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Abstract: Existing methods often fail to recognize the conversions for the biological roles of the pairs
of genes and microRNAs (miRNAs) between the tumor and normal samples. We have developed
a novel cluster scoring method to identify messenger RNA (mRNA) and miRNA interaction pairs
and clusters while considering tumor and normal samples jointly. Our method has identified 54
significant clusters for 15 cancer types selected from The Cancer Genome Atlas project. We also
determined the shared clusters across tumor types and/or subtypes. In addition, we compared gene
and miRNA overlap between lists identified in our liver hepatocellular carcinoma (LIHC) study
and regulatory relationships reported from human and rat nonalcoholic fatty liver disease studies
(NAFLD). Finally, we analyzed biological functions for the single significant cluster in LIHC and
uncovered a significantly enriched pathway (phospholipase D signaling pathway) with six genes
represented in the cluster, symbols: DGKQ, LPAR2, PDGFRB, PIK3R3, PTGFR and RAPGEF3.

Keywords: miRNA; mRNA; liver hepatocellular carcinoma; gene regulation; clustering algorithm;
The Cancer Genome Atlas

1. Introduction

Transcription from gene to messenger RNA (mRNA) and translation from mRNA to protein are
two essential stages for cells to perform biological functions. Non-coding RNAs (e.g., microRNA
(miRNA), long non-coding RNA (lncRNA)) are often involved in many cellular processes, but mainly in
post-transcriptional regulation. MiRNAs, which are short (17–22 nt) highly processed oligonucleotides,
play their regulatory roles through either degradation or inhibition of protein translation of the targeting
mRNAs [1].

The messenger RNA (mRNA), an outcome of gene transcription, is essential to performing
biochemical functions in the cell. Different regulatory RNAs (e.g., miRNA and lncRNA) are important
driving factors for the stable and successful translation of mRNA in a cell. Therefore, regulatory RNAs
play a vital role in mRNA activation and suppression. Among these regulatory RNAs, the miRNA
class is intensively studied at both the sequence and functional level. These MiRNAs are involved in
post-transcriptional regulation of the target mRNA by two known mechanisms; the degradation of target
mRNA and suppression of protein translation [1]. Thus, regulation of the miRNA and mRNA network
is complex. A single miRNA can target many mRNAs, while many miRNAs are able to cooperatively
target a single mRNA, in both degradation and inhibition contexts. This allows for fine-tuned gene
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expression regulation [2]. Understanding of these mechanisms has advanced significantly with the
advent of high-throughput microarray-based technologies such as expression profiling.

Clusters in an mRNA–miRNA interaction network are often interaction complexes and/or parts
of pathways. If interaction pair cluster(s) are significantly rendered in both tumor and normal samples,
they could be important in the context of biological processes and/or cancers. Therefore, identifying
such significant interaction clusters will identify genes and miRNAs functionally associated to various
cancer molecular subtypes, with diagnostic and therapeutic implications. An undirected graph can be
used to represent gene and miRNA relationships in an interaction network. Specifically, interactions
between genes and miRNAs are rendered as a bipartite graph with genes or miRNAs as vertices and
their interactions as edges (Figure 1). Thus, each vertex representing a gene or miRNA is connected to
at least one of each other node since one gene or miRNA has at least one interaction with its interaction
partner. Clusters in a network are formed by sets of vertices and edges with interconnections.
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Clustering techniques are widely used to provide a reasonable understanding about gene
function, regulation, and cellular process. A group of similar objects makes an exclusive class of
objects (similar genes, same cluster), whereas dissimilar objects are distributed into different clusters.
The analysis of mRNA–miRNA interaction is complex. Most existing graph-based clustering algorithms



Genes 2019, 10, 702 3 of 17

(also called graph partition algorithms or community detection algorithms) consider the topology of
only a single instance (e.g., gene or miRNA) and treat all of nodes equivalently in the graph. Moreover,
the complexity of the change of the correlation coefficients and expression values of the mRNA–miRNA
pairs between tumor and normal samples is still not resolved, and this hinders the potential clinical
applications. There is an urgent need to develop innovative methodologies and tools to accurately
cluster mRNA–miRNA interaction pairs into functional miRNA–mRNA regulatory modules while
analyzing tumor and normal samples jointly.

