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Abstract: As a novel cell-free strategy, mesenchymal stem cell-derived extracellular vesicles (MSC-
EVs) inherit the therapeutic potential of donor cells, and are widely used for the treatment of many
diseases. Increasing studies have shown that MSC-EVs transfer various bioactive molecules to create
a beneficial microenvironment, thus exerting protective roles in diabetic mellitus (DM) and diabetic
complications. To overcome the limitations of natural MSC-EVs such as heterogeneity and insufficient
function, several modification methods have been established for constructing engineered MSC-EVs
with elevated repairing efficiency. In this review, the PubMed library was searched from inception
to August 2022, using a combination of Medical Subject Headings (MeSH) and keywords related to
MSC-EVs, DM, and diabetic complications. We provide an overview of the major characteristics of
MSC-EVs and summarize the recent advances of MSC-EV-based therapy for hyperglycemia-induced
tissue damage with an emphasis on MSC-EV-mediated delivery of functional components. Moreover,
the potential applications of engineered MSC-EVs in DM-related diseases therapy are discussed by
presenting examples, and the opportunities and challenges for the clinical translation of MSC-EVs,
especially engineered MSC-EVs, are evaluated.

Keywords: extracellular vesicles; mesenchymal stem cell; diabetic mellitus; diabetic complications;
engineering

1. Introduction

Diabetes mellitus (DM) is a group of metabolic diseases characterized by chronic
hyperglycemia as a result of defects in insulin secretion and/or function [1]. Accompanied
by population aging and dietary change, the global prevalence of DM rises steadily [2].
Type 1 DM usually occurs in adolescents and is featured by the absolute deficiency of insulin
secretion due to pancreatic islet β-cells reduction [3]. Type 2 DM is common in elder and
obese patients because of the decreased insulin sensitivity of peripheral tissues and reduced
insulin secretion of pancreatic islet β-cells [4]. Persistent hyperglycemia is prone to cause
many diabetic complications such as diabetic nephropathy, diabetic retinopathy, diabetic
neuropathy, and diabetic ulcer [5]. Currently, the utilization of therapeutic insulin and
hypoglycemic agents provides possibilities to effectively control the blood glucose levels
of diabetic patients, whereas the long-term application of these drugs may induce severe
side effects and cannot prevent the progress of diabetic complications [6,7]. Therefore,
there is an urgent need to develop novel strategies to treat DM and its related chronic
complications.

Mesenchymal stem cell (MSC) is recognized as an important source cell in regenerative
medicine due to its capacity for self-renewal and multidirectional differentiation [8]. MSC
can be isolated from various tissues including bone marrow, adipose tissue, umbilical cord,
gingiva, and synovium [9]. Increasingly, studies have shown that MSC transplantation
displays therapeutic value to ameliorate many refractory diseases by replacing injured cells
and secreting growth factors and anti-inflammatory cytokines [10,11]. Importantly, the
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discovery that MSC establishes a beneficial microenvironment to accelerate the regeneration
of pancreatic β-cells promotes the idea of using them as new therapeutics for DM [12,13].
However, MSC is reported to possess the same stemness-related gene phenotypes as
mesenchymal tumor cells, implying that MSC may determine early tumor formation [14].
Moreover, MSC administration can promote the chemo-resistance and invasion of tumor
cells [15,16], thus limiting its wide application.

Recent evidence has revealed that the therapeutic effects of MSC are mediated by the
paracrine pathway, mainly through the release of extracellular vesicles (EVs) [17]. “EVs” is
a generic term for various subtypes of membrane vesicles secreted by cells. EVs contain
various bioactive molecules including proteins, nucleic acids, and lipids, and transport
them from donor cells to recipient cells [18]. Accumulating studies have suggested that EVs
represent a new manner of intercellular communication and contribute to the regulation
of many pathophysiological processes [19,20]. In addition, the lipid bilayer membrane
structure endows EVs with great stability in circulation and protects their cargo from
degradation [21]. Recently, the cell-free strategy based on MSC-derived EVs (MSC-EVs)
for tissue regeneration has attracted considerable attention. MSC-EVs not only inherit the
ability of MSC to repair damaged tissues, but also avoid cell therapy-induced limitations
such as cell senescence, low cell survival, and tumorigenicity [22,23]. Moreover, the
engineering of MSC-EVs can further enhance their therapeutic efficiency, bioactivity, and
yield through various modification methods. MSC-EV-mediated protective functions in
DM and its chronic complications have been evaluated in many preclinical studies and
achieved encouraging results.

In this review, we summarize the recent advances of natural or engineered MSC-EVs
in the treatment of DM and several major diabetic complications and focus on the role of
MSC-EV-delivered bioactive molecules in mediating tissue protection. We also discuss the
modification strategies of MSC-EVs and evaluate the future opportunities and challenges
of this field.

2. Biogenesis, Contents, and Characteristics of MSC-EVs

EVs are a heterogeneous group of membrane-structured vesicles secreted by living
cells. Since the specific markers of EV subtypes warrant further discussion and investiga-
tion, the International Society for Extracellular Vesicles (ISEV) recommends researchers use
operational terms for defining EVs according to physical characteristics (size and density),
biochemical composition, or descriptions of conditions or cell of origin [24]. For instance,
EVs can be divided into small EVs (<100 nm or <200 nm) and medium/large EVs (>200 nm).
Previous studies have usually classified EVs into exosomes, microvesicles, and apoptotic
bodies [25]. However, strictly speaking, they should only be used when data revealing
the formation processes of EVs are provided. Exosomes, the smallest subpopulation of
EVs with a size ranging from 30–200 nm, are generated through a series of complex pro-
cesses including endocytosis, endosome maturation, and multivesicular bodies (MVBs)
formation [26]. After the fusion of MVBs with plasma membranes, exosomes are released
into extracellular space. Microvesicles, with a diameter of 100–1000 nm, are derived from
the direct outward budding of plasma membranes [27]. Apoptotic bodies (greater than
1000 nm in diameter) are formed by cells after apoptosis [28]. In this review, the umbrella
term “EVs” is used to refer to these vesicles on the basis of Minimal Information for Studies
of Extracellular Vesicles 2018 (MISEV2018) guidelines. Initially, EVs were considered as
a way for the excretion of cell waste. With the rapid development of high-throughput
sequencing technologies, recent studies have revealed that EVs carry multiple bioactive
molecules including proteins, nucleic acids, and lipids [29]. Several proteins are considered
the markers of EVs such as the tetraspanin protein family (CD9, CD63, and CD81), pro-
teins involved in membrane fusion (Rab5, Rab7, Annexin A1, Annexin A2, and Annexin
A7), MVBs synthetic proteins (Alix and TSG101), chaperone proteins (HSP60, HSP70, and
HSP90), and phospholipases [30]. Moreover, EVs derived from different donor cells contain
many specific proteins, which may determine their biological functions. For instance,
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Zhang et al. reported that MSC-EVs but not human lung fibroblasts-derived EVs promote
cutaneous wound healing as a result of the specific expression of Wnt4 in MSC-EVs [31]. In
addition, MSC-EVs also express MSC surface markers such as CD44, CD73, and CD90 [32].
Nucleic acids are another important component of EVs. Increasingly, studies have shown
that EVs deliver mRNA, miRNA, lncRNA, circular RNA, genomic DNA, and mitochon-
drial DNA to modulate the biological behavior of recipient cells [33]. The lipids in EVs
exhibit the ability to participate in various biological processes such as signal transduction,
microenvironment regulation, and inflammation response [34,35]. Lipid-raft domains of
the plasma membrane contribute to the early endosome formation through the endocytosis
pathway, thus initiating the biogenesis process of exosomes [36]. Notably, the lipid bilayer
membrane structure endows EVs with the potential to protect internal cargos in circula-
tion [37]. EVs act as novel vehicles to mediate intercellular communication and transport
bioactive molecules from their donor cells to distant recipient cells. The internalization of
EVs involves several pathways including membrane fusion, receptor-ligand interaction,
and endocytosis [38]. Among them, various endocytosis-related ways are considered the
major mechanisms underlying the uptake of EVs by recipient cells, including clathrin-
dependent endocytosis, caveolin-mediated uptake, macropinocytosis, phagocytosis, and
lipid raft-mediated internalization [39].

