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diffcyt: Differential discovery in high-dimensional
cytometry via high-resolution clustering
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High-dimensional flow and mass cytometry allow cell types and states to be characterized

in great detail by measuring expression levels of more than 40 targeted protein markers

per cell at the single-cell level. However, data analysis can be difficult, due to the large size

and dimensionality of datasets as well as limitations of existing computational methods.

Here, we present diffcyt, a new computational framework for differential discovery analyses

in high-dimensional cytometry data, based on a combination of high-resolution clustering

and empirical Bayes moderated tests adapted from transcriptomics. Our approach provides

improved statistical performance, including for rare cell populations, along with flexible

experimental designs and fast runtimes in an open-source framework.
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H igh-dimensional flow cytometry and mass cytometry
(or CyTOF, for “cytometry by time-of-flight mass spec-
trometry”) characterize cell types and states by measuring

expression levels of pre-defined sets of surface and intracellular
proteins in individual cells, using antibodies tagged with either
fluorochromes (flow cytometry) or heavy metal isotopes (mass
cytometry). Modern flow cytometry systems allow simultaneous
detection of more than 20 proteins per cell, in thousands of cells
per second1. In mass cytometry, the use of metal tags significantly
reduces signal interference due to spectral overlap and auto-
fluorescence, enabling detection of more than 40 proteins per cell
in hundreds of cells per second1,2. Recently, further increases in
the number of detected proteins have been demonstrated using
oligonucleotide-tagged antibodies and single-cell sequencing3;
this has also been combined with single-cell RNA sequencing on
the same cells4,5.

The rapid increase in dimensionality has led to serious bot-
tlenecks in data analysis. Traditional analysis by visual inspection
of scatterplots (“manual gating”) is unreliable and inefficient in
high-dimensional data, does not scale readily, and cannot easily
reveal unknown cell populations1. Significant efforts have been
made to develop computationally guided or automated methods
that do not suffer from these limitations. For example, unsu-
pervised clustering algorithms are commonly used to define cell
populations in one or more biological samples. Recent bench-
marking studies have demonstrated that several clustering
methods can accurately detect known cell populations in low-
dimensional flow cytometry data6, and both major and rare
known cell populations in high-dimensional data7. A further
benchmarking study comparing supervised methods for inferring
cell populations associated with a censored continuous clinical
variable demonstrated good performance for two methods using
data of moderate dimensionality8.

Several new methods have recently been developed for per-
forming (partially) supervised analyses with the aim of inferring
cell populations or states associated with an outcome variable in
high-dimensional cytometry data, including Citrus9, CellCnn10,
cydar11, and a classic regression-based approach12 (a similar
regression-based approach was also recently described by ref. 13).
However, these existing methods have a number of limitations. In
particular: detected features from Citrus cannot be ranked by
importance, and the ranking of detected cells from CellCnn
cannot be interpreted in terms of statistical significance; rare cell
populations are difficult to detect with Citrus and cydar (by
contrast, CellCnn is optimized for analysis of rare populations);
the response variable in the models for Citrus and CellCnn is the
outcome variable, which makes it difficult to account for complex
experimental designs; and CellCnn and cydar do not distinguish
between “cell type” and “cell state” (e.g. functional) markers,
which can make interpretation difficult.

Here, we present diffcyt, a new computational framework based
on high-resolution unsupervised clustering together with super-
vised statistical analyses to detect cell populations or states
associated with an outcome variable in high-dimensional cyto-
metry data. The diffcyt methodology uses clustering to define cell
populations, and empirical Bayes moderated tests adapted from
transcriptomics for differential analysis. By default, our imple-
mentation uses the FlowSOM clustering algorithm14, given its
strong performance and fast runtimes7. For the differential ana-
lyses, we use methods from edgeR15,16, limma17, and voom18,
which are widely used in the transcriptomics field; in addition, we
include alternative methods adapted from the classic regression-
based framework12. In principle, other high-resolution clustering
algorithms or differential testing methods could also be sub-
stituted. Our methods consolidate several aspects of functionality
from existing methods. Similar to cydar and the classic regression

framework, our model specification uses the cytometry-measured
features (cell population abundances or median expression of cell
state markers within populations) as response variables, which
enables analysis of complex experimental designs, including batch
effects, paired designs, and continuous covariates. Linear con-
trasts enable testing of a wide range of hypotheses. Rare cell
populations can easily be investigated, since the use of high-
resolution clustering ensures that rare populations are unlikely
to be merged into larger ones. In addition, as in Citrus and the
classic regression framework, we optionally allow the user to split
the set of protein markers into cell type and cell state markers. In
this setup, cell type markers are used to define clusters repre-
senting cell populations, which are tested for differential abun-
dance (DA); and median cell state marker signals per cluster are
used to test for differential states (DS) within populations. We
note that the underlying definitions of cell type and cell state can
be challenging to apply to observed data, and may partially
overlap. In general, cell type refers to relatively stable or perma-
nent features of a cell’s identity, while cell state refers to transient
features such as signaling or other functional states or the cell
cycle19–21. In our view, providing the ability to maintain this
distinction within the methodology greatly improves biological
interpretability, since the results can be directly linked back to
known cell types or populations of interest12. Finally, our meth-
ods have fast runtimes, enabling exploratory and interactive
analyses.