Previous studies on clustering such data were mainly based on microarray gene expression
data [3,4] and can just analyze only samples within one category (e.g., tumor samples alone). In this
study, a novel concurrent simultaneous clustering (or co-biclustering) method for identifying gene
and miRNA interaction clusters in a network was designed and implemented. This novel method
considers tumor and normal samples jointly in the same network.

2. Materials and Methods

2.1. Significant mRNA–miRNA Pairs Selection for Input Data

The Cancer Genome Atlas (TCGA) (http://cancergenome.nih.gov) datasets were employed to
generate the miRNA and mRNA expression files for evaluation. The TCGA data level 3 was used for
the expression results. The University of North Carolina at Chapel Hill (UNC) and the Baylor College
Human Genome Sequencing (BCGSC) data were considered for RNA-Seq and miRNA-Seq data
respectively. Out of 33 cancer types (Supplementary file 1), we obtained RNA-Seq and miRNA-Seq data
for 15 cancer types (eight of these cancer types were previously characterized [5], and seven additional
cancer types are analyzed using the novel methods in this report) used for downstream analysis,
after excluding cancer types which do not have corresponding tumor or normal samples. A computer
C program was developed to calculate the Pearson correlation coefficient (CC). The targets prediction
outcomes were testified using Targetprofiler [6], TargetScan [7] and miRanda [8]. We employed the
same approach used in our previous study to claim target relationships if there is the match between
pre-miRNA from TCGA datasets and the same or closely related mature miRNA from target prediction
databases. The same target prediction criterion was applied if the prediction was supported by at least
one of three databases mentioned above [5]. To filter out miRNA and mRNA pairs with insignificant
CC, an R Script was written to compute the statistical significance (p-values and Q-values or false
discovery rates (FDR)) for each calculated CC and select statistically significant pairs of miRNA
and mRNA.

To check the expression change (up-regulation, down-regulation, and no change) of transcripts
in cancer(s), we calculated average expression or fold change (FC) values for miRNAs and mRNAs
in tumor and normal samples. The significant (FDR < 0.1) miRNA and mRNA pairs with inverse
correlations between tumor and normal samples and with FC values greater than 1.5 were selected as
input for the clustering algorithm to process.

2.2. Cluster Identification and Scoring Algorithm

We modified the Louvain algorithm [9] employed by NetworkX (https://networkx.github.io/) by
considering the correlation coefficient values for both tumor and normal samples simultaneously to
detect “communities” or clusters upon processing significant pairs selected for each of the 15 cancers
in TCGA project. We used the following customized scoring algorithm to calculate the “score” for
each detected cluster. Our assumption is that clusters consisting of gene and miRNA pairs having
the most fold changes in their expression and with the highest correlations could be associated with
cancers. Specifically, the scoring algorithm will (1) Calculate expression and CC values for genes and
miRNAs in both tumor and normal samples; (2) Calculate and normalize deviation scores for features
(node and edge) in clusters; (3) Compute the total scores for each classified cluster in the best partition;

http://cancergenome.nih.gov
https://networkx.github.io/
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(4) Calculate the statistical significance for classified clusters and report top scored and significant
clusters in the best partition.

score =
m∑

i=1

|
ln(mRNA_FCi)√

1 + ln(mRNA_FCi2)
|+

n∑
i=1

|
ln(miRNA_FCi)√

1 + ln(miRNA_FCi2)
|+

q∑
i=1

(|T_CCi|+ |N_CCi|)

where mRNA_FCi is the fold change of gene expression, miRNA_FCi is the fold change of miRNA
expression, T_CCi is the CC value in tumor samples, and N_CCi is the CC value in normal samples. m is
the number of genes, n is the number of miRNAs, and q is the total number of edges in the bicluster.

There were four variables: mRNA fold change between normal and tumor samples (mRNA_FC),
miRNA fold change between normal and tumor samples (miRNA_FC), mRNA and miRNA correlation
coefficient in tumor sample (T_CC), and mRNA and miRNA correlation coefficient in normal
sample (N_CC) which were used for score calculation. We added both correlation coefficient values
(absolute values for negative correlation coefficient) into the formula to enhance the cluster score.
We took absolute values of each variable, then we normalized mRNA_FC and miRNA_FC to make sure
their values are between 0 to 1. In addition, we only selected the mRNA–miRNA pairs with large fold
changes (cutoff value 1.5) for their miRNA and mRNA expression changed in the opposite direction
((FC > 1.5 for mRNA and FC < 1.5 for miRNA) OR (FC > 1.5 for miRNA and FC < 1.5 for mRNA)) to
run the clustering algorithm. A high score was evidence that the observed cluster is associated with
biologically-driven co-expression.

