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(e study aimed to explore the diagnostic value of computed tomography (CT) images based on cavity convolution
U-Net algorithm for patients with severe pulmonary infection. A new lung CT image segmentation algorithm (U-Net+ deep
convolution (DC)) was proposed based on U-Net network and compared with convolutional neural network (CNN) algorithm.
(en, it was applied to CT image diagnosis of 100 patients with severe lung infection in (e Second Affiliated Hospital of Fujian
Medical University hospital and compared with traditional methods, and its sensitivity, specificity, and accuracy were compared.
It was found that the single training time and loss of U-Net +DC algorithm were reduced by 59.4% and 9.8%, respectively,
compared with CNN algorithm, while Dice increased by 3.6%. (e lung contour segmented by the proposed model was smooth,
which was the closest to the gold standard. Fungal infection, bacterial infection, viral infection, tuberculosis infection, and mixed
infection accounted for 28%, 18%, 7%, 7%, and 40%, respectively. 36%, 38%, 26%, 17%, and 20% of the patients had ground-glass
shadow, solid shadow, nodule or mass shadow, reticular or linear shadow, and hollow shadow in CT, respectively.(e incidence of
various CT characteristics in patients with fungal and bacterial infections was statistically significant (P< 0.05). (e specificity
(94.32%) and accuracy (97.22%) of CT image diagnosis based on U-Net +DC algorithm were significantly higher than traditional
diagnostic method (75.74% and 74.23%), and the differences were statistically significant (P< 0.05). (e network of the algorithm
in this study demonstrated excellent image segmentation effect. (e CT image based on the U-Net +DC algorithm can be used for
the diagnosis of patients with severe pulmonary infection, with high diagnostic value.

1. Introduction

At present, the incidence of postoperative pulmonary in-
fection is very high [1]. If the diagnosis is not timely, it is
easy to miss the best treatment time. Studies have shown
that if the diagnosis can be made in advance, the survival
rate of patients with pulmonary infection can be increased
by about 40% [2, 3]. (erefore, early and accurate diagnosis
of pulmonary infection has become a key issue to improve
the cure rate [4, 5]. (e main pathogens are bacteria, fungi,
viruses, parasites, etc. In addition to pathogen testing,
computed tomography (CT) imaging diagnosis has become
a common and important method for medical diagnosis.
However, as the main feature of judging pulmonary in-
fection, lung CT signs are particularly important from the

clarity of lung images and the accurate expression of lung
information. Traditional medical image segmentation ex-
tracts lung information according to the shallow features of
the image and depends on the judgment of the doctor [6].
(e addition of subjective factors leads to inaccurate
segmentation. Lu et al. [7] proposed a fuzzy logic tech-
nology to determine the threshold to achieve accurate
segmentation of melanin, but the segmentation effect is
poor and inefficient.

With the development of artificial intelligence and
information, convolution neural network is introduced
into the segmentation of medical images. Nasrullah et al.
[8] proposed and used it in the semantic segmentation of
natural images and made great progress at that time. In the
past segmentation experience, it has exceeded the
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traditional segmentation method, but its shortcomings
cannot be ignored. (e excessive multiples adopted in the
upsampling operation cause the segmentation accuracy to
be not high enough, and the context information is not fully
integrated, resulting in low accuracy and precision, which
will have a great impact on the survival rate of subsequent
diagnosis and posttreatment [9, 10]. (e fully convolu-
tional neural network has made great contributions to this
problem. As a representative of fully convolutional neural
networks, U-Net network can make good use of lower-level
information and fuse high-level information when sam-
pling operations [11]. In the following studies, some net-
work structures with better performance are combined
with the U-Net network. Baek et al. [12] modified the
U-Net to strengthen the position of the feature map, so as
to improve the accuracy of extracting the segmentation
contour. (e 3DU-Net model improves the segmentation
performance again by learning the spatial information of
the image [13]. In this work, a new lung CT image seg-
mentation algorithm was proposed by adding cavity
convolution on the basis of U-Net network. Compared with
CNN algorithm, it is applied to the diagnosis of 100 pa-
tients with severe pulmonary infection. (e sensitivity,
specificity, and accuracy of diagnosis are compared with
the traditional diagnostic method. It is hoped to provide
some theoretical reference for the diagnosis of CT images
based on cavity convolution U-Net algorithm in patients
with severe pulmonary infection.