Results
Overview and benchmarking strategy. Figure 1 provides a
schematic overview of the diffcyt methodology (see Methods for
further details), and Table 1 provides a summary of existing
methods and their limitations. We demonstrate the performance of
our methods using four benchmark datasets: two semi-simulated
datasets (AML-sim and BCR-XL-sim) and two published experi-
mental datasets (Anti-PD-1 and BCR-XL). The semi-simulated
datasets have been constructed by computationally introducing an
artificial signal of interest (an in silico spike-in signal) into experi-
mental data, thus reflecting the properties of real experimental data
while also including a known ground truth that can be used to
calculate statistical performance metrics. The experimental datasets,
which do not contain a ground truth, are evaluated in qualitative
terms. A complete description of all benchmark datasets is provided
in Supplementary Note 1, and additional details on the comparisons
with existing methods are included in Supplementary Note 2.

Improved performance for DA tests. The AML-sim dataset
evaluates performance for detecting DA of rare cell populations
(Figure 2). The dataset contains a spiked-in population of acute
myeloid leukemia (AML) blast cells, in a comparison of 5 vs. 5
paired samples of otherwise healthy bone marrow mononuclear
cells, which simulates the phenotype of minimal residual disease
in AML patients (the data generation strategy is adapted from
ref. 10, and uses original data from ref. 22). The simulation was
repeated for two subtypes of AML (cytogenetically normal, CN;
and core-binding factor translocation, CBF), and three thresholds
of abundance for the spiked-in population (5%, 1%, and 0.1%).
Figure 2a displays representative results for one subtype (CN) and
one threshold (1%), for all diffcyt DA methods as well as Citrus,
CellCnn, and cydar (complete results are included in Supple-
mentary Fig. 1). Methods diffcyt-DA-edgeR, diffcyt-DA-voom, and
CellCnn give the best performance; the diffcyt results can also be
interpreted as adjusted p-values, enabling a standard statistical
framework where a list of significant detected clusters is deter-
mined by specifying a cutoff for the false discovery rate (FDR).
diffcyt-DA-GLMM has inferior error control at the given FDR
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cutoffs, and reduced sensitivity at the highest spike-in threshold
(5%). Citrus detects only a subset of the spiked-in cells, and cydar
cannot reliably distinguish these rare populations. Figure 2b
displays p-value distributions from an accompanying null simu-
lation, where no true spike-in signal was included; the p-value
distributions for the diffcyt methods are approximately uniform,
indicating good error control and model fit (additional replicates
are included in Supplementary Fig. 2). Figure 2c illustrates the
expression profiles (phenotypes) and relative abundances by
sample for the detected and true differential clusters (additional
heatmaps are included in Supplementary Fig. 3). Figure 2d
demonstrates the effect of varying the number of clusters across a
broad range (between 9 and 1600). Performance is reduced when
there are too few clusters (due to merging of populations) or too
many clusters (due to low power). The number of clusters is the
main parameter choice in the diffcyt methods; an optimum is
achieved around 400 clusters for this dataset (the remaining
thresholds and condition are shown in Supplementary Fig. 4).

Additional results provide further details on overall perfor-
mance and robustness of the diffcyt DA methods. The top
detected clusters represent high-precision subsets of the spiked-in
population, confirming that the high-resolution clustering
strategy has worked as intended (Supplementary Fig. 5). Filtering
clusters with low cell counts (using default parameters) did not

remove any clusters from this dataset. An alternative implemen-
tation of the diffcyt-DA-voom method (using random effects for
paired data) gives similar overall performance (Supplementary
Fig. 6). Using FlowSOM meta-clustering to generate 40 merged
clusters instead of testing at high resolution worsens both error
control and sensitivity (Supplementary Fig. 7). The influence of
random seeds used for the clustering and data generation
procedures is greatest at the 0.1% threshold, as expected
(Supplementary Figs. 8 and 9). Similarly, additional simulations
containing less distinct populations of interest (see Supplemen-
tary Note 1) show that reducing signal strength has a strong
negative influence on performance at the 0.1% threshold
(Supplementary Fig. 10). Using smaller sample sizes (2 vs. 2)
affects performance noticeably at the lower thresholds (Supple-
mentary Fig. 11). Finally, runtimes are fastest for methods diffcyt-
DA-edgeR and diffcyt-DA-voom (Supplementary Fig. 12).