2.3. Statistical Analysis

The significance of a detected cluster was calculated using a permutation test approach.
Specifically, the p-value Pk for a cluster Ck is defined as the probability of observing a cluster
with a score of at least Sk, if the graph is generated “randomly” (i.e., when we do not expect to see any
cluster in it). We used the permutation test to assess the statistical significance of highly scored clusters
by sampling enough randomized graphs which will be generated by shuffling (or permuting) the
nodes (mRNAs and miRNAs) without changing the topology of the graph. We then ran our partition
and scoring algorithm on each of the randomized graphs. The p-value for a cluster detected by our
algorithm in the original graph is estimated as the proportion of randomized graphs that has a cluster
whose score is equal to or larger than the one detected in the original graph (Figure 2). For example,
if we generated 1,000,000 “random” graphs, and among them there are 1000 “random” graphs from
which we got a cluster with a score of at least Sk, then the p-value for a cluster with a score of Sk in the
original (i.e., “non-random”) graph is Pk = 1001/1,000,001 = 0.001. Benjamini-Hochberg procedure was
used to calculate false discovery rate (FDR) for adjusting the p values. For a low p-value, we reject the
null hypothesis that no biological clusters are reflected in the observed data.
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Figure 2. Workflow for statistical significance test for gene and miRNA interaction clusters: (1) miRNA
and mRNA pairs with target relationship; (2) cluster identification; (3) permutation test.

2.4. Determination of Shared Clusters Across Tumor Types and/or Subtypes

It was also our goal to identify clusters with common genes and miRNAs across several cancer
types since they could be associated with several cancer diseases. To compare two graphs or clusters it
was necessary to identify corresponding genes and miRNAs across two different clusters. A list of
correspondence between the genes and miRNAs and their interactions can be regarded as a set of
edges that connect the vertices across two different clusters.

Figure 3 shows the workflow of our proposed graph comparison method. Specifically, the steps
of graph comparison algorithm will be implemented as follows:

1. Identify corresponding vertices (genes and miRNAs) and edges (their interactions) that connect
their vertices in clusters between two different cancers (A and B);

2. Construct matrices to store vertices and edges;
3. Calculate the shortest “distance” as the number of edges between any two vertices for each cluster

in cancer A and B, respectively;
4. Determine whether two clusters match based on their matching percentage (defined as the ratio of

the number of corresponding vertex pairs with equal distance out of total matched vertex pairs).
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Figure 3. A schematic representation of the graph comparison algorithm to detect correlated clusters
or local similarities in two graphs. The count was calculated as the number of connections between
two nodes.

The strategy has been expanded to compare clusters between multi-cancers. Specifically, we constructed
a matrix with rows represented as connections in the common cluster across cancers and columns as cancer
types. The cell in the matrix was filled with “distance” values. The number of common values in one row
over the total number values of that row was computed as the row (r) percentage across multiple cancers;
the total (t) percentage of the matrix was the ratio of sums of the numerator of all r percentages meeting the
user-defined cutoff criterion over the total number of rows in the matrix.

2.5. Check the Overlap Between miRNAs Reported in LIHC and Differentially Expressed miRNAs from Studies
of Human and Rat with Nonalcoholic Fatty Liver Disease

Nonalcoholic fatty liver disease (NAFLD) can lead to liver inflammation resulting in fibrosis,
cirrhosis and finally in hepatocellular carcinoma [10,11]. Across a range of expression studies, pathways
implicated in this progression include circadian rhythms [12], oncogenes and toll-like receptors [13],
immune activation more generally [14], and reorganization of the extracellular matrix [15]. This range
of associations shows that the molecular etiology of this progression is still a matter of controversy; but
it is credible that molecular processes associated with early stages in this disease progression contribute
directly to the manifestation of the associated cancer. Therefore, we took the significant clusters
reported in TCGA LIHC datasets and searched for published miRNA lists from human associated
with NAFLD [16] and Type 2 diabetes (T2D) [17], and other liver diseases [18].