Although the mechanisms responsible for the cargo sorting into EVs are still not fully
understood, researchers have proposed several possibilities. Accumulating evidence has
shown that the endosomal sorting complexes required for transport (ESCRT) pathway
contributes to the loading of proteins into MVBs in a ubiquitin-dependent manner [40].
The ESCRT contains four distinct complexes named ESCRT-0, ESCRT-I, ESCRT-II, and
ESCRT-III, together with the ATPase vacuolar protein sorting-associated protein 4 (VPS4).
Each subcomplex has unique roles and exerts functions sequentially including cargo clus-
tering (ESCRT-0), cargo binding (ESCRT-I, and ESCRT-II), vesicles maturation and con-
striction (ESCRT-III), and membrane scission (VPS4) [41]. In addition, it is reported that
EVs can also be generated in the absence of ESCRT proteins, implying the existence of
ESCRT-independent mechanisms [42]. Recent studies have suggested that ceramides and
tetraspanin-enriched microdomains are also associated with cargo sorting into EVs [43].
The introduction of RNAs into EVs involves the help of a complicated RNA sorting system.
RNA binding proteins (RBPs) display the ability to recognize specific RNAs with unique
sequences and structures and then load them into EVs [44]. Moreover, adenylation and
urylation at the 3′ ends of miRNAs, human antigen R, and argonaute 2 also promote
RNA sorting into EVs [45,46]. However, the potential mechanisms by which DNAs can be
packaged into EVs still need further investigation (Figure 1).

MSC-EVs can be isolated from the cell supernatants of MSC. According to the physical
and chemical features of MSC-EVs, several isolation methods have been established such
as ultracentrifugation [47], density gradient centrifugation [48], size exclusion chromatog-
raphy [49], immunoaffinity capture [50], ultrafiltration [51], and polymer precipitation [52].
Each method has its own advantages and limitations (Table 1). Currently, there is still a
lack of low-cost approaches to rapidly obtain MSC-EVs with high purity, good integrity,
and high yield. Researchers need to utilize different extraction methods based on the
experimental requirements.
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Figure 1. The biogenesis, release, and internalization of EVs. The generation of exosomes involves 
several processes including endocytosis, endosomes and MVBs formation, and the fusion of MVBs 
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membranes. EVs transport cargos including proteins, nucleic acids, and lipids to recipient cells 
through endocytosis, membrane fusion, and receptor–ligand interaction. 
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Figure 1. The biogenesis, release, and internalization of EVs. The generation of exosomes involves
several processes including endocytosis, endosomes and MVBs formation, and the fusion of MVBs
with plasma membranes. Microvesicles are formed after the outward budding of plasma mem-
branes. EVs transport cargos including proteins, nucleic acids, and lipids to recipient cells through
endocytosis, membrane fusion, and receptor-ligand interaction.

Table 1. Evaluation of isolation methods of MSC-EVs.

Method Principle Advantages Limitations Reference

Ultracentrifugation
According to the size,
density, and shape of

MSC-EVs

Low cost, simple operation,
suitable for large samples

Time-consuming, low yield,
poor integrity [47]

Density gradient
centrifugation

Based on the density of
MSC-EVs High purity Time consuming,

complex operation [48]

Size exclusion
chromatography

Based on the size of
MSC-EVs

Simple operation, high
yield, high purity, good

integrity

High cost, suitable for low
sample volume [49]

Immunoaffinity
capture

Specific binding of
antibody to the surface

marker of MSC-EVs
High purity High cost,

low yield [50]

Ultrafiltration Based on the size of
MSC-EVs Efficiency, simple operation Low purity [51]

Polymer precipitation
Changing the solubility

and
dispersibility of MSC-EVs

High yield, simple
operation

Low purity,
high cost [52]

The findings that MSC exerts therapeutic effects mainly through the paracrine pathway
facilitate studies on the biological functions of MSC-EVs. Although MSC transplantation
represents a feasible strategy for diabetic disease therapy, the therapeutic efficiency remains
unsatisfactory. Intravascular infusion of MSC may result in vascular embolism because of
its relatively large size [53]. MSC-based cell therapy contains the risks of immune rejection
and tumor formation [54]. In addition, due to the rapid senescence of MSC, the large-scale
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production of MSC with high cell viability is costly [55]. By contrast, MSC-EV-mediated
cell-free strategy has several advantages: (1) MSC-EVs exhibit the natural potential to cross
physiological barriers such as blood-brain barrier and blood-retinal barrier as a result of
their nanoscale size [56]. (2) MSC-EVs treatment reduces the risks of cell transplantation-
induced immune rejection and tumorigenicity [57]. However, toxicological and safety
evaluations still require further studies following the long-term administration of MSC-EVs.
(3) MSC-EVs possess high biocompatibility and stability and can be rapidly absorbed by
recipient cells to transfer bioactive molecules [58]. (4) MSC-EVs can maintain their cargo
at low temperatures. Storage and transportation of MSC-EVs are more convenient [59].
(5) Proper modification can further improve the targeting property and repairing effects of
MSC-EVs [60]. Therefore, these unique characteristics make MSC-EVs one of the promising
candidates for regenerative medicine.

3. Natural MSC-EVs in the Treatment of DM and Diabetic Complications
3.1. Diabetes Mellitus

In the treatment of DM, MSC is the most common donor cell of EVs due to its intrinsic
repairing value. Islet cell death is recognized as a key barrier to successful islet cell trans-
plantation. MSC-EV-mediated delivery of protective molecules such as vascular endothelial
growth factor (VEGF) and miR-21 is reported to protect isolated islets’ survival and enhance
their viability [61,62]. Accumulating evidence has shown that the direct therapeutic role of
MSC in DM is mainly mediated by the secretion of EVs. Favaro et al. revealed that MSC-EVs
exhibit similar immunomodulatory functions to MSC in inducing the immature phenotype
of dendritic cells from type 1 diabetic patients, thus inhibiting inflammatory T-cell response
in islet tissues [63]. Moreover, the administration of MSC-EVs via the tail vein effectively
prevents type 1 DM progress by suppressing the activation of antigen-presenting cells
and the development of T helper cells [64]. In another study by Nojehdehi et al., MSC-EV
treatment can enhance the number of islets and improve glycemic control by increasing
the regulatory T-cell population in streptozotocin (STZ)-induced type 1 DM mice [65].
In addition to the immune regulation mechanisms, MSC-EVs also show the ability to
directly affect glucose metabolism. Many studies focus on the potential of MSC-EVs in the
improvement of β-cells due to their insulin-secreting function. In the STZ-induced type
2 DM rat model, Sun et al. found that MSC-EVs injection reverses hyperglycemia-induced
glucose metabolism disorders and β-cells apoptosis, providing an alternative strategy for
DM treatment [66]. Similarly, Cooper et al. demonstrated that MSC-EVs can increase islet
number and β-cell mass to elevate the insulin level in the circulation, leading to decreased
blood glucose levels in diabetic mice [67]. The results of Mahdipour et al. confirm the
accumulation of MSC-EVs in the pancreas after intravenous injection, which promotes
the regeneration of β-cells through the Pdx-1-dependent mechanism [68]. Furthermore,
many attempts have been made to illustrate the therapeutic molecules in MSC-EVs. By
miRNA sequencing, Sharma et al. identified that MSC-EVs transport multiple miRNAs
such as miR-let-7a-5p, miR-24-3p, miR-19-b-1-5p, and miR-450-b-5p to target Extl3-Reg-
cyclinD1 pathway and facilitate pancreatic restoration [69]. MSC-EV-delivered miR-146a
also reverses diabetic β-cell dedifferentiation and improves β-cell function by inhibiting
Numb expression [70]. In addition, recent studies have revealed that MSC-EVs show high
efficacy to alleviate peripheral insulin resistance. For instance, Yap et al. demonstrated that
MSC-EVs represent promising therapeutic agents to enhance glucose uptake by skeletal
muscle cells and ameliorate type 2 DM [71]. Furthermore, the findings that MSC-EVs
promote hepatic glycolysis, glycogen storage, and lipolysis, and reduce gluconeogenesis in
diabetic rats suggest that MSC-EVs can improve insulin sensitivity in peripheral organs [72].
These findings suggest that MSC-EVs treatment serves as an effective strategy to alleviate
DM by regulating the immune microenvironment, recovering β-cell function and mass,
and alleviating peripheral insulin resistance (Figure 2).
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Figure 2. MSC-EVs in DM therapy. MSC-EVs display the ability to alleviate DM progress by
regulating immune response, relieving β-cell damage, and reversing peripheral insulin resistance.

