

2.1. Experimental Design

A typical evaluation should be undertaken for a specific workplace and/or task and requires the
experimental situation to mimic the target field condition as closely as possible. Since this study is
focusing on a hypothetical workplace situation, the experimental design was based on considerations
that were generally required for use in the workplace according to the authors. This included the
concentration range, target accuracy and target responsiveness, as well as the evaluation variables
(parameters such as temperature and humidity that may affect the monitor readings). The experimental
design is summarized in Table 1 and described below.



Int. J. Environ. Res. Public Health 2020, 17, 8602 4 of 18

Table 1. Experimental design 1.

Name Parameter Value(s)

Concentration range 0–5000 µg/m3 respirable PM
Target accuracy ≤50% uncertainty

Target responsiveness 1 min
1 Experimental design parameters relate to the experimental procedures and targets for the evaluation.

2.1.1. Concentration Range

The PM concentration range to which the monitors are to be exposed in the laboratory evaluation
should include the range for which the workplace measurements would be expected to be accurate
(or rather, above which value quantification is no longer relevant). The monitors are likely to be more
accurate if readings are confined within smaller concentration ranges.

Experiments were performed with PM concentrations up to 5000 µg/m3 of respirable fraction,
equivalent to the Dutch occupational exposure limit for unspecified respirable dust [20].

2.1.2. Target Accuracy

The target accuracy is the set value representing how accurate each monitor needs to be for an
application. The target accuracy for the PM monitors evaluated here was set at ≤50% of the reference
value, which would be expected to be sufficient for indicative measurements. This value is derived
from the EU Air Quality Directive 2008/50/EC [21]. The final accuracy was calculated experimentally
after applying the correction model using a dataset with variations in evaluation variables.

2.1.3. Target Responsiveness

The target responsiveness is the time that a monitor takes to span from the minimum PM
concentration of the concentration range to 80% of the maximum, or vice versa [14]. This is relevant if
rapid changes in PM concentrations are expected in the workplace and need to be measured. The target
responsiveness was arbitrarily set at one minute.

Evaluation variables are parameters that should be integrated into the correction model,
if demonstrated to have a significant effect on the measurements. Evaluation variables are summarized
in Table 2 and described below.

Table 2. Evaluation variables.

Name Parameter Value(s)

Reference material Arizona road dust A2, SiO2 A2 and Al2O3 A2
Within-device variation Repeat measurements at t = 0, ~24 and ~48 h

Between-device variation ≥3 replicate units
Power supply Battery and wired
Temperature 15, 20 and 25 ◦C

Relative humidity 25, 50 and 75% RH
Exposure pattern Transient and stable

2.1.4. Reference Material

During the laboratory experiments, the monitors were exposed to PM generated from reference
materials dispersed in a controlled test chamber. PM monitors may react differently to the different
PM generated, and the reference materials used can have a large effect on the PM monitor readings
and accuracy. The reference material(s) should be selected carefully to be as similar as possible to
the aerosols that are expected in the workplace [19]. By doing so, the laboratory correction model is
more likely to provide the best fit for the readings once the monitors are deployed in the workplace.
In addition, the efforts required for the development of the field correction model can be contained
and reduced.
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In this study, instead of selecting a single material characteristic of the target workplace,
three reference materials were selected and tested: Arizona Road Dust, Quartz (>97% SiO2) and Al2O3

(all KSL Staubtechnik GmbH, Lauingen, Germany). These three reference materials allowed testing
for different chemical and optical properties (e.g., density and refractive index), but not particle size
distribution, since all materials conformed to the A2 ISO 12103–1 size distribution. Results were used
to give an indication of the effects of the materials characteristics on the PM monitors readings. To this
end, experiments were performed with each reference material.

2.1.5. Within-Device Variation (Short-Term Drift)

The responses of the PM monitors may decrease over repeated exposures, for instance because the
optical elements became contaminated over time, which could lead to erroneous measurements [14].
Therefore, within-device temporal variation was tested as the systematic differences between repeated
experiments. Experiments for this variable were performed at time 0 h and repeated after ~24 and ~48 h.

It should be noted that long-term drift (or recalibration interval) should also be tested.
However, since this is best done periodically while the monitors are deployed in the field, this is not
included in the current study.