Improved performance for DS tests. The second dataset, BCR-
XL-sim, evaluates performance for detecting DS within cell
populations (Figure 3). This dataset contains a spiked-in popu-
lation of B cells stimulated with B cell receptor/Fc receptor cross-
linker (BCR-XL), in a comparison of 8 vs. 8 paired samples of
healthy peripheral blood mononuclear cells (original data sourced
from ref. 23). The stimulated B cells have elevated expression of
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Fig. 1 Schematic overview of diffcytmethodology. The diffcyt framework applies high-resolution clustering and empirical Bayes moderated tests for differential
discovery analyses in high-dimensional cytometry data. a Input data are provided as tables of protein marker expression values per cell, one table per sample.
Markers may be split into “cell type” and “cell state” categories; in the standard setup, cell type markers are used for clustering. b High-resolution clustering
summarizes the data into a large number (e.g. 100–400) of clusters representing cell subsets. c Features are calculated at the cluster level, including cluster
cell counts (abundances), and median expression of cell state markers within clusters. d Differential testing methods can be grouped into two types:
differential abundance (DA) of cell populations and differential states (DS) within cell populations. Results are returned in the form of adjusted p-values,
allowing the identification of sets of significant detected clusters (DA tests) or cluster–marker combinations (DS tests). e Results are interpreted with the aid
of visualizations, such as heatmaps. Example heatmaps show cluster phenotypes (expression profiles) and differential signal of interest (relative cluster
abundances or expression of signaling marker pS6, by sample), with annotation for detected significant clusters or cluster–marker combinations (red) and true
differential clusters or cluster–marker combinations (black). A detailed description of the diffcyt methodology is provided in Methods
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several signaling state markers, in particular phosphorylated
ribosomal protein S6 (pS6); methods are evaluated by their ability
to detect differential expression of pS6 within the population of B
cells. Figure 3a summarizes performance for the diffcyt DS
methods and the existing methods. The diffcyt methods give the
best performance, with diffcyt-DS-limma having better error
control. Citrus and CellCnn detect differential expression of pS6
for only a subset of the spiked-in cells, and cydar gives poor
performance (likely due to ambiguity in assigning cells to over-
lapping hyperspheres in the high-dimensional space in order to
calculate performance metrics). Figure 3b displays p-value dis-
tributions from a null simulation; p-values are approximately
uniform across replicates, as previously (additional replicates are
included in Supplementary Fig. 13). Figure 3c displays expression
profiles of detected and true differential clusters, along with
expression by sample of the signaling marker pS6 (additional
heatmaps are included in Supplementary Fig. 14). Figure 3d
demonstrates the effect of varying the number of clusters. Per-
formance is reduced when there are too few or too many clusters;
for this dataset, an optimum is observed across a broad range,
including 100 clusters.

As previously, the top detected clusters represent high-
precision subsets of the population of interest (Supplementary
Fig. 15). Filtering with default parameters did not remove any
clusters. To judge the benefit of splitting markers into cell type

and cell state categories, we re-ran the analyses treating all
markers as cell type (i.e. used for clustering), and using methods
to test for DA instead of DS. This gave similar performance, but
makes interpretation more difficult: since the methods test for DA
of clusters defined using all markers in this case, the detected
differential clusters may mix elements from canonical cell type
and cell state phenotypes (Supplementary Fig. 16). Alternative
implementations of diffcyt-DS-limma (using random effects for
paired data) and diffcyt-DS-LMM (using fixed effects for paired
data) give similar performance overall (Supplementary Fig. 17).
For this dataset, using FlowSOM meta-clustering to merge
clusters does not reduce performance (Supplementary Fig. 18).
Varying random seeds for the clustering and data generation
procedures does not significantly affect performance (Supple-
mentary Figs. 19 and 20). Additional simulations containing less
distinct populations of interest (see Supplementary Note 1) show
deteriorating performance when the signal is reduced by 75%
(Supplementary Fig. 21). Using smaller sample sizes (4 vs. 4 and
2 vs. 2) worsens error control, especially for diffcyt-DS-LMM
(Supplementary Fig. 22). Runtimes are fastest for diffcyt-DS-
limma (Supplementary Fig. 23).

Successful recovery of known signals in experimental data. In
order to demonstrate our methods on experimental data, we re-
analyzed a dataset from a recent study using mass cytometry to

Table 1 Overview of existing methods and limitations

Method Short description Limitations Ref.

Citrus Uses hierarchical clustering and regularized regression or
classification models to select predictive features, such as
cluster abundances or median expression of functional
markers, that are associated with an outcome of interest

• Detected features cannot be ranked by importance
• Lasso-regularized models cannot easily detect multiple
correlated features

• Rare cell populations cannot easily be detected, due to
minimum cluster size requirement and computational
limitations

• Response variable is the clinical outcome variable, which
makes it difficult to account for complex experimental
designs (including batch effects, paired designs, and
continuous covariates)

9

CellCnn Applies convolutional neural networks in a representation
learning framework to detect rare cell populations
associated with an outcome of interest; designed
specifically for detecting rare cell populations

• Ranking of detected cells cannot be interpreted in terms
of statistical significance

• Interpretation of detected populations (referred to as
filters) can be difficult, since they may be composed of
multiple distinct cell populations

• Response variable is the clinical outcome variable, which
makes it difficult to account for complex experimental
designs (including batch effects, paired designs, and
continuous covariates)

• All protein markers are treated identically; there is no
conceptual split between cell type and cell state (or
functional) markers

10

cydar Assigns cells to overlapping hyperspheres in the high-
dimensional space; tests for differential abundance
between hyperspheres using moderated tests from
edgeR15,16, while controlling the spatial false discovery rate
among overlapping hyperspheres

• Rare cell populations cannot easily be detected, due to their
relatively small volume in the high-dimensional space

• All protein markers are treated identically; there is no
conceptual split between cell type and cell state
(or functional) markers