3.2. Diabetic Nephropathy

As one of the severe microvascular complications of DM, diabetic nephropathy is the
leading cause of end-stage renal disease worldwide [73]. Diabetic nephropathy is a chronic
disease characterized by diffuse and nodular mesangial matrix expansion, glomerular base-
ment membrane thickening, glomerular hyperfiltration, and tubulointerstitial fibrosis [74].
Previous studies have revealed that MSC transplantation shows the ability to directly rescue
kidney damage in diabetic conditions [75], whereas cell therapy-induced potential side ef-
fects limit its clinical translation. Although autologous cell transplantation can partly solve
the problem of immune rejection, hyperglycemia may cause abnormalities of intrinsic MSC
in diabetic patients, resulting in insufficient repairing effects. Nagaishi et al. developed a
novel approach based on umbilical cord MSC-EVs to improve the renal therapeutic value of
injured bone marrow MSC [76]. The proliferation, motility, endoplasmic reticular functions,
and EV secretion ability of type 1 and type 2 diabetes-derived bone marrow MSC can be
enhanced after umbilical cord MSC-EVs treatment. In addition, Li et al. demonstrated that
GW4869 (an inhibitor of EV secretion) administration significantly impairs the antifibrosis
effects of MSC, suggesting that EV release serves as the major mechanism responsible
for MSC-induced diabetic nephropathy therapy [77]. Therefore, MSC-EV-mediated cell-
free strategy has become a new research direction. Many preclinical studies have been
adopted to evaluate the role of MSC-EVs in diabetic nephropathy. Wang et al. revealed
that STZ-induced diabetic rats after MSC-EV treatment display alleviated pathological
changes in renal glomerulus and tubules, and decreased levels of blood glucose, lipids,
and viscosity [78]. Moreover, MSC-EVs contain various miRNAs that can prevent the
development of renal fibrosis by targeting profibrotic genes in STZ-induced diabetic animal
models [79,80]. In db/db mice, MSC-EVs also show the potent capacity to ameliorate
hyperglycemia-induced renal apoptosis and epithelial-mesenchymal transition (EMT) by
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delivering miR-424-5p [81]. Jin and colleagues have identified that miR-486-mediated
Smad1 downregulation contributes to the reduction in urine protein, serum creatinine, and
blood urea nitrogen in db/db mice treated with MSC-EVs [82]. As one type of terminally
differentiated epithelial cells, podocytes exert critical roles in maintaining glomerular filtra-
tion barrier function [83]. Hyperglycemia-caused podocyte injury is recognized as the key
pathogenic factor of glomerular hyperfiltration and proteinuria during diabetic nephropa-
thy progress [84]. MSC-EVs are reported to alleviate high glucose (HG) conditions-induced
EMT of podocytes by delivering miR-215-5p to inhibit zinc finger E-box-binding homeobox
2 (ZEB2) expression [85]. MiR-15b-5p in MSC-EVs is able to cause the downregulation
of pyruvate dehydrogenase kinase 4 (PDK4) and VEGF expressions, thus reducing the
apoptosis and inflammation of podocytes [86]. Duan et al. revealed the protective role
of miR-26a-5p from MSC-EVs to enhance the viability of podocytes by reducing Toll-like
receptor 4 (TLR4) expression and inhibiting downstream NF-κB/VEGF pathway [87]. In
addition, MSC-EVs also promote the proliferation of human embryonic kidney epithelial
cells (HKCs) in HG medium by miR-125b-mediated inhibition on tumor necrosis factor
receptor-associated factor 6 (TRAF6) level [88]. Another study by Nagaishi et al. has
demonstrated that MSC-EVs not only inhibit tubular epithelial cell apoptosis to maintain
the tight junction structure but also reduce the release of inflammatory cytokines [89]. These
findings suggest that MSC-EV treatment represents a promising approach to preventing
diabetic nephropathy by repairing renal functions and regulating glucose metabolism.

3.3. Diabetic Retinopathy

Diabetic retinopathy, a leading cause of vision decline and blindness in adults, is
characterized by the loss of retinal cells and the infiltration of inflammatory and oxida-
tive factors, leading to retinal tissue destruction, vascular leakage, and neovasculariza-
tion [90]. Retinal ischemia is recognized as an important mechanism associated with
diabetic retinopathy progress. Mathew et al. demonstrated that the intravitreal injec-
tion of MSC-EVs remarkably recovers retinal functions and alleviates neuroinflammation
and apoptosis in retinal ischemia models, highlighting the potential of MSC-EVs in the
treatment of retinal disorders [91]. In HG medium-cultured human retinal microvascular
endothelial cells, MSC-EVs exhibit the ability to inhibit EMT and tube formation [92]. Fur-
ther studies show that MSC-EV-mediated lncRNA SNHG7 delivery to decrease miR-34a-5p
expression is essential for the upregulation of X-box binding protein 1 (XBP1) expression.
To determine whether MSC-EVs exert retinal therapeutic roles in vivo, Fu et al. treated
STZ-induced diabetic rats with MSC-EVs through intravitreal injection and found that MSC-
EVs effectively attenuate retinal structure disruption and vascular injury [93]. Moreover,
Ebrahim et al. suggested that the blocking of Wnt/β-catenin signaling explains the MSC-
EV-mediated reduction in retinal oxidative stress, inflammation, and angiogenesis [94].
In recent years, researchers have focused on the exploration of functional components
within MSC-EVs in diabetic retinopathy therapy. For example, the results of Sun et al.
have shown that hyperglycemia-induced upregulation of phosphatase and tensin homolog
(PTEN) can inhibit AKT phosphorylation and nuclear factor erythroid 2-related factor
2 (NRF2) expression in retinal tissues, whereas MSC-EVs ameliorate retinal apoptosis
and oxidative stress by transporting neuronal precursor cell-expressed developmentally
downregulated 4 (NEDD4) to cause PTEN ubiquitination and degradation and activate
downstream AKT/NRF2 pathway [95]. The knockdown of NEDD4 significantly impairs
the retinal protective potential of MSC-EVs. In addition, the miRNAs in MSC-EVs such as
miR-18b, miR-17-3p, miR-486-3p, miR-146a, miR-192, and miR-133b-3p also exert repairing
roles to promote the recovery of retinal function and structure [96–101]. Furthermore,
MSC-EVs are reported to carry brain-derived neurotrophic factor (BDNF) to retinal neurons
of diabetic rats and inhibit neuronal apoptosis by activating the TrkB pathway [102]. How-
ever, recent evidence has revealed that intravitreally administered MSC-EVs are rapidly
absorbed by superficially located cells such as astrocytes, microglia, and retinal neurons,
leaving few MSC-EVs to penetrate deeper into the retina [103]. Notably, the retention time
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of MSC-EVs in retinal cells is less than 14 days. It is necessary to develop novel strategies
to maintain MSC-EVs in retinal tissues for achieving increased cell uptake and extended
residence time.