2.1.6. Between-Device Variation

Different physical units of the same PM monitor type may respond differently to the same
concentrations of PM due to random variations in the production process. Therefore, multiple PM
monitors should be tested in parallel and possible device-specific effects adjusted for in the correction
model [19]. Between-device variability was tested using at least three units of each PM monitor type
during all experiments.

2.1.7. Power Supply

The different options for power supply may have an effect on the monitor readings [15].
Therefore, this was tested by repeating exposures while PM monitors were battery powered and while
wired powered.

2.1.8. Temperature

Temperature may have an effect on the sensitivity of the sensing elements in the PM monitor
and was thus included as an evaluation variable [17]. Three temperatures were tested and included
15, 20, and 25 ◦C thought to be representative of an indoor workplace environment.

2.1.9. Relative Humidity

The environmental humidity can affect the PM monitor indirectly by changing properties such as
the reflectivity and shape of particulates [22]. This can lead to erroneous measurements. The levels of
relative humidity tested were 25, 50, and 75%, depictive of an indoor environment.

2.1.10. Exposure Pattern

During the experiments, the PM monitors were exposed to the aerosol. Exposure in the chamber
could be kept at one constant concentration for the whole experiment (stable) or the concentration could
fluctuate from the concentration-minimum to the -maximum and back to the -minimum, mimicking
exposure “peaks” (transient). Both can occur in the workplace and monitors may react differently to
these exposure patterns.

To test this evaluation variable, two exposure patterns were tested at the concentration range
defined earlier (e.g., 0–5000 µm/m3 respirable fraction).

The constant concentration (plateau) was kept for ≥15 min (often longer due to sample collection
for gravimetric analysis) at approximately 333, 666, 1000, 2500, and 5000 µg/m3.
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The transient exposures consisted of three “peaks”, a peak being defined by a concentration
change from 0 to approximately 5000 and back to 0 µg/m3 in about 30 min.

2.2. Experimental Setup

The experimental setup used to undertake the experiments is schematically depicted in Figure S1.
The size of the exposure chamber is about 80 × 80 × 80 cm3 and is capable of controlling temperature
between 15 and 25 ◦C and humidity between 25 and 75%. The validity of the setup was confirmed
experimentally by testing the correlation between measurements collected using an APS and results of
gravimetrical sampling (see details of sampler in Reference measurements) for different reference materials
and concentrations. PM homogeneity in the exposure chamber was investigated by comparing the
APS measurements taken at multiple positions.

The seven evaluation variables were tested individually. This was done by repeatedly exposing
monitors to PM in the controlled environment, where only one variable was changed (e.g., three repeated
experiments at low, medium and high temperature). A total of 43 experiments were conducted
(see Table S1).

2.3. Low-Cost Optical PM Monitor Selection

Six PM monitors (3 units each) were tested. Their technical specifications are reported in Table 3.
Selection was based on consumer readiness, capacities to continuously measure for a prolonged
period of time (such as an 8 h shift) and at high sampling time frequency (more than one reading per
minute) and practical consideration that make them suitable for use in the workplace (user-friendly,
size, weight, etc.). No low-cost monitors were available that reported respirable or inhalable size
fractions as defined for occupational settings. Therefore, the PM monitors were selected on the
capability to measure PM at a size of 2.5 µm and smaller (PM2.5), since this is closest to the respirable
fraction that is used when considering potential human health effects in occupational settings [23].

2.4. Reference Measurements

Reference measurements were provided by duplicate gravimetrical samplers consisting of GilAir
personal air sampling pump (Sensidyne, St. Petersburg, FL, USA) combined with SKC cyclone sampler
225–69 (SKC Ltd., Dorset, UK), sampling at 3 L/min. For the study, this was considered to be the “gold
standard” measurement method for respirable dust that was used to correct the real-time reference APS
time-average values and PM monitors concentrations outputs (once transformed into time-average
values). A total of 36 gravimetric samples were collected. The APS was used as a real-time reference
device. APS PM2.5 concentrations were corrected for material density and particle dynamic shape
factor per reference material, as recommended by the manufacturer. In short, the particle mass was
calculated using the mean particle size bin of the APS as particle size and density of the material.
Particle mass was corrected using the dynamic shape factor and the total mass was calculated using the
number of counts by the APS. The shape factor for all materials was 1.5 and the densities were 2.6, 2.6,
and 3.95 g/cm3 for ARD, SiO2 and Al2O3, respectively. Sampling time was set at 15 s. For comparison
with gravimetrical samples, APS measurements were corrected based on the respirable convention
according to the ISO 7708 standard [24]. All reference measurements are performed in the middle of
the exposure chamber.