11

classic regression-
based approach

Automated clustering using FlowSOM14, followed by
manual merging and annotation to define cell populations;
differential testing of features such as population
abundances or median expression of functional markers
using generalized linear mixed models, linear mixed
models, or linear models

• Manual merging and annotation step requires expert
biological knowledge, and can be time-consuming and
subjective

• When testing large numbers of clusters, e.g. to detect rare
cell populations: loss of statistical power due to multiple
testing penalty; no sharing of information across clusters

12

Overview of recently developed methods for performing differential analyses in high-dimensional cytometry data. For each method, a short description of the methodology
and a summary of limitations are provided
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characterize immune cell subsets in peripheral blood from mel-
anoma patients treated with anti-PD-1 immunotherapy24 (Anti-
PD-1 dataset; Figure 4). In this study, differential signals were
detected for a number of cell populations, both in response to
treatment and in baseline comparisons before treatment, between
groups of patients classified as responders and non-responders to
treatment. One key result was the identification of a small sub-
population of monocytes, with frequency in baseline samples
(prior to treatment) strongly associated with responder status.
The relatively rare frequency made this population difficult to
detect; in addition, the dataset contained a strong batch effect due
to sample acquisition on two different days24. Using method
diffcyt-DA-edgeR to perform a differential comparison between
baseline samples from the responder and non-responder patients
(and taking into account the batch effect), we correctly identified
three significant differentially abundant clusters (at an FDR cutoff
of 10%) with phenotypes that closely matched the subpopulation
of monocytes detected in the original study (CD14+ CD33+

HLA-DRhi ICAM-1+ CD64+ CD141+ CD86+ CD11c+ CD38+

PD-L1+ CD11b+ monocytes) (clusters 317, 358, and 380; Fig-
ure 4a). One additional cluster with an unknown phenotype was
also detected (cluster 308). The total abundance (combined cell
counts) of the three matching clusters showed a clear differential
signal between the two groups (Figure 4b). However, these results
were sensitive to the choice of random seed for the clustering: in
five additional runs using different random seeds, we detected

between 0 and 4 significant differentially abundant clusters
(at 10% FDR) per run; clusters matching the expected phenotype
were detected in four out of the five runs (Supplementary Fig. 24).

For a second evaluation on experimental data, we re-analyzed
the original (unmodified) data from the BCR-XL stimulation
condition in ref. 23 (BCR-XL dataset; Figure 5). This dataset
contains strong differential signals for several signaling state
markers in several cell populations, as previously described12,23.
Using method diffcyt-DS-limma, we reproduced several of the
major known signals, including strong differential expression of:
pS6, pPlcg2, pErk, and pAkt (elevated), and pNFkB (reduced, in
BCR-XL stimulated condition) in B cells (identified by expression
of CD20); pBtk and pNFkB in CD4+ T cells (identified by
expression of CD3 and CD4); and pBtk, pNFkB, and pSlp76 in
natural killer (NK) cells (identified by expression of CD7). Here,
phenotypes can be identified either by marker expression profiles
(Figure 5) or, alternatively, using reference population labels
available for this dataset (Supplementary Fig. 25).

Discussion
We have presented a new computational framework for per-
forming flexible differential discovery analyses in high-
dimensional cytometry data. Our methods are designed for two
related but distinct discovery tasks: detecting differentially
abundant cell populations, including rare populations; and
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significant clusters at 10% FDR (red) and clusters containing >50% true spiked-in cells (black). (Additional heatmaps are included in Supplementary Fig. 3)
d Results for varying clustering resolution (between 9 and 1600 clusters), showing partial area under ROC curves (pAUC) for false positive rates (FPR)
<0.2 (additional figures are included in Supplementary Fig. 4). Performance metric plots generated using iCOBRA42; heatmaps generated using
ComplexHeatmap43
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detecting differential expression of functional or other cell state
markers within cell populations. Compared to existing approa-
ches, our methods provide improved detection performance on
semi-simulated benchmark datasets, along with fast runtimes. We
have also successfully recovered known differential signals in re-
analyses of two published experimental datasets, including DA of
a highly specific rare population. Our methods can account for
complex experimental designs, including batch effects, paired
designs, and continuous covariates. In addition, the set of protein
markers may be split into cell type and cell state markers, facil-
itating biological interpretability. Visualizations such as heatmaps
can be used to interpret the high-resolution clustering results (for
example, to judge whether groups of clusters form larger popu-
lations, and to identify the phenotype of detected clusters).
Methods diffcyt-DA-edgeR (for DA tests) and diffcyt-DS-limma
(for DS tests) achieved the best performance and fastest runtimes
overall (Figure 2 and 3); we recommend these as the default
choices.