3.4. Diabetic Wound Healing

A diabetic ulcer is one of the most common complications of DM [104]. A hyperglycemia-
induced decline in healing ability makes the diabetic ulcer an important problem threatening
the life and health of diabetic patients [105]. The traditional strategy relies on medical
treatment and surgical blood flow reconstruction, whereas therapeutic efficacy is not satis-
factory [106]. Recently, MSC-EVs have been widely utilized to accelerate diabetic wound
healing. This effect is discovered to be closely associated with the property of MSC-EVs
to promote wound closure, re-epithelialization, collagen deposition, and neovasculariza-
tion [107–109]. Further studies have demonstrated that MSC-EV-mediated activation of
sirtuin 3 (SIRT3)/superoxide dismutase 2 (SOD2) signaling is responsible for the restora-
tion of mitochondrial functions, resulting in the reduction in wound oxidative stress and
inflammation [110]. Moreover, Liu et al. revealed that MSC-EVs can enhance the prolif-
eration, migration, and angiogenesis abilities of vascular endothelial cells by promoting
hypoxia-inducible factor-1α (HIF-1α) expression in PI3K-AKT-mTOR dependent manner,
leading to the acceleration of diabetic wound healing [111]. Accumulating evidence suggests
that the abundance of RNAs, especially lncRNAs and miRNAs in MSC-EVs, contributes
to wound healing in diabetic animal models. For instance, Li et al. injected MSC-EVs into
the skin around the wound of diabetic mice and observed that MSC-EVs prevent the apop-
tosis and inflammation of fibroblasts to stimulate the wound-healing process by lncRNA
H19-induced miR-152-3p inhibition and downstream PTEN upregulation [112]. In addition,
MSC-EV-delivered miR-21-5p, miR-17-5p, and miR-146a also exhibit the angiogenic capacity
to facilitate diabetic wound healing [113–115]. Although MSC-EVs from different sources
all exert beneficial functions in skin wound healing, the functional pathways are distinct.
Cargo analysis has shown that bioactive molecules in adipose tissue MSC-EVs are highly
correlated to neovascularization, and cargos in bone marrow MSC-EVs mainly cause cell
proliferation [116]. There is still a great challenge to select the most effective and suitable
source of MSC-EVs.

3.5. Diabetic Neuropathy

DM is recognized as an essential metabolic risk factor for nerve injury, whereas blood
glucose reduction is not enough to prevent neuropathy in patients with type 2 DM [117].
Although the antiepileptic drugs-based strategy is available to alleviate diabetic neu-
ropathy, long-term control remains a challenge due to the complex pathological mech-
anisms [118]. Recent evidence has shown that MSC-EVs exhibit therapeutic potential
to relieve hyperglycemia-induced nerve damage. For instance, MSC-EVs carry various
miRNAs that target the TLR4/NF-κB signaling to increase nerve conduction velocity, in-
traepidermal nerve fibers number, myelin thickness, and axon diameter of sciatic nerves
in db/db mice [119]. In addition, Venkat et al. found that MSC-EV-induced decreased
miR-9 level enhances the expressions of ATP-binding cassette transporter 1 (ABCA1) and
insulin-like growth factor 1 receptor (IGFR1) in the brain, resulting in the elevated density
of axon and myelin, improved integrity of blood-brain barrier, and reduced inflammatory
response [120]. The tail vein injection of MSC-EVs is also observed to alleviate neuroinflam-
mation in diabetic intracerebral hemorrhage rats by miR-183-5p-mediated inhibition on
programmed cell death 4 (PDCD4)/NOD-like receptor family pyrin domain containing
3 (NLRP3) pathway [121]. The diabetic microenvironment-induced damage of neurons and
astrocytes in the hippocampus area is considered an important pathological mechanism of
cognitive impairment. Nakano et al. demonstrated that MSC-EVs exert similar protective
values with MSC to repair injured neurons and astrocytes after intracerebroventricular
(ICV) injection [122]. Moreover, the discovery that MSC-EVs recover cognition impairment
and histologic abnormity in diabetic mice suggests that MSC-EV administration represents
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a promising strategy for cognition therapy with application prospects [123]. Lang et al.
further revealed that the effects of MSC-EVs to improve the compromised proliferation
and neuronal-differentiation ability of hippocampal neural stem cells are closely related
to the delivery of miR-21-5p and miR-486-5p (Table 2) [124]. These findings indicate that
MSC-EVs can serve as novel candidates for the treatment of diabetic neuropathy (Figure 3).

Table 2. Therapeutic function of natural MSC-EVs in DM and diabetic complications.

Disease Animal
Model

Injection of
MSC-EVs

Effect of MSC-EVs
In Vivo Cell Culture Effect of MSC-EVs

In Vitro Reference

DM N/A N/A N/A
Dendritic cells
from diabetic

patients

Induce immature IL-10-
secreting dendritic cells

to alleviate
inflammation

[63]

DM NOD mice Intravenous

Inhibit the activation of
antigen-

presenting cells and the
development of T helper

cells

N/A N/A [64]

DM STZ-induced
diabetic mice Intraperitoneal

Enhance the islet number
and

improve glycemic
control by

increasing regulatory
T-cell population

N/A N/A [65]

DM STZ-induced
diabetic rats Intravenous

Reduce blood glucose
level, inhibit

β-cell apoptosis, and
alleviate

peripheral insulin
resistance

PA-treated LO2
cells and HG

medium-
treated L6

cells

Enhance glucose
uptake and glycolysis
in L6 cells, and reduce
glycogenolysis in LO2

cells

[66]

DM
NOD mice

injected with
STZ

Intrapancreatic

Increase islet number
and β-cell mass, elevate

insulin level,
and reduce blood

glucose

HMVECs
cultured in

serum-starved
conditions

Enhance the tube
formation ability of

HMVECs
[67]

DM STZ-induced
diabetic rats Intravenous

Promote islet
regeneration and insulin

production through
Pdx-1 mechanism

N/A N/A [68]

DM STZ-induced
diabetic mice Intravenous

Alleviate hyperglycemia
and facilitate pancreatic

regeneration by
regulating the

Extl3-Reg-cyclinD1
pathway

N/A N/A [69]

DM STZ-induced
diabetic rats Intravenous

Improve β-cell function
by

miR-146a-mediated
inhibition on Numb

expression

INS-1 cells
cultured in HG

medium

Alleviate cell
dedifferentiation [70]
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Table 2. Cont.