2.5. Statistical Analysis

All analyses were performed using R version 3.6.1 [25].
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Table 3. Technical specifications of monitors evaluated.

Monitor Manufacturer Size (l × b × h,
cm)

PM Sensors
(PM Sizes)

Concentration Range
(µg/m3) Other Sensors Measurement

Frequency (s) Other Features

AirBeam2 Habitatmap, Brooklyn,
NY, USA 10 × 3 × 15

Plantower
PMS7003 (PM1,
PM2.5, PM10)

0–500

Temperature
(MCP9700T-E/TT),

humidity (Honeywell
HIH-5030-001)

1 Open source,
wearable

Airveda Airveda, Ghaziabad,
India 14 × 5 × 14 Unknown

(PM2.5, PM10) 0–1000 Temperature,
humidity, CO2

30 Static monitor, not
wearable

Awair omni Awair, San Francisco,
CA, USA 10 × 4 × 10 Unknown

(PM2.5) 0–1000
Temperature,

humidity, CO2, VOCs,
light, noise

~10 Static monitor, not
wearable

“White” prototype Isensit (Eindhoven,
the Netherlands) 7 × 3 × 7

Plantower
PMSA003 (PM1,

PM2.5, PM10)
0–1000 Temperature,

humidity, light, noise 10 Wired powered
only

“Black” prototype Isensit 5 × 3 × 7
Plantower

PMS5003 (PM1,
PM2.5, PM10)

0–1000 Temperature,
humidity 10 Wearable

Sensor only Alphasense, New
York, NY, USA 7 × 5 × 7 OPC-R1 (PM1,

PM2.5, PM10) Up to 10.000 particles/s Temperature,
humidity 1 Sensor only, wired

powered only.
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2.5.1. Confirmation of Experimental Setup and APS Reference

Validity of the APS reference and experimental setup was performed by developing a linear
statistical correction model based on APS average values and gravimetrical sample results at default
environmental settings (20 ◦C, 50% RH) for transient and stable exposures. This model was used to
correct structural differences between the correction methods. A similar model was generated for
experiments during which the temperature, humidity and exposure pattern were varied. This was
used to confirm that changes in these variables had no effect on the APS measurements. The correlation
of both models was used to confirm that the APS measurements were reliable at all concentrations.

2.5.2. PM Monitor Data Preparation

Negative correlations between the PM monitor and the reference were identified and removed by
fitting a local regression on each experimental data set using the loess function in base R. Where the
curve followed a half-circle shape (e.g., one x-value related to two y-values), a negative correlation
was present. We wanted to investigate only structural miscorrelations, and not outliers, therefore
only 10% of the experiments showing a negative correlation were selected for analysis. For these
monitors, the highest readings for which no negative correlations were present were pooled. From this,
the 10th percentile was used as the maximal reliable concentration that the PM monitor could report.
The cutoffs for this analysis were set arbitrarily to form a conservative balance between correctness
and data preservation.

For linear regression and linear mixed-effect modelling, linear responses between PM monitors
and the APS reference are required. To this end, the PM monitor and APS measurement values were
normalized. Testing of the most optimal normalization method was performed using the bestNormalize
function from the R-package with the same name [26].

2.5.3. Variable Testing and Correction Model Development

Linear mixed-effect models were used for the correction model since some of the evaluation
variables were random (e.g., values depend on a random phenomenon) and some are fixed
(e.g., values are structured and can be predicted on forehand). These models were generated using the
lme4 package [27]. When no random effects were included, linear regression models were developed
using the functions in base R.