In addition, we also checked the conservation of miRNA reported in the significant cluster of
LIHC. In a study about the liver of Wistar rats [19], authors identified lists of most abundant miRNAs
differentially expressed in NAFLD and normal rat liver and miRNAs with the largest F-change between
NAFLD and normal liver. We used the above list to make the comparison.
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3. Results

3.1. Inversely Correlated miRNA and mRNA Pairs with Opposite Fold Change

We ran customized correlation calculation and database prediction scripts to generate the filtered
miRNA and mRNA co-expression data for the 15 selected cancer types. At an FDR of 0.1, we found
92,751 inversely-correlated miRNA and mRNA pairs. Of these, 45,882 pairs also showed opposing
fold-change between tumor and control samples (Table 1 and Supplementary file 2).

Table 1. The statistics for number of miRNA–mRNA pairs in 15 selected cancers from The Cancer
Genome Atlas (TCGA).

Cancer Types Number of miRNA–mRNA Pairs
with Inverse Correlations

Number of miRNA–mRNA Pairs
with Inverse Correlations and

Opposite Fold Change Between
Tumor and Normal Samples

BLCA 998 578
BRCA 20,661 10,101
COAD 82 55
ESCA 344 155
HNSC 3066 1601
KICH 1039 442
KIRC 10,749 6189
KIRP 6143 3190
LIHC 1426 659
LUAD 26,380 12,874
LUSC 265 171
PRAD 6972 3801
STAD 12,892 5108
THCA 1326 744
UCEC 408 214
Total 92,751 45,882

Notes: The italic rows are cancer types included for the analysis in this study in addition to cancer types selected for
the analysis in our previous study (Bai et al., 2016).

3.2. Cluster Detection Results

We initially generated the miRNA–mRNA pairs using the approach described in our previous
paper [5]. Specifically, we selected the significant miRNA–mRNA pairs with their expression correlation
in tumor and normal samples that were inverse and the fold of change of expression of both mRNA
and miRNA were great than 1.5 for cluster identification. Upon running the community detection
Louvain algorithm [9] with our defined cluster score, the detected “communities” or clusters upon
processing significant pairs selected in each of the 15 cancers in TCGA project are shown in Table 2.

For LIHC, the algorithm detected the largest number (114) of clusters but only one significant
(q-value < 0.1) cluster: LIHC_57. LUAD and BRCA had the largest cluster sizes (908 for LUAD and 628
for BRCA). COAD contained the smallest number (20) of clusters. LUAD also has the highest number
(9) of significant clusters represented the significant ratio 43% (9/21) of initial clusters (Table 2).

The COAD clusters had the lowest score distribution and the scores for clusters in LUAD were
shown to be the highest. This pattern was consistent with the distribution trend of the numbers of
their clusters. The distribution of “maximum” scores for detected clusters during permutation tests in
15 cancers is shown in Figure 4. The detailed information including cluster sizes and cluster scores for
identified clusters is shown in Supplementary file 3.
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Table 2. The detected “communities” or “clusters” of significant pairs selected for each of 15 selected
cancers from TCGA.

Cancer Types Total Number of Detected
Clusters

Number of Detected Significant
Clusters (FDR < 0.1)

BLCA 28 2
BRCA 33 8
COAD 20 0
ESCA 42 0
HNSC 96 4
KICH 64 1
KIRC 51 8
KIRP 62 4
LIHC 114 1
LUAD 21 9
LUSC 39 2
PRAD 52 3
STAD 39 8
THCA 57 4
UCEC 70 0
Total 788 54
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Figure 4. The distribution of cluster scores with max score values when running Louvain algorithm
10,000 times for 15 cancers.

3.3. Cross-Cancer Comparison Results

Under the cutoff criteria of the total percentage 0.5 and row percentage 0.6, we have identified
393 clusters which have their pairs available in at least one of the other cancers for comparison.
From LUAD_12 cluster had the largest number of matchable clusters or neighbors (152) with at
least one common pair identified. LIHC_57 showed the highest similarity percentage vs having
high total common percentage among the cluster pool with matchable clusters 2 or less (Figure 5).
In LIHC_57, LUAD_12 was identified to be one of similar clusters with it. Specifically, PCSK1N and
hsa-mir-378 pair is reported in common between LIHC_57 and LUAD_12. GPR143 and hsa-mir-378
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pair was also in common between LIHC_57, KIRC_33, and KIRP_49, which indicate these cancer
clusters could have common driving transcription regulation patterns due to the fact that they share
common miRNA–mRNA pairs. The detailed information across multiple cancers is reported in
Supplementary files 4–18. A list of compared clusters along with three metrices (number_of_neighbors,
similarity_percentage, common_pair_percentage) is reported in Supplementary file 19.
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common mRNA–miRNA pairs across the comparison.