Disease Animal
Model

Injection of
MSC-EVs

Effect of MSC-EVs
In Vivo Cell Culture Effect of MSC-EVs

In Vitro Reference

DM STZ-induced
diabetic rats Intravenous

Ameliorate insulin
resistance and

relieve the structural
injury of

pancreas, kidney, and
liver

HSkMCs
cultured in

serum-starved
conditions

Increase glucose
uptake by HSkMCs [71]

DM STZ-induced
diabetic rats Intravenous

Promote hepatic
glycolysis,

glycogen storage and
lipolysis,

and reduce
gluconeogenesis

PA-treated
LO2 cells

Promote glycolysis
and glycogen
synthesis, and

inhibit
gluconeogenesis

[72]

Diabetic
nephropathy

STZ-induced
diabetic rats Intravenous

Alleviate pathologic
changes in the

renal glomerulus and
tubule

N/A N/A [78]

Diabetic
nephropathy

STZ-induced
diabetic rats Intravenous

Suppress mesangial
hyperplasia and

kidney fibrosis by
miR-125a-induced
HDAC1 inhibition

Glomerular
mesangial cells
cultured in HG

medium

Reduce IL-6,
collagen I, and

fibronectin
expressions, and

promote cell
apoptosis

[79]

Diabetic
nephropathy

STZ-induced
diabetic mice Intravenous Suppress renal fibrosis N/A N/A [80]

Diabetic
nephropathy Db/db mice Intravenous

Alleviate renal
apoptosis and EMT by
miR-424-5p-induced

YAP1 inhibition

HK2 cells
cultured in HG

medium

Promote cell
proliferation and

inhibit EMT
process

[81]

Diabetic
nephropathy Db/db mice Intravenous

Improve renal function
and inhibit

renal apoptosis by
miR-486-induced
Smad1 inhibition

MPC5 cells
cultured in HG

medium

Improve cell
viability and inhibit

cell apoptosis
[82]

Diabetic
nephropathy N/A N/A N/A

MPC5 cells
cultured in HG

medium

Alleviate EMT by
miR-215-5p-

induced ZEB2
inhibition

[85]

Diabetic
nephropathy N/A N/A N/A

MPC5 cells
cultured in HG

medium

Alleviate
inflammation and
apoptosis by miR-
15b-5p-induced

PDK4
inhibition

[86]

Diabetic
nephropathy Db/db mice Intravenous

Improve renal function
and inhibit

renal apoptosis by
miR-26a-5p-

induced TLR4
inhibition

MPC5 cells
cultured in HG

medium

Promote cell
proliferation [87]
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Table 2. Cont.

Disease Animal
Model

Injection of
MSC-EVs

Effect of MSC-EVs
In Vivo Cell Culture Effect of MSC-EVs

In Vitro Reference

Diabetic
nephropathy N/A N/A N/A HKCs cultured

in HG medium

Promote cell
proliferation by

miR-125b-induced
TRAF6 inhibition

[88]

Diabetic
nephropathy

STZ-induced
diabetic mice Intravenous

Inhibit renal apoptosis,
inflammation, and

fibrosis.
N/A N/A [89]

Diabetic
retinopathy N/A N/A N/A

Human RMECs
cultured in HG

medium

Suppress EMT and
tube formation by
delivering lncRNA

SNHG7

[92]

Diabetic
retinopathy

STZ-induced
diabetic rats Intravitreal

Alleviate retinal
structure disruption

and vascular damage
N/A N/A [93]

Diabetic
retinopathy

STZ-induced
diabetic rats Intravitreal

Inhibit retinal oxidative
stress,

inflammation, and
angiogenesis by

suppressing
Wnt/β-catenin

signaling

N/A N/A [94]

Diabetic
retinopathy

STZ-induced
diabetic rats Intravitreal

Alleviate retinal
apoptosis and

oxidative stress by
NEDD4-mediated
PTEN inhibition

RPE cells
cultured in HG

medium

Inhibit cell
apoptosis and

oxidative injury
[95]

Diabetic
retinopathy

STZ-induced
diabetic rats Intravitreal

Ameliorate retinal
vascular leakage and

inflammation by
miR-18b-induced

MAP3K1 inhibition

Human RMECs
cultured in HG

medium

Inhibit cell
inflammation and

apoptosis
[96]

Diabetic
retinopathy

STZ-induced
diabetic mice Intravitreal

Alleviate retinal
inflammation and
oxidative stress by
miR-17-3p-induced

STAT1 inhibition

N/A N/A [97]

Diabetic
retinopathy

STZ-induced
diabetic mice Intravitreal

Alleviate retinal
apoptosis,

inflammation, and
oxidative stress by

miR-486-3p-induced
TLR4 inhibition

Muller cells
cultured in HG

medium

Promote cell
proliferation [98]

Diabetic
retinopathy

STZ-induced
diabetic mice Intravitreal

Suppress retinal
inflammation by

miR-146a-induced
TLR4 inhibition

N/A N/A [99]
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Table 2. Cont.

Disease Animal
Model

Injection of
MSC-EVs

Effect of MSC-EVs
In Vivo Cell Culture Effect of MSC-EVs

In Vitro Reference

Diabetic
retinopathy

STZ-induced
diabetic rats Intravitreal

Ameliorate retinal
inflammation and
angiogenesis by

miR-192-induced
ITGA1 inhibition

HG medium-
cultured RPE
cells, Muller

cells and
human RMECs

Inhibit RPE cell
apoptosis, Muller
cell activation and

RMECs
proliferation

[100]

Diabetic
retinopathy

KK/Upj-Ay
mice Intravitreal

Ameliorate retinal
oxidative stress and

neovascularization by
miR-133b-3p-

induced fibrillin-1
inhibition

HG medium-
cultured mouse

RMECs

Alleviate cell
oxidative stress and

angiogenesis
[101]

Diabetic
retinopathy N/A N/A N/A

Rat retinal
neurons

cultured in HG
medium

Alleviate neuronal
apoptosis by

activating
BDNF-TrkB

pathway

[102]

Diabetic
wound
healing

STZ-induced
diabetic mice

At the
wound site

Promote granulation
tissue formation and

angiogenesis

HUVECs
cultured in HG

medium

Promote cell
proliferation and
tube formation,

and inhibit
oxidative stress and

inflammation

[108]

Diabetic
wound
healing

Db/db mice At the
wound site

Promote wound
closure,

re-epithelialization,
and collagen synthesis

Human dermal
fibroblasts

cultured in HG
medium

Enhance cell
proliferation and

migration
[109]

Diabetic
wound
healing

Db/db mice Subcutaneous

Promote angiogenesis
and wound

closure by activating
SIRT3/SOD2

signaling

HUVECs
cultured in HG

medium

Promote cell
proliferation,

migration, and tube
formation

[110]

Diabetic
wound
healing

STZ-induced
diabetic rats Intradermal

Accelerate wound
closure, collagen
deposition, and

angiogenesis

AGE-treated
HUVECs

Promote cell
proliferation,

migration, and tube
formation

[111]

Diabetic
wound
healing

STZ-induced
diabetic mice

Injected into
the skin

around the
wound

Promote angiogenesis
and collagen

deposition, and inhibit
inflammation by

delivering lncRNA
H19

Fibroblast
cultured in HG

medium

Promote cell
proliferation and

migration
[112]

Diabetic
wound
healing

STZ-induced
diabetic rats Intramuscular

Promote blood
perfusion and

angiogenesis by
delivering miR-21-5p

HUVECs
cultured in HG

medium

Promote cell
proliferation,

migration, and tube
formation

[113]

Diabetic
wound
healing

Db/db mice

Injected into
the skin

around the
wound

Promote angiogenesis
by miR-17-5p-induced

PTEN inhibition

HUVECs
cultured in HG

medium

Promote cell
proliferation,

migration, and tube
formation

[114]
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Table 2. Cont.