One limitation of our framework is that groups of similar
clusters cannot be automatically merged into larger cell popula-
tions with a consistent phenotype. For example, the clear group of
detected clusters in Figure 3c would ideally be merged into a
single population representing B cells. However, this is a difficult
computational problem, since the optimal resolution depends on
the biological setting, and any automatic merging must avoid
merging rare cell populations into larger ones. Our high-
resolution clustering approach instead provides a tractable

“middle ground” between discrete clustering and a continuum of
cell populations; we return results directly at the level of high-
resolution clusters, and let the user interpret them via visualiza-
tions. A related issue concerns the identification of cell population
phenotypes: our approach relies on visualizations and manual
annotation of populations, which necessarily involves some sub-
jectivity. Recently, several new methods have been published for
automated labeling of cell populations25, identification of sim-
plified gating strategies to describe cell populations of
interest26,27, or to compare cluster phenotypes28. These methods
could be integrated within our framework to interpret detected
differential clusters in a more automated manner. Similarly,
clustering algorithms that generate biologically interpretable
clusters could be used to improve interpretability29.

A further limitation relates to batch effects: in datasets with
strong batch effects, the high-resolution clustering may separate
across batches, making it more difficult to distinguish the signal
of interest. Aligning cell populations across batches is an active
area of research in single-cell analysis (e.g. refs. 30–33); ideally,
these methods will be integrated with frameworks for down-
stream differential analyses. Another issue concerns our strategy
of summarizing cell state marker signals into median values. This
strategy has advantages of simplicity, ease of interpretation, and
fast runtimes. However, some information is necessarily lost,
especially for markers with multi-modal distributions; good
frameworks for flexible comparisons of full distributions are
currently lacking. Additionally, splitting markers into groups
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representing cell type and cell state may be seen as a disadvantage
in applications where this distinction is not clear. However, this
step is optional: it is possible to run our methods using all
markers for clustering (i.e. treating all markers as cell type) and
testing for DA (Supplementary Fig. 16). For well-characterized
immune populations, standard cell type markers may be found in
the literature (e.g. ref. 34) or by consulting the websites of com-
mercial antibody suppliers (e.g. BioLegend, Miltenyi Biotec, or
Bio-Rad). Methods are also available to automatically group
markers12,22,35, although these should be used with care to ensure
that cell population definitions are biologically plausible. For
markers with subtle shifts (e.g. cytokines), assigning these as cell
state markers and applying DS tests may fail to detect the dif-
ferential signal; in this case, cluster labels may be exported to
facilitate alternative analysis strategies (e.g. visualizations using
CytoRSuite36, iSEE37, OpenCyto38, or commercial software such
as FlowJo).

The main user parameter in our methods is the number of
clusters. The optimal value depends on several factors, including
the size of the dataset (number of cells and samples), the expected
relative abundances of cell populations of interest, and the number
of markers used to define cell populations. The number of clusters
determines the number of statistical tests, and affects power
through the multiple testing penalty and the counts per cluster.
We recommend higher numbers of clusters when rare
cell populations are of interest (for example, we used 400 clusters
for the AML-sim dataset, and 100 clusters for the BCR-XL-sim
dataset). Ultimately, this is a subjective choice for the user, which
may also be explored interactively: e.g. by trying several different
resolutions, and judging the interpretability of the results using

visualizations or by calculating cluster separation metrics (e.g.
average silhouette width). However, in our evaluations, good
results were obtained over a range of resolutions (Figure 2d
and 3d). Most computational methods include one or more
parameters that can be adjusted by the user; in our view, one
of the advantages of our approach is that the number of clusters
is an intuitive parameter, with values that can be easily interpreted.

In general, we note that our methods are designed for “dis-
covery” analyses: all results should be explored and interpreted
using visualizations, and any generated hypotheses must ulti-
mately be validated with targeted confirmatory experiments. Our
methods are implemented in the open-source R package diffcyt,
available from Bioconductor (http://bioconductor.org/packages/
diffcyt). The package includes comprehensive documentation and
code examples, including an extended workflow vignette. Code to
reproduce all analyses and figures from our benchmarking eva-
luations is available from GitHub (https://github.com/lmweber/
diffcyt-evaluations), and data files from the benchmarking data-
sets are available from FlowRepository39 (http://flowrepository.
org/id/FR-FCM-ZYL8), allowing other researchers to extend and
build on our analyses.

Methods
Description of diffcyt methodology. The following sections provide a detailed
description of the diffcyt methodology (see Figure 1 for a schematic overview).

Preprocessing. Data preparation: Input data is formatted into a Bioconductor
SummarizedExperiment object containing a single matrix of protein expression
values, with one row per cell, and one column per protein marker. Row meta-data
contains sample IDs and group IDs, and column meta-data contains protein
marker information. The SummarizedExperiment format enables easy subsetting
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of data and meta-data, as well as simplified interaction with other Bioconductor
packages.

Marker information: “cell type” and “cell state” markers: The set of protein
markers may be split into sets of “cell type” and “cell state” markers. This split
enables the methodology to take advantage of existing biological knowledge, and
facilitates interpretability. By default, cell type markers are used to define clusters
representing cell populations (which are tested for DA), and median cell state
marker signals are used to test for DS (e.g. signaling or other functional states)
within populations. This allows the user to interpret the results in terms of cell
populations defined by known cell type markers.

The grouping into cell type and cell state markers must be specified by the user,
and is stored in the column meta-data of the SummarizedExperiment object.
This grouping is an important design choice, which may be made based on
prior biological knowledge or using data-driven methods. For an example of a
data-driven method of marker ranking and selection, see refs. 22,12.