Evaluation variables were first tested separately, with all other variables at average values
(sensors operated on battery, 20 ◦C, 50% RH and transient exposure pattern with peaks at maximum
concentration of about 5000 µg/cm3). On this data subset, two models were fitted; one including the
tested variable and one without. The effect of the variable was assessed by comparing the two models
using three criteria. First, an analysis of variance (ANOVA) between the models was performed to test
that the variable has a significant contribution to the correction model (p < 0.05). Second, the quality
of the model had to be improved, which was shown as a decrease of the Akaike’s information
criterion (AIC). This criterion balances model sparsity and goodness of fit, which prevents the need for
collecting variables in the workplace that only slightly increase the model accuracy. Finally, the mean
absolute error (MAE) of the models was calculated to test that the variable results in a more accurate
prediction, where a smaller MAE shows a more accurate model. This measure was used to quantify the
increase or decrease in PM monitor accuracy and therefore the importance of the evaluation variable.
Variables which passed all three criteria were added into the final correction model, which was fitted
on the experiments of all evaluation variables.

Some prioritization was required because not every combination of variables could be tested
experimentally. Between-device variation was investigated first and, if an effect was found, corrected for
in further analysis of the remaining independent variables by adding it to the mixed-effect models.
The same was done for within-device variation and the reference materials. Between-device variation
was tested as a random effect since the tested monitors were considered a random sample of a larger
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population of monitors, which would generally be the case in a field application (evaluation of a
subset of monitors to be representative for all monitors used). Within-device time related variation
(drift) was considered a fixed effect since this would be constant over time. The effect of each reference
material was added to the models as a random effect, because the analyte in the target workplace can
differ in chemical composition, refractive index, particle shape and size distribution. Temperature and
relative humidity were tested as fixed effects, since these should have a constant effect on monitor
performance. The exposure pattern was considered a fixed effect due to the two distinct usage options.
Power supply was tested as a fixed variable since this should have constant effects on the monitor.
Effects were included in the model as a slope, related to the PM monitor output.

2.5.4. Correction Model Verification

Verification of the correction model was performed by calculating the uncertainty as described
previously by NIOSH [15], which considers the uncertainty in the APS measurements (10%, as given
by the manufacturer) as well as the instability in exposure concentrations. This method considers
both the bias (average deviation of the PM monitor compared to the APS reference instrument) and
precision (random spread in the monitor measurements) to calculate the accuracy, which is quantified
as the relative uncertainty of the monitor measurements. Since this method requires bias and precision
to be homogeneous, the verification dataset was divided into smaller concentration bins. Within these
bins, the bias and precision are more homogeneous compared to the whole dataset. The verification
was performed for each bin.

The verification dataset consisted of a full factorial design that included each possible combination
of the tested materials, temperatures, and humidities. The verification was performed by calculating
relative uncertainty measures of each low-cost monitor.

3. Results

Experimental procedures included the validation of the experimental setup, preparation of the
data (data management steps), testing of the experimental parameters, development and verification
of the correction model and assessment of the benefits of this procedure.

3.1. Validation of the Experimental Setup

Prior to the laboratory evaluation of the PM monitors, the experimental setup was validated
and found to be appropriate for the evaluation step. Bias in the APS readings and repeatability
of experiments were tested experimentally (Figure 1a). Linear regression showed that the APS
underestimated the respirable PM concentrations compared to gravimetric samples. However, a high
correlation (R2 = 0.97) confirmed that (after correction) the APS was consistent and accurate for the
three materials tested and the two exposure patterns (stable and transient). During preliminary testing,
concentrations above the testing concentrations (between 5000 and 20,000 µg/m3) were in line with the
other concentrations so these were also included in the regression model. The spatial variability inside
the chamber was also tested by changing the APS inlet location to ~10 cm after the inlet and ~10 cm
before the exhaust during a constant concentration exposure period (Figure 1b). Median concentrations
for the middle, near exhaust and near inlet were 713, 744, and 634 µg/m3, respectively. This shows that
there were only slight differences in particle concentrations within the chamber. To reduce the effects
of this, monitors were placed at different locations within the exposure chamber for each measurement
day. Finally, transient exposure patterns were performed for each reference material with combinations
of high, average or low temperature and relative humidity to investigate if these three parameters
affected the corrected APS readings (Figure 1c). A linear regression showed that these experiments
were comparable to the ones with temperature and relative humidity of 20 ◦C and 50% respectively
(slope = 1.04, R2 = 0.95). One filter measurement showed a high concentration compared to a relatively
low APS measurement, which is thought to be due to an artefact during the gravimetrical analysis.
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Figure 1. Preparative testing of equipment and test chamber environmental conditions. (a) Comparison and
correction of an aerodynamic particle sizer (APS) respirable mass concentrations and respirable
gravimetric concentrations; (b) testing of spatial variability within the exposure test chamber by
comparing sampling locations using an APS; and (c) confirmation of adjusted APS respirable mass
concentrations under changing evaluation variables.