Disease Animal
Model

Injection of
MSC-EVs

Effect of MSC-EVs
In Vivo Cell Culture

Effect of
MSC-EVs
In Vitro

Reference

Diabetic
wound
healing

STZ-induced
diabetic mice

Injected into
the skin

around the
wound

Accelerate wound closure
and

angiogenesis by
miR-146a-induced

Src inhibition

HUVECs
cultured in

HG medium

Promote cell
proliferation,

migration, and
tube formation

[115]

Diabetic
neuropathy Db/db mice Intravenous

Increase nerve conduction
velocity,

intraepidermal nerve fiber
number, and myelin

thickness

N/A N/A [119]

Diabetic
neuropathy

STZ-induced
diabetic rats Intravenous

Improve blood brain
barrier integrity, promote
white matter remodeling,
and inhibit inflammation

N/A N/A [120]

Diabetic
neuropathy Db/db mice Intravenous

Alleviate
neuroinflammation by
miR-183-5p-induced

inhibition on
PDCD4/NLRP3 signaling

BV2 cells
cultured in

HG medium

Inhibit cell
oxidative stress,
inflammation,
and apoptosis

[121]

Diabetic
neuropathy

STZ-induced
diabetic mice ICV

Inhibit oxidative stress,
increase

synaptic density, and
repair damaged neurons

and astrocytes

N/A N/A [122]

Diabetic
neuropathy

STZ-induced
diabetic mice Intracranial

Improve cognitive
impairment and

histological abnormalities
N/A N/A [123]

Diabetic
neuropathy

STZ-induced
diabetic mice Intravenous

Recover proliferation and
neuronal-differentiation

capacity of
hippocampal neural stem

cells

N/A N/A [124]

Abbreviations: HMVECs: human microvascular endothelial cells; RMECs: retinal microvascular endothelial
cells; HSkMCs: human skeletal muscle cells; HUVECs: human umbilical vein endothelial cells; ITGA1: integrin
subunit α1; MAP3K1: mitogen-activated protein kinase kinase kinase 1; MPC5: mouse podocyte clone 5; N/A:
not applicable; PA: palmitic acid; RPE: retinal pigment epithelium; STAT1: signal transducer and activator of
transcription 1.

Although the therapeutic functions of MSC-EVs in DM and diabetic complications
have been explored in numerous preclinical studies, the superiority of MSC-EVs in com-
parison to current treatment approaches such as insulin and hypoglycemic agents should
also be investigated. Sun et al. treated STZ-induced diabetic rats with MSC-EVs or in-
sulin, respectively, and found that both insulin and MSC-EVs can reduce blood glucose
levels, whereas exogenous insulin injection exerts little effect to improve the individual
insulin sensitivity and β-cell injury [66]. By comparison, MSC-EVs display more beneficial
functions to increase glucose uptake and metabolism in the liver and muscles and inhibit
β-cell apoptosis. Moreover, Yin et al. demonstrated that HG condition-induced apoptosis
and dysfunction of podocytes are closely associated with Yes-associated protein (YAP)
upregulation, which is reversed by MSC-EV administration [125]. In contrast, single insulin
treatment cannot reduce YAP expression and improve podocyte function. These findings
reveal that MSC-EVs may exert more effective roles in the treatment of DM and diabetic
complications. Currently, one clinical trial involving MSC-EVs for the improvement of
β-cell mass in type 1 DM patients has been reported (https://www.clinicaltrials.gov/ct2

https://www.clinicaltrials.gov/ct2/show/NCT02138331?term=MSC+exosomes&cond=diabetes&draw=2&rank=1
https://www.clinicaltrials.gov/ct2/show/NCT02138331?term=MSC+exosomes&cond=diabetes&draw=2&rank=1
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/show/NCT02138331?term=MSC+exosomes&cond=diabetes&draw=2&rank=1 (accessed
on 1 August 2022)). However, the result of this trial is still unknown. More studies should
be initiated to promote the clinical application of MSC-EVs in the treatment of DM and
diabetic complications.
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Figure 3. Therapeutic potential of MSC-EVs in several major diabetic complications. Long-term
hyperglycemia microenvironment can cause the occurrence of many diabetic complications, such
as diabetic nephropathy, diabetic retinopathy, diabetic ulcer, and diabetic neuropathy. MSC-EVs
carry various bioactive molecules that exert effective roles in the treatment of diabetic complications
through multiple pathways.

4. Engineered MSC-EVs in the Treatment of DM and Diabetic Complications

Although MSC-EV-mediated cell-free strategy provides considerable promise for DM
and diabetic complications therapy, there are also several challenges that may hinder
its clinical translation such as heterogeneity and insufficient function. Recent evidence
suggests that proper modification can enhance the contents, biodistribution, and bioactivity
of MSC-EVs, which may overcome the limitations of natural MSC-EVs. For this purpose,
various engineering methods have been established. At present, there are mainly two
major strategies including modification of MSC followed by the purification of engineered
MSC-EVs and the direct decoration of the isolated MSC-EVs.

4.1. Modification of MSC

Gene transfection is a convenient strategy for loading cargo into MSC with the help of
viral or plasmid vectors [126]. Through the natural biogenesis process, exogenous cargos
can be packaged within MSC-EVs. Recently, this method is widely used to produce engi-
neered MSC-EVs with enhanced therapeutic efficiency for the treatment of hyperglycemia-
induced tissue damage. For instance, Wen et al. used EVs from MSC transfected with

https://www.clinicaltrials.gov/ct2/show/NCT02138331?term=MSC+exosomes&cond=diabetes&draw=2&rank=1
https://www.clinicaltrials.gov/ct2/show/NCT02138331?term=MSC+exosomes&cond=diabetes&draw=2&rank=1
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plasmids encoding shFas and anti-miR-375 to silence Fas and miR-375 in human islets,
resulting in the improved viability and function of islets [127]. In an STZ-induced mouse
model of diabetic ulcers, EVs are isolated from the lncRNA KFL3-AS1-overexpressing MSC.
Compared with natural MSC-EVs, these engineered EVs show elevated abilities to promote
blood vessel formation and reduce inflammation by weakening miR-383-induced VEGF
downregulation [128]. HOX transcript antisense RNA (HOTAIR) has been reported to
play critical roles in mediating the angiogenic effects of endothelial cells by enhancing
VEGF expression and reversing miR-761-induced histone deacetylase 1 inhibition [129,130].
Born et al. demonstrated that MSC treated with HOTAIR overexpression plasmids can
produce EVs with increased HOTAIR content, which further accelerates angiogenesis and
wound healing in db/db mice [131]. Moreover, EVs from mmu_circ_0000250-modified
MSC effectively deliver mmu_circ_0000250 to promote SIRT1 expression by adsorbing
miR-128-3p, leading to the enhanced neovascularization and decreased apoptosis in wound
skin of STZ-induced diabetic mice [132]. In db/db mice, engineered MSC-EVs containing
increased miR-146a levels due to the transfection of donor cells display a strengthened
therapeutic potential for neurological restoration [133]. Overall, this strategy is simple and
feasible but the encapsulation efficiency of MSC still needs further improvement.

Exogenous stimulation represents another efficient strategy to optimize MSC-EVs
by adding functional components to co-incubate with MSC. Increasing studies have sug-
gested that MSC treated with chemical or biological factors can enhance the bioactivity of
MSC-EVs to further promote wound healing in STZ-induced diabetic rats. As a natural
polyphenol compound, resveratrol displays the property to improve endothelial function
and promote neovascularization [134]. Hu et al. reported that MSC pretreated with resver-
atrol increases miR-129 levels in MSC-EVs, resulting in the promotion of diabetic wound
healing by inhibiting TRAF6 expression [135]. Another study has also revealed that EVs
derived from MSC treated with pioglitazone, a peroxisome proliferator-activated receptor
activator, are able to further promote collagen deposition, extracellular matrix remodeling,
and VEGF and CD31 expressions through activating the PI3K/AKT/eNOS pathway [136].
Atorvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is
widely used to reduce blood lipid in clinics [137]. Recent evidence has indicated that the
atorvastatin-induced upregulation of miR-221-3p in MSC-EVs results in the recovery of
endothelial cell function, thus alleviating diabetic skin defects [138]. As a hypoxia-mimic
compound, deferoxamine can activate a HIF-1α signaling pathway [139]. Compared with
natural MSC-EVs, diabetic rats treated with EVs secreted by deferoxamine-stimulated MSC
exhibit enhanced angiogenic activity [140]. Moreover, Liu et al. stimulated MSC with
melatonin which is a major secretory product of the pineal gland and possesses potent anti-
inflammatory ability, and then isolated engineered MSC-EVs, which remarkably attenuate
the inflammation response by causing macrophage polarization from M1 to M2 in a diabetic
wound [141]. Vascular calcification is characterized by the deposition of calcium phosphate
in the cardiovascular structure, which is common in patients with DM. Wang et al. obtained
EVs from MSC pretreated with advanced glycation end product bovine serum albumin
(AGEs-BSA) and assessed their protective effects on vascular calcification [142]. The results
show that engineered MSC-EVs reduce the production of reactive oxygen species and
inhibit the AGEs-BSA-induced calcification by delivering increased miR-146a to downregu-
late thioredoxin-interacting protein (TXNIP) expression. However, the exact mechanism
responsible for the functional cargo enrichment in MSC-EVs after exogenous stimulation
remains unclear.