2. Materials and Methods

2.1. Research Objects. In this study, 100 patients with severe
pulmonary infection in hospital from July 2019 to July 2021
were enrolled. (ere were 46 males and 54 females, aged
20–66 years. CT image features based on U-Net +DC al-
gorithm were used to diagnose patients with severe pul-
monary infection, which was compared with those of
traditional diagnostic methods. (e study was approved by
theMedical Ethics Committee of Hospital. Patients and their
families were informed of the study and signed informed
consent.

Inclusion criteria were as follows: (1) separate the same
pathogen twice in succession from patient sputum; (2)
patients with lung invasive lesions showed by chest X-ray;
(3) patients with cough, expectoration, and rales; (4) patients
with pathogens isolated from blood or pleural effusion.

Exclusion criteria were as follows: (1) patients who did
not sign the informed consent; (2) patients with incomplete
clinical data; (3) patients who dropped out of the experiment
for personal reasons.

2.2. Lung CT Image Segmentation Based on U-Net and Cavity
Convolution. (e ability of deep learning to extract features
is beyond reach of previous machine learning. On account
of the fact that the ability of U-Net network to process and
integrate high-level and low-level information is better
than that of CNN, it is widely used in medical image
segmentation. In order to achieve the segmentation of lung

CT images, this paper adds cavity deep convolution (DC)
on the basis of U-Net network, simplifies and improves the
U-Net network, and adds an activation function to increase
the nonlinearity of the model. A new lung CT image
segmentation algorithm (U-Net +DC) is proposed. (e
U-Net network is different from the convolution block of
the network model proposed in this paper as shown in
Figure 1. (e convolution block of the network model
proposed in this paper is less than the convolution block of
the U-Net network by one convolution and an activation
function, and the convolution block uses an empty con-
volution, which can simplify the structure, increase the
receptive field, and improve the ability to extract
information.

(e convolution process of a two-dimensional image can
be represented as

o(a, b) � (i × k)(a, b) � 􏽘
c

􏽘
d

i(c + a, d + b) × k(c, d).

(1)

In equation (1), i is input, k is convolution kernel, and o is
output. When (a, b), (c, d) is the size of the input image to
select the convolution kernel, a smaller convolution kernel is
usually selected, which can not only reduce the number of
parameters but also increase nonlinearity. (e total pa-
rameters p are as follows:

P � ω + B � k
2

× C × N + N. (2)

In equation (2), ω is the weight, B is the partial value, C is
the number of characteristic channels, and N is feature
mapping. As a special convolution, cavity convolution can
increase the nonlinearity of the model. (e essence is to add
holes in the convolution and increase the receptive field
under the condition of keeping the number of parameters
unchanged, which is of great significance to improve the
accuracy of image segmentation. Figure 2 shows the sche-
matic diagram of cavity convolution [14].

Because of the interval of empty convolution, it may
cause information discontinuity in practical applications,
especially when the image is small and the interval is too
large. To solve this problem, this paper designs the cavity size
according to Hybrid Dilated Convolution (HDC) standard,
which needs to meet the following equation:

mn � mix mn+1 − 2rn, mn − 2 mn+1 − rn( 􏼁, rn􏼂 􏼃. (3)

In equation (3), mn is the largest void spacing before the
n layer and rn is the void interval of the n layer. (e last layer
the void spacing selected in this article is (1,2,5).

(e pooling layer is downsampling, and the reverse
pooling layer is upsampling on the contrary. If it is the
maximum pooling mn � rn in the network transformation
process, the location of the activation value is recorded. On
the contrary, the location of the nonmaximum is set to 0.
Maximum pooling and antipooling are shown in Figure 3.

In this study, the classification output uses sigmoid
function, which is very sensitive between [− 4,4], especially
for subtle changes in data that feel very strong. It can be
expressed as follows:
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Sigmoid �
1

e
− a �

1
1 + e

− (ωx+c)
,

Sigmoid′(a) �
e

− a

1 + e
− a

( 􏼁
2.

(4)

(ere are also some problems in the sidmoid function.
When the number of layers increases, the gradient disap-
pears. (e reverse transfer process is as follows:

zc

zfk

� Sigmoid′ ak( 􏼁ωk+1Sigmoid′ ak+1( 􏼁ωk+2 . . . Sigmoid′ an( 􏼁
zc

zhk

, (5)

hk � Sigmoid an( 􏼁 � Sigmoid ωnan− 1 + fn( 􏼁. (6)

In equation (5), zc/zfk is the gradient of the function to
the bias term and an is the output.