3.2. Data Preparation

Visual inspection of the measurements revealed that in some cases a negative correlation occurred
between the PM monitors and the reference APS instrument at PM2.5 concentrations. Therefore, for these
instruments a maximum concentration without negative correlations were calculated and a cutoff was
set for each device. Measurements above the cutoff were removed from the dataset.

All three Awair omni devices, four OPC-R1 devices and one “white” prototype device showed
negative correlations with the reference instrument (Figure 2). For the Awair omni, the cutoffs were
calculated to be 488, 731, and 642; for the OPC-R1 3562, 2772, 2263 and 3354; for the white prototype
device 997. These values are in µg/m3 of the PM monitor output and not the true concentrations,
which could only be calculated after the final correction due to the uncertainty of the PM monitors.
Additionally, the operation range of the PM monitors are given during the correction model verification.
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For the PM monitors where no negative correlation was observed, the maximal concentrations were
above 5000 µg/m3 true concentrations.

Figure 2. Concentration limit finding for the relevant units (negative correlation in≥10% of experiments)
of Awair omni, OPC-R1 and white prototype monitors. Correlation plots of the low-cost monitor PM2.5

compared to the APS reference PM2.5 fractions. Each experiment forms one line. Negative correlations
show as a half-circle shape. The horizontal blue line depicts the calculated concentration limit, which is
calculated as p10 of the individual concentration limits for each experiment.

After the concentration maximum of the PM monitors was defined, the dataset was
normalized. This was required to allow for the linear modelling to take place in later steps.
Therefore, the best normalization method was calculated for each PM monitor (Table S2). Based on
this, a log10-transformation was used to normalize the dataset and allow for fitting linear
mixed-effect models.

3.3. Evaluation Variable Analysis

Results of the parameter selection are shown in Figure 3 and correction model curves are shown
in Figures S2–S8.

Between-device variation showed only relevant effects for the OPC-R1 sensors (1.05-fold
improvement of model accuracy). This suggests that for this monitor type, more natural variation in
the data output is present between different units. This also indicates that for the other PM monitor
types, one evaluation may be suitable for all PM monitors of that type.

For within-device variation (drift), only minor effects were found for the Airveda and black
monitors (1.01-fold improved model accuracy). Because these effects were minimal, within-device
variation was deemed not relevant for the tested PM monitors.

The effect of each reference material on the monitor readings was evident for all monitors,
with especially large effects for the AirBeam2 and black prototype (1.98 and 2.02-fold increases in
model accuracy, respectively) monitors. This confirms that PM monitors react differently to different
materials, as was expected.

Temperature was found to be relevant for the Awair omni, AirBeam2, black and white prototype
monitors (1.00, 1.02, 1.01 and 1.04-fold increased accuracy, respectively). Although more than half of
the tested PM monitor types were affected by changing temperature, effects are minor compared to
other variables. This suggests that, for these PM monitors, temperature variations are a lesser source
for inaccuracy.
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Humidity was relevant for the AirBeam2 and OPC-R1 with 1.04 and 1.02-fold increased accuracy,
respectively. This also suggests that, in this case, changing humidity is also of lesser importance for
monitor evaluation.

The exposure pattern had a relatively large effect on the accuracy of the AirBeam2 and black
prototype (1.33 and 1.27-fold increase in accuracy, respectively), a minor effect for the Airveda and
OPC-R1 (1.04 and 1.05-fold increase in accuracy, respectively) and no relevant effects for the Awair
omni and white prototype. Together this shows that the exposure pattern may have large effects on
accuracy, but this effect is specific for some PM monitor types.

Power supply was only relevant for the black prototype monitor and had low effects on monitor
accuracy (1.01-fold increase). Therefore, this variable may be unspecific for PM monitors.

Figure 3. Parameter selection results. Values represent the absolute (in µg/m3) and fold changes in mean
absolute error (MAE) in upon inclusion of the variable in the model. N.s. represents not significant
variables (p > 0.05) and N.r. represents not relevant variables (e.g., the MAE was not decreased).