The regulatory effects of EVs on recipient cells depend on the state of donor cells.
Changing the culture condition of MSC is considered an effective method to enhance the
yield and therapeutic value of MSC-EVs. During the culture process, oxygen tension is a
key factor affecting the biological functions of MSC. Increasing studies have revealed that a
hypoxia microenvironment can activate the differentiation potential of MSC and upregulate
stemness gene expressions, which may alter the content of MSC-EVs [143]. Sun et al.
collected EVs from tumor necrosis factor-α (TNF-α)-treated MSC cultured in hypoxia
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conditions, followed by the encapsulation of cationic antimicrobial carbon dots [144].
Treatment with these engineered MSC-EVs significantly promotes neovascularization by
stabilizing HIF-1α and inhibits reactive oxygen species generation and inflammation by
inducing M2 macrophage polarization, thus accelerating wound healing in STZ-induced
diabetic mice. In addition, Ti et al. revealed that lipopolysaccharide (LPS)-preconditioned
MSC exhibits elevated paracrine effects to promote the secretion of MSC-EVs, which are
able to exert immunotherapeutic effects on wound healing in STZ-induced diabetic rats
by transferring let-7b [145]. Static adherent culture mode, known as two-dimensional
(2D) culture, is usually adopted for the expansion of MSC. However, due to the reduced
cell-to-cell and cell-to-extracellular matrix interactions in 2D culture conditions compared
with a three-dimensional (3D) environment in vivo, the original morphology, structure,
and function of MSC may be significantly changed, leading to the limited release of MSC-
EVs with therapeutic value [146]. Recently, various 3D culture technologies have been
developed to improve the yield and repair the efficiency of MSC-EVs, mainly including
scaffold-free systems and scaffold-based systems. Currently, there are several scaffold-free
3D culture approaches such as agitated culture condition [147], suspension culture [148],
and 3D spherical spatial boundary condition [149]. On the other hand, scaffold-based
3D culture methods are relatively diverse, including hydrogel-assisted 3D culture [150],
fibrous scaffold [151], extracellular matrix bioscaffold [152], and 3D microcarrier culture
system [153]. MSC shows elevated proliferation and differentiation potential in 3D culture
conditions [154]. Cao et al. demonstrated that the MSC-EVs production of the hollow fiber
bioreactor-based 3D culture system is 19.4 times higher than 2D culture [155]. Increasingly,
studies have revealed that EVs from 3D system-cultured MSC exhibit enhanced therapeutic
value in many diseases such as Alzheimer’s disease and traumatic brain injury [156,157].
Future studies should evaluate whether these engineered MSC-EVs can further alleviate
DM and diabetic complications. These findings highlight the strengthened repairing
function of EVs derived from MSC cultured in improved conditions.

4.2. Direct Modification of Isolated MSC-EVs

Although manipulating MSC to obtain engineered MSC-EVs can preserve their struc-
ture and most biophysical characteristics, this strategy may interfere with the biogenesis
process of EVs and change their several biological functions, leading to unforeseen con-
sequences. The approach based on the modification of isolated MSC-EVs displays the
superiority of directly endowing them with desired biological properties on demand. In
contrast, methods to directly modify MSC-EVs are generally more efficient.

Hydrogels can ensure the retention of encapsulated cargo at the target tissue and
control their release over a prolonged period of time. The introduction of MSC-EVs into hy-
drogels holds immense promise as a cell-free sustained delivery platform in the treatment
of DM and diabetic complications. Current studies involving this engineering strategy
mainly focus on its application in diabetic wound healing. Zhang et al. developed a bioac-
tive scaffold containing polyvinyl alcohol/alginate nanohydrogel loaded with MSC-EVs,
which significantly upregulate VEGF expression and accelerate the wound healing process
in diabetic rats [158]. Wang et al. reported that MSC-EV-encapsulated FHE hydrogel
further enhances the therapeutic efficiency in diabetic full-thickness cutaneous wounds,
characterized by an increased wound closure rate, angiogenesis, re-epithelization, and
collagen deposition compared with MSC-EVs or FHE hydrogel treatment [159]. More-
over, MSC-EVs binding to the porcine small intestinal submucosa-based hydrogel via
peptides achieve the sustained release of bioactive molecules to improve the biological
functions of fibroblasts in STZ-induced diabetic models [160]. Another study by Yang et al.
also demonstrated that Pluronic F-127 hydrogel modification results in the elevated abil-
ity of MSC-EVs to promote the expressions of VEGF and Ki67 and the regeneration of
granulation tissue [161]. Chitosan-based multifunctional composite hydrogel represents
an ideal dressing for wound healing due to its great biocompatibility, biodegradability,
and security. Many attempts have been made to use this polymer material to modify
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MSC-EVs for enhancing their repairing potential. For instance, Geng et al. utilized car-
boxyethyl chitosan-dialdehyde carboxymethyl cellulose hydrogel to package MSC-EVs,
which show the property to synergistically inhibit inflammation response and promote neo-
vascularization in wound area [162]. In addition, diabetic rats treated with MSC-EV-loaded
chitosan/silk hydrogel have more neo-epithelium, collagen, and vessels compared with
control groups [163]. The research on the combination of cell manipulation and EV modifi-
cation to decorate MSC-EVs has also achieved encouraging progress. Tao et al. isolated EVs
from miR-126-3p-overexpressing MSC and then constructed a controlled-release system
after the adjunction of chitosan hydrogel [164]. These engineered MSC-EVs significantly
stimulate re-epithelialization, angiogenesis, and collagen maturity, thus providing a new
approach to diabetic ulcer therapy (Table 3).

Table 3. Hydrogel-modified MSC-EVs for diabetic wound healing.

EVs Source Hydrogel Details Hydrogel Loading Diabetic Model Outcomes Reference

Umbilical
cord-derived MSC

polyvinyl
alcohol/alginate

nanohydrogel

Mixing, stirring,
and gelation

STZ-induced
diabetic rats

Increased angiogenesis by
promoting VEGF

expression
[158]

Adipose-derived
MSC

FHE hydrogel
composed of

Pluronic F127,
oxidative hyaluronic

acid, and
poly-ε-lysine

Mixing, stirring,
and gelation

STZ-induced
diabetic mice

Enhanced wound closure
rates,

angiogenesis,
re-epithelization, and
collagen deposition

[159]

Umbilical
cord-derived MSC

Porcine small
intestinal

submucosa-based
hydrogel

Fusion peptide-
mediated binding

of MSC-EVs to
hydrogel

STZ-induced
diabetic rats

Elevated granulation
tissue and collagen fiber

formation and
neovascularization

[160]

Umbilical
cord-derived MSC

Pluronic F-127
hydrogel

Mixing and
gelation

STZ-induced
diabetic rats

Enhanced wound closure
rate

and granulation tissue
regeneration by

promoting CD31, Ki67
and VEGF expressions

[161]