3.4. Investigation of miRNAs and Their Targets Overlap Between Lists in LIHC and the Ones Reported from the
Study in Human with Nonalcoholic Fatty Liver Disease

Given that LIHC has the largest number (114) of clusters, we are interested in checking if any
miRNAs/genes reported in LIHC are also prevalent in other liver associated diseases such as, NAFLD.
We compared our miRNAs (224) in LIHC with the list of hepatic miRNAs (44) upregulated in human
with NAFLD [16], and total 11 out of 41 (3 of them (2 Epstein–Barr viruses: ebv-miRBART18-3p
and ebv-miRBART17-3p and 1 Herpes simplex virus: hsv2-miR-H20 were excluded in the analysis)
miRNAs or 32 target pairs were identified to be present in LIHC clusters (Table 3). In checking
the miRNA list (hsa-mir-17, hsa-mir-20a, hsa-mir-20b, and hsa-mir-122) upregulated in type 2 diabetes
mellitus (T2DM) patients with NAFLD complication reported in another study [17], all these miRNAs
have been identified in our LIHC cluster list. In addition, a well-known miRNA (hsa-mir-22) involved
in hepatocellular carcinoma a cell migration and invasion [18] in liver disease has been identified in
our LIHC cluster list.
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Table 3. The list of matched miRNAs upregulated in human with nonalcoholic fatty liver disease
(NAFLD) and their targeted genes.

Gene miRNA

ITPKB hsa-mir-106b

CD69 hsa-mir-106b

EPHA4 hsa-mir-106b

APOBEC3H hsa-mir-106b

CYP2U1 hsa-mir-106b

ZNFX1 hsa-mir-106b

CNTNAP1 hsa-mir-505

EFCAB1 hsa-mir-505

BTG1 hsa-mir-505

HPRT1 hsa-mir-505

PAM hsa-mir-505

IRF2BP2 hsa-mir-505

FST hsa-mir-505

CLDN23 hsa-mir-505

SIN3A hsa-mir-20b

XPR1 hsa-mir-2355

C7orf49 hsa-mir-2355

ZDHHC23 hsa-mir-2355

VANGL1 hsa-mir-2355

SSX2IP hsa-mir-584

DYNLT3 hsa-mir-584

ESR1 hsa-mir-584

ARL15 hsa-mir-877

MEST hsa-mir-181d

TBCC hsa-mir-374b

GUCY1A2 hsa-mir-551b

SCO1 hsa-mir-200b

CASC4 hsa-mir-200b

FAM169A hsa-mir-200b

UGGT1 hsa-let-7b

PLEKHA6 hsa-let-7b

ATP6V1C1 hsa-let-7b

3.5. Investigation of miRNA Overlap Between Differentially Expressed miRNA List in Rat with Nonalcoholic
Fatty Liver Disease and the Ones in LIHC

We also checked the results for miRNA–mRNA in LIHC against the miRNAs (21) identified in the
study [19] to see if there are any miRNAs associated with liver cancer which are also associated with
NAFLD in rat.

Upon checking the gene/miRNA list reported in a study for rat with NAFLD, out of the 10 most
abundant miRNAs differentially expressed in NAFLD and normal rat liver provided in the above
mentioned study [19], six miRNAs (mir-122, let-7c, let-7b, mir-192, mir-29a, mir-21) were also identified
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to be present in LIHC clusters; out of the 10 miRNAs with the largest F-change between NAFLD and
normal liver, four miRNAs (mir-132, mir-99a, mir-200c, mir-145) were also reported to be present in
LIHC clusters. A list of overlapping miRNAs and their targeted gene pairs is reported in Table 4.

Table 4. A list of identified miRNAs and their targeted gene pairs.