Subsampling: Optionally, random subsampling can be used to select an equal
number of cells from each sample. This can be useful when there are large
differences in total numbers of cells per sample, since it ensures that samples
with relatively large numbers of cells do not dominate the clustering. However,
some information will necessarily be lost. Subsampling should generally not be
used when rare cell populations are of interest, due to the significant loss of
information if cells from the rare population are discarded.

Transformation: Expression values are transformed using an inverse hyperbolic
sine (arcsinh) transform with adjustable cofactor parameter. Raw expression values
(fluorescence intensities for flow cytometry, or randomized ion counts for mass
cytometry) follow an approximately log-normal distribution; the arcsinh transform
brings this closer to a normal distribution (or mixture of normal distributions),
which improves clustering performance and allows positive and negative

populations to be distinguished more clearly. The arcsinh transform behaves
similarly to a log transform at high values, but is approximately linear near zero; so
unlike the log, it can handle zeros or small negative values. The cofactor controls the
width of the linear region. (Zero values and small negatives occur in mass cytometry
data when no ions are detected in a given channel: negatives are due to background
subtraction and randomization of integer count values, which are performed by
default by the instrument software.) Standard values for the cofactor are 5 for mass
cytometry, and 150 for flow cytometry (see ref. 2, Supplementary Fig. S2).

Integration with CATALYST package: Alternatively, a pre-prepared daFrame
object from the CATALYST R/Bioconductor package40 can be used as the input for
the diffcyt methods. The CATALYST package contains extensive functions for
preprocessing, exploratory analysis, and visualization of mass cytometry data.
If this option is used, preprocessing (and clustering) are done using CATALYST.
This is particularly useful when CATALYST has already been used for exploratory
analyses and visualizations; the diffcyt package can then be used to calculate
differential tests. For more details, see the diffcyt and CATALYST Bioconductor
package vignettes.

Clustering. The clustering step is the core of the diffcyt methodology. We use high-
resolution clustering to group cells into a large number of small clusters repre-
senting cell populations or subsets, which can then be further analyzed by differ-
ential testing. High-resolution clustering (or over-clustering) helps ensure that
small or rare cell populations are adequately separated from larger populations.

By default, we use the FlowSOM clustering algorithm14 (available from
Bioconductor) to generate the clusters, since we previously showed that FlowSOM
gives very good clustering performance for high-dimensional cytometry data, for
both major and rare cell populations, and is extremely fast7. However, we run
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Fig. 5 Results for experimental dataset BCR-XL. Results for re-analysis of experimental dataset BCR-XL using method diffcyt-DS-limma; testing for
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ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0415-5

8 COMMUNICATIONS BIOLOGY |           (2019) 2:183 | https://doi.org/10.1038/s42003-019-0415-5 | www.nature.com/commsbio

www.nature.com/commsbio


FlowSOM without the final meta-clustering step, to help ensure that small or rare
populations are not merged into larger populations, which is crucial for detecting
DA of extremely rare populations.

If markers have been split into sets of cell type and cell state markers, then
(by default) the clustering is performed using cell type markers only.

Data features. After clustering, we calculate features summarizing the data at
the cluster level: cluster cell counts or abundances (number of cells per
cluster–sample combination), and median transformed marker expression values
(per cluster–sample combination). The feature values are formatted as new
SummarizedExperiment objects, where rows represent clusters or cluster–marker
combinations, and columns represent samples. These feature values are then used
as inputs for the differential testing.

Design matrices and model formulas. The models to be fitted are specified with a
design matrix or model formula, depending on the differential testing method used.
Design matrices consist of one row per sample, and columns containing predictor
variables, including the outcome of interest (e.g. columns of indicator variables
for group IDs, such as diseased and healthy) and any other covariates. Flexible
experimental designs are possible: block IDs (e.g. patient IDs in a paired design),
batch effects, and continuous covariates can be included in the design matrix; each
of these terms will be included as fixed effects in the models. Alternatively, model
formulas also provide the option to include block IDs as random intercept terms
(instead of fixed effects). When testing for DA, model formulas can also be used
to include random intercept terms for each sample (known as “observation-level
random effects” or OLREs; see ref. 12), to account for overdispersion typically
seen in high-dimensional cytometry data.

Contrasts. The comparison of interest for the differential tests is specified with a
contrast matrix. The contrast matrix consists of one row per model coefficient
(corresponding to columns from the design matrix), and a column specifying the
comparison of interest (i.e. the combination of model coefficients that is assumed
to equal zero under the null hypothesis). This system of combining a design matrix
(or model formula) with an appropriate contrast matrix provides users with
powerful options to investigate a wide range of possible hypotheses within flexible
experimental design settings.

Tests for DA of cell populations. diffcyt-DA-edgeR: The diffcyt-DA-edgeR method
calculates tests for DA of clusters using methodology from the edgeR package15,16.
This method uses edgeR to fit models and calculate moderated tests at the cluster
level. The moderated tests improve power by sharing information on variability
(i.e. variance across samples for a single cluster) across clusters. Note that by
default, we use the option trend.method = “none” to estimate common dispersions
(see edgeR User’s Guide, available from Bioconductor).