3.4. Correction Model Verification

After analysis of the individual evaluation variables, a correction model was generated for
each monitor type that included all relevant evaluation variables. These models provided the final
uncertainty for each monitor at multiple concentration ranges (Table 4). The target accuracy of 50%
uncertainty was achieved for the Awair omni, Airveda and OPC-R1 only at concentrations between
0–500 µg/m3. The uncertainty of the white prototype was only below 50% at concentration between
500–1000 µg/m3. The AirBeam2 and black prototype performed best, with acceptable uncertainties
between 0–2000 and 0–1500 µg/m3. Additionally, these monitors had the lowest uncertainties over the
whole informative range of 0–5000 µg/m3, namely 100 and 120%, compared to the other PM monitors,
which show very large uncertainties of up to 300%. Monitors with such high level of uncertainties are
unsuitable for monitoring occupational exposure under the tested conditions at these concentrations.
These results show that the uncertainty of the PM monitors evaluated here generally increase as the PM
concentration increases and that some of the PM monitors tested are incapable of accurately measuring
PM at occupationally relevant concentrations.
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Table 4. Verification results expressed as relative uncertainty (%).

Concentration Range (µg/m3) Awair Omni Airveda AirBeam2 OPC-R1 Black White

500 21.1 47.2 35 47.5 41.7 57.2
1000 345 58.3 29.7 177 21 22.9
1500 376 93 37 284 29.7 96.6
2000 371 126 50 309 53.8 115
3000 340 161 74.7 NA 79.3 192
5000 NA NA 100 NA 120 225

Verification is quantified as the relative uncertainty (in %) of a particulate matter (PM) monitor within a specific
concentration bin. The left column indicates the upper limit of the PM2.5 concentration range bin in absolute values
according to the APS reference. The remaining values are the uncertainty measures for each PM monitor. NA:
Not available due to concentration limits of PM monitors.

Additionally, the effectiveness of the evaluation variables taken into consideration in the correction
model was verified by testing correction models which did not include the evaluation variables
(Figure 4). Substantial differences were observed for some of the monitors when the evaluation
variables were excluded. To gain more insight in the improvement of accuracy, the ratio of the
uncertainty measures of the two correction methods was calculated for each bin. This showed that the
accuracy at these concentrations was minimally improved for the OPC-R1 and Awair omni (average of
1.07 and 1.24-fold, respectively), but substantially for the Airveda, white prototype monitor, AirBeam2
and black prototype monitor (average 1.68, 2.26, 2.70 and 2.85-fold, respectively). These results
demonstrate the added value of considering relevant variables potentially influencing the performance
of the PM monitors and underlining the need for fit-for-purpose evaluation procedure.

Figure 4. Verifications results after applying the correction model developed in this study (full) and an
average correction. Uncertainty measures for each monitor over the concentration bins, where a low
uncertainty represents a more accurate monitor. The horizontal black line indicates the target accuracy,
set at 50%.
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4. Discussion

The increased use of affordable, non-specialist, user-friendly, time-resolved sensor monitors
alternatives to traditional weighted average sampling methods for PM could bring many advantages
to the field of occupational exposure controls and monitoring but it may increase the risk of deploying
poorly evaluated PM monitors in the workplace. This study exemplifies the benefit of evaluating
PM monitors prior to full deployment for occupational exposure monitoring purposes. The methods
detailed in this study may be a first step towards a more harmonized strategy for the evaluation of
low-cost devices.

Seven evaluation variables were identified and tested for the PM monitors selected. Two variables
were found to affect the accuracy of the monitor the most. For all PM monitors, the reference material
used for the evaluation was the main contributing variable. Since the reference materials all shared the
same particle size distribution, the effect on the readings can only be attributed to the different physical
properties of the materials, such as density and refractive index. This shows the need for careful
reference material selection. It also shows that the evaluations need to be undertaken for materials
comparable to the PM to be monitored in the workplace. The large effect of the exposure pattern
indicated that PM monitors may react differently for transient exposure concentrations. This suggests
that transient exposure in the workplace should be identified and evaluated prior to deployment.
For the other variables, overall only minor effects were found.