Bone marrow MSC

Carboxyethyl
chitosan-dialdehyde

carboxymethyl
cellulose hydrogel

Mixing, stirring,
and gelation

STZ-induced
diabetic rats

Increased angiogenesis
and

reduced inflammation
[162]

Gingival MSC Chitosan/silk
hydrogel sponge

Seeded on the
hydrogel sponge

STZ-induced
diabetic rats

Enhanced
re-epithelialization,
collagen deposition,
angiogenesis, and
neuronal ingrowth

[163]

Synovium MSC Chitosan hydrogel Mixing, stirring,
and gelation

STZ-induced
diabetic rats

Accelerated
re-epithelialization,

angiogenesis, and collagen
maturity

[164]

Elevating the content of bioactive molecules in MSC-EVs serves as another strategy
to improve their therapeutic potential. Various methods have been established to directly
load exogenous cargos into isolated MSC-EVs including incubation, electroporation, son-
ication, extrusion, and freeze and thaw cycles (Table 4). Several hydrophobic drugs can
be encapsulated into MSC-EVs after simple incubation through the interaction with the
hydrophobic membrane of MSC-EVs [165]. Electroporation relies on the stimulation of
electrical fields to create transit pores on the membrane of MSC-EVs, leading to the in-
troduction of bioactive molecules and drugs [166]. This method displays high loading
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efficiency, whereas the aggregation of MSC-EVs may affect their integrity and protective
effects. Sonication-induced shear forces result in the deformation of the EV membrane,
thus allowing the loading of exogenous cargo into MSC-EVs [167]. The setting of sonication
parameters determines the loading efficiency. Violent sonication may cause the destruction
of MSC-EVs. Repeated extrusion provides opportunities to change the membrane structure
of MSC-EVs for the entry of cargo [168]. This strategy shows the advantage of efficient
packaging, whereas the membrane properties of MSC-EVs may be irreversibly injured.
Similarly, the freeze-thaw method promotes cargo encapsulation by ice crystal-induced
changes in the membrane of MSC-EVs, which may impair the integrity of EVs and bring
safety risks [169]. Although these modification approaches have been widely utilized to
enhance the therapeutic value of MSC-EVs in various diseases, there are few studies on
the application of engineered MSC-EVs after direct cargo loading for the therapy of DM
and diabetic complications. Gondaliya et al. prepared engineered MSC-EVs encapsulated
with an miR-155 inhibitor through a CaCl2-modified co-incubation method [170]. Further
studies demonstrate that miR-155 inhibitor-loaded MSC-EVs show an enhanced ability
to promote collagen deposition, neovascularization, and re-epithelialization to promote
wound healing in STZ-induced diabetic mice. The construction of engineered MSC-EVs
through loading exogenous therapeutic agents to prevent hyperglycemia-induced tissue
injury still needs further investigation (Figure 4).
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Figure 4. Engineered MSC-EVs in the treatment of DM and diabetic complications. Various engi-
neering strategies have been established to amplify the protective functions of MSC-EVs by loading
exogenous cargos and increasing their bioactivity, yield, and retention. Manipulating MSC and
direct modification of isolated MSC-EVs are two major methods to construct engineered MSC-EVs,
which have shown elevated therapeutic effects in the treatment of DM, diabetic ulcers, and diabetic
neuropathy currently.
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Table 4. Evaluation of strategies for cargo loading into MSC-EVs.

Strategy Method Principle Advantages Limitations Reference

Modification of
MSC Transfection

Plasmids or
virus-mediated cargos

delivery

Simple;
Maintain the
integrity of
MSC-EVs

Cytotoxicity;
low specificity and

efficiency
[126]

Direct
modification of

MSC-EVs
Incubation

Interaction between
cargos and the

membrane of MSC-EVs

Simple and
feasible Low loading efficiency [165]

Direct
modification of

MSC-EVs
Electroporation

Transient
voltage-induced the

generation of pores on
the membrane

Rapid;
High loading

efficiency

Aggregation of
MSC-EVs;

may impair the
integrity of MSC-EVs

[166]

Direct
modification of

MSC-EVs
Sonication Membrane deformation High loading

efficiency

Aggregation of
MSC-EVs;

may impair the
integrity of MSC-EVs

[167]

Direct
modification of

MSC-EVs
Extrusion

Mechanical
force-induced the

temporary destruction
of the membrane

Efficient packaging May change the
membrane property [168]

Direct
modification of

MSC-EVs

Freeze–thaw
cycles

Ice crystals-induced the
temporary destruction

of the membrane

High loading
efficiency

Aggregation of
MSC-EVs;

may change the
membrane structure

[169]

5. Challenges and Perspectives

MSC-EVs have shown great value in regenerative medicine due to their enriched
bioactive molecules and high biocompatibility and stability. Although substantial break-
throughs have been made in the field of MSC-EV-mediated cell-free therapy for DM and
diabetic complications, there still exist many challenges that may hinder the clinical appli-
cation of MSC-EVs: (1) The large-scale production of high-quality MSC-EVs is the major
challenge currently. The traditional isolation methods such as ultracentrifugation have
several disadvantages including low yield and time-consuming processes, which cannot
meet the clinical requirement [171]. There is an urgent need to develop new separation
approaches to rapidly obtain MSC-EVs with high purity. In addition, recent studies have
demonstrated that improved culture conditions, especially the 3D culture system, can re-
markably enhance the production of MSC-EVs, whereas the production costs and technical
difficulties have not been completely solved [172]. Accurate characterization of MSC-EVs
to ensure their quality is critically important for their utilization in tissue regeneration.
There is still a lack of standardization to evaluate the heterogeneity, components, and
structure of MSC-EVs. (2) The dosage and administration route of MSC-EVs require further
investigations. Future studies should focus on the exploration of the best intervention way
for specific diseases. (3) The modification of MSC-EVs represents a promising strategy to
elevate their therapeutic value for hyperglycemia-induced tissue injury. However, current
engineering strategies may affect the structure and biological functions of MSC-EVs [173].
The optimized methods for cargo loading into MSC-EVs need further development to
realize the maximum encapsulation efficiency and maintain the inherent features of MSC-
EVs. (4) Illustrating the intracellular fate of natural MSC-EVs or engineered MSC-EVs after
administration is critical for therapeutic applications, including absorption, clearance, and
biodistribution. Comprehensive preclinical studies should be conducted to evaluate the
biosafety of MSC-EVs. In addition, as a result of the changed compositions of engineered
MSC-EVs after modification, long-term safety examinations in vivo should be addressed.
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6. Conclusions

Overall, the MSC-EV-mediated cell-free strategy is attractive and promising in the
treatment of DM and diabetic complications. Current clinical treatment for DM mainly relies
on the injection of insulin and some hypoglycemic agents. However, this strategy can only
temporarily control blood glucose and even cause side effects such as subcutaneous nodules,
diarrhea, and obesity [174]. Moreover, exogenous insulin administration may aggravate
β-cell dysfunction, leading to the development of peripheral insulin resistance and diabetic
complications [175]. Various preclinical studies have demonstrated that MSC-EVs show
effective roles in alleviating hyperglycemia in diabetic animal models by improving β-cell
mass, promoting insulin sensitivity, and increasing glucose uptake and metabolism in
peripheral tissues. In addition, MSC-EVs also represent promising candidates to ameliorate
diabetic complications through multiple mechanisms. The application of MSC-EVs brings a
key breakthrough in the treatment of DM and diabetic complications. With the development
of modification technologies, the construction of engineered MSC-EVs represents a new
research direction. Attempts to modify MSC-EVs for improving their protective effects are
still in their infancy. There is much room for exploration of the therapeutic potential of
MSC-EVs, especially engineered MSC-EVs, in hyperglycemia-induced tissue injury.
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