The input to the tests is a table of cluster cell counts. The experimental design is
specified using a design matrix, which enables flexible experimental designs. The
comparison of interest is specified using a contrast matrix. A filtering step removes
clusters with very low cell counts across samples to improve power. Normalization
for the total number of cells per sample (library sizes) is automatically performed
by the edgeR functions. Optionally, normalization factors for composition effects
can be calculated using the “trimmed mean of M-values” (TMM) method from the
edgeR package41.

Differential test results are returned in the form of raw p-values and adjusted
p-values (FDR) from the moderated tests, which can be used to rank the clusters
by their evidence for DA. The results are stored in a new SummarizedExperiment
object.

diffcyt-DA-voom: The diffcyt-DA-voom method calculates tests for DA of
clusters using methodology from the limma package17 and voom method18. This
method uses limma to fit models and calculate moderated tests at the cluster level.
The moderated tests improve power by sharing information on variability across
clusters. Since count data (such as cluster cell counts) are often heteroscedastic, we
use voom to transform the raw cluster cell counts and estimate observation-level
precision weights in order to stabilize the mean–variance relationship.

The input to the tests is a table of cluster cell counts. The experimental design is
specified using a design matrix, which enables flexible experimental designs. For
paired designs, either fixed effects or random effects can be used; fixed effects are
simpler, but random effects may improve power in datasets with unbalanced
designs or very large numbers of samples. Random effects make use of the limma
duplicateCorrelation methodology (note that this methodology does not allow
multiple measures per sample; in this case, fixed effects should be used instead).
The comparison of interest is specified using a contrast matrix. A filtering step
removes clusters with very low cell counts across samples to improve power.
Normalization for the total number of cells per sample (library sizes) is
automatically performed by the limma and voom functions. Optionally,
normalization factors for composition effects can be calculated using the TMM
method from the edgeR package41.

Differential test results are returned in the form of raw p-values and adjusted
p-values (FDR) from the moderated tests, which can be used to rank the clusters by

their evidence for DA. The results are stored in a new SummarizedExperiment
object.

diffcyt-DA-GLMM: The diffcyt-DA-GLMM method calculates tests for DA of
clusters using the generalized linear mixed models (GLMM) methodology
originally implemented by ref. 12. This method fits GLMMs for each cluster, and
calculates differential tests separately for each cluster (i.e. one model per cluster).
The response variables in the models are the cluster cell counts, which are assumed
to follow a binomial distribution. Note that the original methodology from ref. 12

has been modified here to make use of high-resolution clustering to enable rare cell
populations to be investigated more easily. In addition, we do not attempt to
manually merge clusters into canonical cell populations; results are instead
reported directly at the high-resolution cluster level.

The input to the tests is a table of cluster cell counts. The experimental design is
specified using a model formula, which enables flexible experimental designs.
Blocking variables (e.g. for paired designs) can be included as either random
intercept terms or fixed effect terms. For paired designs, we recommend using
random intercept terms to improve statistical power (see ref. 12). Batch effects and
continuous covariates are included as fixed effects. In addition, we include random
intercept terms for each sample to account for overdispersion typically seen in
high-dimensional cytometry count data. The sample-level random intercept terms
are known as “observation-level random effects” (OLREs; see ref. 12). The
comparison of interest is specified using a contrast matrix. A filtering step removes
clusters with very low cell counts across samples to improve power. Optionally,
normalization factors for composition effects can be calculated using the TMM
method from the edgeR package41.

Differential test results are returned in the form of raw p-values and adjusted
p-values (FDR), which can be used to rank the clusters by their evidence for DA.
The results are stored in a new SummarizedExperiment object.

Tests for DS within cell populations. diffcyt-DS-limma: The diffcyt-DS-limma
method calculates tests for DS within clusters using methodology from the
limma package17. Clusters are defined using cell type markers, and cell states are
defined using median transformed expression of cell state markers within
clusters. This method uses limma to fit models and calculate moderated tests at the
cluster level. The moderated tests improve power by sharing information on varia-
bility across clusters. Note that by default, we use the option trend= TRUE in the
limma eBayes fitting function in order to stabilize the mean–variance relationship.

The input to the tests is a set of tables of median expression of each marker for
each cluster–sample combination. The experimental design is specified using a
design matrix, which enables flexible experimental designs. For paired designs, either
fixed effects or random effects can be used; fixed effects are simpler, but random
effects may improve power in datasets with unbalanced designs or very large
numbers of samples. Random effects make use of the limma duplicateCorrelation
methodology (note that this methodology does not allow multiple measures per
sample; in this case, fixed effects should be used instead). The comparison of
interest is specified using a contrast matrix. A filtering step removes clusters with
very low cell counts across samples to improve power. If cluster cell counts are
provided, these can be used to calculate precision weights (across all samples and
clusters), allowing the limma model fitting functions to account for uncertainty due
to the total number of cells per sample (library size normalization) and total number
of cells per cluster.