None of the monitors tested were sufficiently accurate throughout the whole predefined
concentration range of 0–5000 µg/m3 respirable dust fraction. However, the AirBeam2 and black
prototype monitor performed best after correction, showing uncertainties below the target accuracy
of 50% at concentrations up to 2000 and 1500 µg/m3, respectively. The Airveda and white prototype
monitor showed slightly lower performance, with uncertainties increasing quicker as concentrations
increase. The Awair omni and OPC-R1 monitors showed high uncertainties and a low applicable
concentration range. In general, the evaluation confirms the expectation that these monitors are not
suitable for regulatory exposure assessments or verification of the compliance with occupational
exposure limit values, which would require even higher accuracies than the currently set targets.
Still, the PM monitors could be used for other specific purposes such as identification of exposure
peaks or work activities with relatively higher risk. The monitors could, for instance, be used in a
tiered approach where the low-cost devices are used as a general screening tool to detect high-exposure
situations. Then, more accurate approaches can be deployed to reliably assess the situation and
compare with legal standards. This would result in more efficient monitoring of exposure in the
workplace. The evaluation in this case can be used to define in which concentration ranges a PM
monitor can operate with sufficient accuracy for screening purposes and above which concentrations
more accurate methods have to be used.

It should be noted that these devices are not marketed specifically for occupational use.
Further technological or statistical improvements are needed for PM monitors to accurately operate
in relevant occupational setting concentration ranges. Possible improvements could include adding
an aerosol diluter in the device to reduce the sensor overstimulation. However, this would add
another source of error and may increase the lower limit of detection. The inlet of the low-cost device
could also be fitted with a particle size selector such as a miniaturized respirable cyclone or a PM4
impactor plate. However, the device would need to be an active rather than a passive sampling
device. Another method may be more sophisticated statistical processing of the data, for instance by
reporting moving averages instead of raw measurements. However, more investigation is needed for
this technique for these purposes.

The required accuracy and operating concentrations can be defined based on the particular aims
of the deployment or application. The work undertaken in this study showed that the PM monitor
uncertainty generally increased as the PM concentration increased (well above what these monitors
were expected to monitor for air quality purposes), suggesting a tradeoff between PM monitor accuracy
and reliable measurable concentrations in the workplace. In other words, if the aim of the deployment
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requires high accuracy monitoring, evaluations may be performed at lower concentrations. Or if
relatively high concentrations are to be measured (e.g., workplace settings), a relatively high target
accuracy should be set.

The Awair omni and Airveda monitors have internal, manufacturer-set concentration maximums
(2830 and 2880 µg/m3 true PM2.5 concentrations derived from the APS, respectively) above which
measurements are not reported. For the Awair omni, this limit was lowered to remove negative
correlations. Still, these true values were well above the limits that the manufacturers specified
(1000 and 770 µg/m3 true PM2.5 for the Awair omni and Airveda, respectively). Similarly, the upper
concentration limit for the AirBeam2 was 500 µg/m3 true PM2.5, while the experiments reached far
higher concentrations without negative correlations to the reference. Together, this shows that the device
effective concentration range may differ between applications and should be confirmed experimentally.

At the time of the study, there were no low-cost PM monitors commercially available that could
report occupationally relevant size ranges, such as respirable fractions. Therefore, devices reporting
PM2.5 were selected for evaluation. The PM2.5 size fraction could be used as a relevant indicator for
occupational exposure monitoring, or the respirable fraction could be derived from the PM2.5 and PM10

measurements. Alternatively, the PM monitors could be evaluated against and compared to a real-time
reference instrument or sampler that measures, for instance, respirable fraction based concentrations.
This would result in a correction model that predicts respirable concentrations based on PM monitor
measurements. This was not done for the current study, since this would result in an additional source
of variation to the evaluation, while this study was more focused on the intrinsic uncertainty related to
the devices.

Comparing the correction models with and without the evaluation variables highlighted the benefit
of correcting the evaluation variables as accuracies improved up to 3-fold in relevant concentration
ranges. This shows that if the workplace environment may be encapsulated in appropriate evaluation
variables, then the effect of these variables on the monitors’ readings can be efficiently corrected for.
However, how these variables are identified may be a complex process and differences in this process
undertaken by different PM monitor users is likely to result in different outputs. This further underlines
the need for a more harmonized device evaluation strategy, so that appropriate monitor selection is
ensured before deployment in the workplace, and all factors are properly considered. This study also
provided an elaborate example of statistical correction methods for devices evaluated in laboratory
conditions. However, one should note that other valid approaches are available, for example based
on machine-learning principles [28–31]. More investigation is required to determine the influence of
different statistical methods and which method is most suitable for the evaluation and correction of
occupational PM monitors readings.