Gene miRNA

DTNA mir-122

SMYD2 mir-122

IGF2 mir-122

KYNU mir-122

DBNDD1 mir-122

SYNCRIP let-7c

KIF5B let-7c

MGAT4A let-7c

PDLIM2 let-7c

LDHD let-7c

PLCB1 let-7c

BDH1 let-7c

STXBP4 let-7c

UGGT1 let-7b

PLEKHA6 let-7b

ATP6V1C1 let-7b

CBX7 mir-192

ZC3H10 mir-192

RAB2A mir-192

TRIM66 mir-192

MYO1E mir-192

ING5 mir-192

SYAP1 mir-192

P2RX4 mir-29a

ZNF286B mir-29a

CNDP2 mir-29a

GPR146 mir-29a

BMF mir-29a

SSTR2 mir-29a

NLN mir-29a

AMICA1 mir-29a

SYNM mir-29a

PRPF3 mir-29a

CHST10 mir-29a
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Table 4. Cont.

Gene miRNA

ZNF160 mir-29a

NDN mir-29a

MTMR2 mir-29a

ZNF431 mir-29a

NAP1L1 mir-29a

ATP6V0E2 mir-29a

ATPAF1 mir-29a

MORF4L1 mir-29a

PRR3 mir-29a

CPT2 mir-29a

DNAJA3 mir-29a

RIT1 mir-29a

UCP3 mir-29a

ZNF35 mir-21

WDR72 mir-21

KIAA1804 mir-21

LAMP2 mir-21

PFN2 mir-21

NFASC mir-21

FABP4 mir-21

C7 mir-21

STK3 mir-21

RASGRF1 mir-132

STK3 mir-132

PFN2 mir-132

MEST mir-132

NCALD mir-132

C9orf156 mir-132

LAMP2 mir-99a

RCBTB1 mir-99a

KPTN mir-99a

RPS20 mir-99a

ZDHHC18 mir-99a

ABCB4 mir-200c

PGAM1 mir-200c

SCO1 mir-200c

IGFBP2 mir-145

PRPF38A mir-145

CDK5RAP3 mir-145

RBMX mir-145

MGLL mir-145
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3.6. Cluster Functional Analysis for LIHC

We performed functional annotation and pathway analysis for 56 genes reported in cluster LIHC_17
using ClusterProfiler [20]. From the annotation result, four genes (PDGFRB, PIK3IP1, PIK3R3, WDR91)
tagged with the Gene Ontology (GO) term biological process “regulation of phosphatidylinositol
3-kinase activity” and “lipid kinase activity” (q-value < 0.01) and “regulation of phospholipid metabolic
process” (q-value = 0.02) were significantly enriched. In addition, three genes (ACVRL1, COL3A1,
PDGFRB) have been reported to be significantly enriched (q-value = 0.04) with GO term “aorta
morphogenesis”. In searching for pathway enrichment for this gene list, a significant (q-value < 0.002)
pathway “phospholipase D signaling pathway” (KEGG ID: hsa04072) has been identified to be enriched
for six genes (DGKQ, LPAR2, PDGFRB, PIK3R3, PTGFR, RAPGEF3). The pathways downstream
of phospholipase D (PLD) are involved in oncogenic transformation. The research showed that
membrane-associated phospholipase D can be activated by the small Guanosine-5’-triphosphate
(GTP)-binding protein RhoA in rat liver [21]. PDGFRB or platelet-derived growth factor receptor B
is a protein-coding gene and essential for normal development of the cardiovascular system. In a
recent study [22], it has been reported to have the function of stimulating invasion and liver metastasis
formation of mesenchymal-like colorectal tumor cells in mice. The gene PIK3R3 has been reported to
play an important role in colorectal cancer metastasis [23]. Blocking PIK3R3 can prevent colorectal
cancer liver metastasis in animal model [24]. A list of miRNAs targeting six genes involved in
Phospholipase D signaling pathway is reported in Table 5.

Table 5. A list of miRNAs targeted six genes involved in phospholipase D signaling pathway.

Gene miRNA

DGKQ mir-140

LPAR2 mir-140

PDGFRB mir-186

PIK3R3 mir-151

PIK3R3 mir-148b

PIK3R3 mir-589

PTGFR mir-107

RAPGEF3 mir-454

RAPGEF3 mir-93

RAPGEF3 mir-25

RAPGEF3 mir-186

RAPGEF3 mir-942

4. Discussion

Existing tools cannot reveal the biological roles (e.g., cancer association) of pairs of genes and
miRNAs due to their lack of consideration of the “inverse/altered regulation” between tumor and
normal samples concurrently. Our proposed method considers the topology of genes in the network
and takes as input inversely regulated target pairs containing their target prediction relationship
predicted by several target database prediction algorithms to identify significant target pairs and
elucidate cancer and disease associated signatures of clusters.