Differential test results are returned in the form of raw p-values and adjusted
p-values (FDR) from the moderated tests for each cluster–marker combination
(for cell state markers). These can be used to rank the cluster–marker combinations
by their evidence for DS. The results are stored in a new SummarizedExperiment
object.

diffcyt-DS-LMM: The diffcyt-DS-LMM method calculates tests for DS within
clusters using the linear mixed models (LMM) and linear models (LM)
methodology originally implemented by ref. 12. Clusters are defined using cell type
markers, and cell states are defined using median transformed expression of cell
state markers within clusters. This method fits LMMs for each cluster–marker
combination (for cell state markers), and calculates differential tests separately for
each cluster–marker combination (i.e. one model per cluster–marker combination).
The response variable in each model is the median arcsinh-transformed marker
expression of the cell state marker, which is assumed to follow a normal
distribution. Note that the original methodology from ref. 12 has been modified
here to make use of high-resolution clustering to enable rare cell populations to be
investigated more easily. In addition, we do not attempt to manually merge clusters
into canonical cell populations; results are instead reported directly at the high-
resolution cluster level.

The input is a set of tables of median expression of each marker for each
cluster–sample combination. The experimental design is specified using a model
formula, which enables flexible experimental designs. Blocking variables (e.g. for
paired designs) can be included as either random intercept terms or fixed effect
terms. For paired designs, we recommend using random intercept terms to
improve statistical power (see ref. 12). Batch effects and continuous covariates are
included as fixed effects. If no random intercept terms are included in the model
formula, model fitting is performed using an LM instead of an LMM. The
comparison of interest is specified using a contrast matrix. A filtering step removes
clusters with very low cell counts across samples to improve power. Within each
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model, sample-level weights can be included for the number of cells per sample;
these weights represent the relative uncertainty in calculating each median value.
(Additional uncertainty exists due to variation in the total number of cells per
cluster; however, it is not possible to account for this, since separate models are
used for each cluster–marker combination.)

Differential test results are returned in the form of raw p-values and adjusted p-
values (FDR) for each cluster–marker combination (for cell state markers). These
can be used to rank the cluster–marker combinations by their evidence for DS. The
results are stored in a new SummarizedExperiment object.

Interpretation and visualization. The diffcyt methods return results in the form
of adjusted p-values (FDR) at the level of high-resolution clusters, either for a
given cluster (for DA tests) or cluster–marker combination (for DS tests).

Due to the high-resolution clustering strategy, detected differential cell
populations may be split into several sub-clusters with similar phenotypes. For
biological interpretation, it is often useful to group the high-resolution clusters into
larger populations with a consistent phenotype. However, automatically
aggregating clusters is a difficult computational task, since the optimal resolution
depends on the biological setting. In particular, there is a risk of merging rare cell
populations into larger populations. Therefore, we have adopted the approach of
returning results directly at the high-resolution cluster level. These results can
then be explored and interpreted using visualizations.

Detailed visualizations can be generated using plotting functions from the
CATALYST R/Bioconductor package40, which accepts output objects from diffcyt.
Key visualizations include heatmaps showing the phenotype (marker expression
profiles) of detected clusters together with the sample-level signal of interest
(cluster abundance or median expression of cell state markers). Examples are
provided in the diffcyt and CATALYST Bioconductor package vignettes.

Number of clusters. The number of clusters is the main user parameter choice in
the diffcyt methods. In the default implementation using the FlowSOM algorithm
for clustering, this can be specified with the two arguments xdim and ydim in the
function generateClusters. The total number of clusters is then xdim * ydim.
(This format is required since FlowSOM arranges clusters in a two-dimensional
self-organizing map grid.)

The default is 100 clusters (xdim= 10, ydim= 10), which we expect is sufficient
for many datasets. In general, we recommend higher numbers of clusters for
datasets where rare cell populations are of interest. In our benchmarking
evaluations, we used 400 clusters for the AML-sim dataset and 100 clusters for the
BCR-XL-sim dataset. Ultimately, this is a subjective choice for the user, which
will depend on the biological setting and questions of interest in a given dataset;
strategies to determine an appropriate number may include interactive exploration
of visualizations, and (if available) making use of manually gated populations
as a reference.

Benchmark datasets. A complete description of the benchmark datasets used to
evaluate the methods is provided in Supplementary Note 1 (including Supple-
mentary Figs. 26 and 27).

Comparisons with existing methods. Additional details on the comparisons with
existing methods are provided in Supplementary Note 2.

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data files for all benchmark datasets are available in FCS format from FlowRepository39

(repository ID: FR-FCM-ZYL8) at http://flowrepository.org/id/FR-FCM-ZYL8. The
benchmark datasets can also be accessed in SummarizedExperiment and flowSet
Bioconductor object formats through the HDCytoData Bioconductor package, available
at http://bioconductor.org/packages/HDCytoData.

Code availability
The methods described in this paper are implemented in the open-source R package
diffcyt, which is freely available from Bioconductor at http://bioconductor.org/packages/
diffcyt. The diffcyt package includes comprehensive help files for each function, as well as
a package vignette demonstrating a complete example workflow. Code scripts to
reproduce all performance evaluations and comparisons with existing methods,
reproduce all data preparation and simulation steps, and generate all figures are available
from GitHub at https://github.com/lmweber/diffcyt-evaluations. The results and figures
in this paper were generated using diffcyt version 1.3.0 (available from GitHub at https://
github.com/lmweber/diffcyt/releases) and R version 3.5.0.
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