(e Relu function can solve the problem of gradient
disappearance, and the convergence rate is fast. (e ex-
pression is as follows:

Relu(x) � max(0, x),

Relu′(x) �
0, x< 0

1, x> 0
􏼨

(7)

(e loss function can increase the robustness of the
model, which is crucial to the optimization of the model.(e
expression of mean square error loss D function is shown in
the following equation:

D �
1
2n

􏽘(y − F(i))
2
. (8)

In equation (8), F(i) is the output of the model. (en,
activation function is as follows:

Sigmoid(Z) � Sigmoid(ωA + b). (9)

In equation (9), A and Z are the input and output of the
last layer and b is the offset. However, compared with the
mean square error loss function, the cross entropy loss
function and the Sigmoid function are better. So this paper
selects the cross entropy loss function, and its expression is
shown in the following equation:

D �
1
n

􏽘[y log(F(i)) +(1 − y)log(1 − F(i))]. (10)

Image denoising and data enhancement are needed
before training. Curvature-driven denoising method is used
in this paper. Curvature-driven minimization energy
function is as follows:

G(v) � λ􏽚

Ω

hv

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌dx + 􏽚

Ω

(F − v)
2dx. (11)

In equation (11), (x, y, v(x, y)) is a surface,
(x, y, F(x, y)) is the input image, and λ is the parameter.(e
regularization hv is expressed as follows:

hv �
1
2
∇
∇v

�������

1 +|∇v|
2

􏽱⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (12)

According to the corresponding Euler-Lagrange func-
tion, curvature smoothing is realized. In order to improve
the convergence speed, we choose Z-score standardized
processing:

x1 �
x2 − x

σ
. (13)

In equation (13), x is the mean and σ is the standard
deviation. (e data enhancement increases the robustness
and generalization ability of the model to prevent the oc-
currence of overfitting. (e enhancement methods selected
in this paper are rotation, flip, offset, scaling, elastic trans-
formation, and so on. (e original data is extended to about
20,000, and it is trained. (e image segmentation process
constructed in this paper is shown in Figure 4.

2.3. Simulation Experiment. Simulation environment: the
operating system is Windows 10 on LINUX, the processor is
Xeon CPU E5-2630, the display card is NVIDIA Quadro
K2200, the framework is TensorFlow and Keras, the lan-
guage is Python 3.5, and the visual library is OpenCV,
SimpleITK, CUDA9.0, cudnn, etc.

Network parameters: input image resolution is 256256,
convolution block is a hole convolution and activation
function, convolution kernel size is 33, according to HDC
principle, hole interval is (1,2,5), activation function is Relu
function, with 2× 2 maximum pooling downsampling, 1× 1
convolution layer for multichannel feature fusion, 3× 3
convolution upsampling, and the number of training in this
paper is 60.

In this study, the lung CT image data is used as the
simulation object, and the CNN algorithm is introduced to
compare with the algorithm in this paper. (e measurement
index is Dice coefficient [15].

Dice �
2|E∩F|

|E| +|F|
. (14)

In equation (14), E is the gold standard for the seg-
mentation of pulmonary nodules, F is the segmentation

4 Journal of Healthcare Engineering



result, and the range of Dice coefficient is [0,1]. (e larger
the value is, the better the algorithm performance is.

2.4. CT Examination and Radiofrequency Ablation. At the
beginning of scanning, the patient was supine in the center
of the CT examination bed. (e patient should maintain a
peaceful state of mind, not move the body, and routinely
inhale. Scanning ranges from chest entrance to diaphragm.
Scanning parameters: CT tube voltage is 120 kV, tube cur-
rent is 300mAs, scanning field is 260∼360mm, matrix is
512512, layer thickness is 4mm, and layer spacing is 4mm.
Siemens CT tube voltage is 120 kV, tube current is 380mAs,
scanning field is 220∼280mm, matrix is 512512, layer
thickness is 2mm, and layer spacing is 2mm. All patients
underwent plain scan. CT image is uploaded to Siemens for
readings, window width of lung window is 1 600, window
level of lung window is 400, and window width of Medi-
astinal window is 350. (e CT images were reviewed by two
experienced physicians respectively, and conclusions were
reached through discussion in case of disagreement.