As a direct clinical application on our novel method, we have conducted the functional annotation
for the significant clusters identified in BRCA datasets. Our analysis has confirmed that breast cancer
related GO terms (cell cycle and chromosome) are enriched in some of the identified significant clusters.
These clusters often contain more previously reported breast cancer risk genes than other identified
significant clusters not enriched with breast cancer GO terms.
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As biomarkers (of cancer, of cancer progression, of cancer resistance to chemotherapy, etc.),
clusters of correlated expression levels will generically be more robust than any individual marker [25].
In conventional blood biochemical biomarkers, well-studied examples where ratios of related markers
outperform individual markers include such liver disease scores as APRI [26] and FIB-4 [27], each of
which includes the ratio of aspartate aminotransferase (AST) to platelets in the blood. As the field
matures, the methods developed here will support similar and more robust ratio biomarkers as a
natural extension of coding-gene differential expression [28].

There are previous studies of miRNA and mRNA regulatory networks in cancer. Those studies
generally use expression profiles of miRNA and mRNAs and different clustering algorithms and/or
statistical analyses to identify the potential miRNA–mRNA modules or clusters. Such studies
usually also perform miRNA–mRNA pair selection based on miRNA–mRNA interaction experimental
databases or prediction algorithms, functional enrichment analyses of the genes or proteins,
disease association, and other analyses in order to relate the miRNA and mRNAs in modules
to the cancer types/subtypes of interest or survival probability. Specifically, in a study of colorectal
cancer, the rough hypercuboid based supervised clustering algorithm (RH-SAC) was used to generate
clusters of functionally similar miRNAs or mRNAs whose coherent expression can further efficiently
classify the samples [29]. In a study of multiple myelomas, through integrative analysis of GO biological
processes, miRNA–mRNA targeting relationship, and matched miRNA and mRNA expression data, the
ping-pong algorithm and multiobjective genetic algorithm were integrated to detect subtype-specific
miRNA–mRNA regulatory modules [30]. In a study of glioblastomas, mRNA, miRNA, and protein
expression profiles were integrated to identify regulatory networks. Cancer-related miRNAs were
ranked based on the amount of identified correlated genes, including both protein and mRNA datasets.
Then modules containing mRNAs, proteins, and miRNAs, in which the three molecular types are
highly correlated, were clustered by the SAMBA bi-clustering algorithm, a Bayesian network model,
and an extended step in which proteins are included into mRNA sample modules prior to the miRNAs’
inclusion [31]. Compared to other studies, our research is unique and novel in terms of selection of
the significant miRNA–mRNA pairs with their expression correlation in tumor and normal samples
that were inverse and the fold of change of expression of both mRNA and miRNA were great than 1.5.
We used the modified Louvain algorithm to detect “communities” or clusters cluster from the bipartite
graph of miRNA and mRNA vertices based on their correlation coefficient values for both tumor and
normal samples simultaneously. We scored the detected clusters to see if they are significant. A graph
comparison algorithm in our study was expanded to compare clusters across cancer types.

5. Conclusions

We believe our study is the first attempt to employ the idea of “inverse/altered regulation”
and integrate multiple cancer specific databases with mRNA–miRNA interaction. Next, we plan to
develop a powerful and user-friendly mRNA–miRNA functional annotation tool for visualizing cluster
interactions in both tumor and normal samples of various cancer types. This effort will not only give a
detailed presentation of miRNA associated with various types of human cancers, but will also provide
a comprehensive analysis of gene ontology and mRNA-cancer associations.

By providing comprehensive and accessible tools to confront this growing class of cancer
sequencing big data, our results provided a list of candidate cancer-associated genes and miRNAs
with their biological functions and could shift current research and/or clinical practice paradigms.
Our proposed method is applicable across a range of diseases and cancers and has uniquely distinctive
advantages over existing tools. This will likewise contribute to new bioinformatics methodologies
for identifying cancer driver genes in personal genomes in which clinicians seek to develop better
treatment strategies.
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