One limitation of the presented study is that the evaluation is performed in a single laboratory.
For a more robust evaluation, experiments should be repeated using multiple experimental setups
and the results compared. This could be done, for instance, in a round-robin study. Another possible
limitation is that, since sensing technologies are continuously evolving, the currently identified variables
will not necessary be relevant for new generations of PM monitors. Still, the currently described
methodology could be used to test new variables. Furthermore, no information is available on how
this laboratory evaluation compares with an occupational setting evaluation. The accuracy of the
tested monitors should also be tested in a workplace for a specific application to determine how well
the laboratory evaluation simulates the work environment. Finally, long term drift is a variable that is
expected to affect PM monitor accuracy but has not been tested in the current evaluation. Prolonged PM
exposure may deteriorate the sensing optics in the devices and reduce accuracy. This could be tested
by performing a full evaluation prior to deployment of the monitor and periodic reevaluations while
the monitor is being deployed. If the reevaluation is significantly different from the initial evaluation,
the PM monitor should be replaced or the correction model should be adjusted.

The evaluation presented in this study has been built upon protocols that have been developed
for (PM) monitor use in (occupational) exposure assessment. Spinelle et al. [14] reported an extensive
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workflow for evaluation of gas monitors for environmental purposes, providing excellent insights
in general needs for monitor evaluation. This includes requirements for testing of responsiveness,
short and long-term drifts, inferences and intermediate data quality checks. However, it does not
cover the specific context that is required for optical PM monitors or uses in occupational settings.
Similarly, a technical report by NIOSH [15] gives detailed descriptions on evaluation of direct-reading
gas monitors, including statistical approaches, R code and proposed accuracy criteria, but also lacks
the specificity for PM monitors. The CEN norm CEN/TR 16013 describes a guide for the use of
direct-reading instruments for aerosol monitoring in occupational settings. The first part of this
norm [16] describes possible uses for PM monitors and criteria for each use. The second [17] and
third [18] parts give technical details on monitor use and statistical approaches for data analysis.
While device evaluation is mentioned, no description is given on how to perform the experimental
assessment. Finally, ISO norm 11095 [19] describes a basic method for linear calibration correction
using reference materials, including concrete requirements such as experimental replicate numbers,
but lacks the specificity for optical (PM) monitors and occupational environments. Together, this shows
that some information for occupational evaluation of PM monitors is available, but it is decentralized
and needs to be translated for this specific purpose. The evaluation in the current study combines the
relevant aspects of related protocols with novel principles based on expert judgement (e.g., multiple
exposure patterns) to generate an evaluation that is both specific for PM monitors and specific for the
highly dynamic occupational exposure assessment.

Altogether, the results in this study show that PM monitor evaluation is influenced by multiple
factors, which are closely related to the characteristics of the PM generated in the workplace of interest.
These initial findings could be integrated into broader guidelines on how to harmonize the laboratory
evaluation of PM monitors for occupational exposure monitoring. Such guidelines should consider
the different possible applications of PM monitors and provide users with insights in tailoring the
evaluation strategy to fit their specific workplace application. In order to develop such a document,
the robustness of the current strategy should be tested. We are suggesting that this could be done
by repeating this evaluation within different laboratories and broadening the analysis of the current
dataset using different methods.

5. Conclusions

Six low-cost PM monitors to be used for occupational exposure monitoring were evaluated in
laboratory conditions. Seven evaluation variables likely to affect the readings were identified through
literature and expert opinions. Testing of the variables revealed that the reference material and exposure
pattern were the main factors influencing PM monitor performance, with other variables having minor
effects. Accuracy of the PM monitors increased up to 3-fold upon correction for these evaluation
variables. Not surprisingly, this shows that laboratory evaluation of PM monitors for occupational
exposure monitoring should be tailored to the intended use and application scenario. To ensure this
device evaluation is performed in a harmonized way and agreed upon method, we are suggesting that
a generic evaluation guideline should be developed, which could build upon the currently presented
evaluation strategy.
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