2.5. Observation Indicators. (e types of pathogens, mor-
phological characteristics of CT manifestations, and lesion
distribution of patients with severe pulmonary infection
were recorded, and the incidence of morphological char-
acteristics of CTmanifestations of pulmonary infection with
different pathogens was compared. (e sensitivity, speci-
ficity, and accuracy of traditional method diagnosis and CT
image diagnosis based on U-Net +DC algorithm were
compared and calculated.

sensitivity �
TP

TP + FN
× 100%, (15)

specificity �
TN

TN + FN
× 100%, (16)

accuracy rate �
TP + TN
Total

× 100%. (17)

In equations (15), (16), and (17), TP represents true
positive, TN represents true negative, FP represents false
positive, and FN represents false negative.

2.6. StatisticalMethods. (e data in this study were analyzed
by SPSS 22.0 statistical software.(emeasurement data were
expressed as mean± standard deviation (x ± s), and the
count data were expressed as percentage (%). (e difference
was statistically significant with P< 0.05.

3. Results

3.1. Algorithm Simulation Effects. Figure 5 shows the changes
in the Loss value and Dice of the U-Net+DC model as the
number of iterations increased. It was noted that when the
number of iterations was 30, the Loss value tended to be stable,
and finally, the Loss value reached 0.0659, and Dice increased
with the number of iterations and, finally, reached 0.9495.

Figure 6 shows the single training time of the two al-
gorithms. It was noted that the single training time of the
CNN algorithm was 690 s, and the single training time of the
U-Net +DC algorithm was 280 s. (e single training time of
the U-Net +DC algorithm was significantly less than the
single training time of the CNN algorithm by 59.4%, and the
difference was statistically significant (P< 0.05).

Figure 7 shows the Loss value and Dice coefficient of
the two algorithms. It was noted that the Loss value and
Dice of the CNN algorithm were 0.0731 and 0.9387,
respectively, and the Loss value and Dice of the
U-Net + DC algorithm were 0.0659 and 0.9495, respec-
tively. (e Loss value of the U-Net + DC algorithm was
smaller than the Loss value of the CNN algorithm by
9.8%, and the difference was statistically significant
(P< 0.05). (e Dice of the U-Net + DC algorithm was
larger than the Dice of the CNN algorithm by 3.6%, and
the difference was statistically significant (P< 0.05). It
showed that, with the gold standard as a reference, the
Loss value and Dice of the U-Net + DC algorithm were
improved versus the CNN algorithm, and its segmen-
tation effect was better than that of the CNN algorithm.

3.2. Comparison of Lung CT Image Segmentation Effects of the
Two Algorithms. Figure 8 shows the lung CT image seg-
mentation effects of the two algorithms. It was noted that,
with the gold standard as a reference, the edges segmented
by the CNN algorithm were blurred, and the segmentation
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was affected by the fine blood vessels of the lung organs and
other tissue, while the outline of the lungs segmented by the
U-Net +DC algorithm was more accurate, and the edges
were smoother, which was closer to the gold standard.

3.3. Types and Morphological Characteristics of Pathogens in
Patients with Severe Lung Infections. Figure 9 shows the
pathogens in patients with severe lung infections. Of the 100
patients with severe lung infections, 28% (28 cases) had
fungal infections, 18% (18 cases) had bacterial infections, 7%
(7 cases) had viral infections, 7% (7 cases) had tuberculosis
infections, and 40% (40 cases) had mixed infections, ac-
counting for the highest proportion.

Figure 10 shows the CT morphological characteristics of
severe lung infections. Of the 100 patients with severe pul-
monary infections, 36% (36 cases) had ground-glass shadows,
38% (38 cases) had consolidation shadows, 26% (26 cases) had
nodules or masses, 17% (17 cases) had reticulated or linear
shadows, and 20% (20 cases) had hollow shadows.

3.4. Images ofVariousMorphological Features of Patients with
Severe Lung Infections. Figure 11 shows images of various
morphological features of patients with severe lung infec-
tions. Figure 11(a) shows the ground-glass shadow of the
right lung. Figure 11(b) shows the large consolidation
shadows of the lungs. Figure 11(c) shows the mass-like high-
density shadows of the upper lobe of the left lung, and the
lungs had multiple small nodules with clear boundaries.
Figure 11(d) shows ground-glass shadows and fine mesh
shadows. Figure 11(e) shows a hollow shadow in the upper
right lung, with patches of increased density around it.

3.5. �e Distribution of Lesions in Patients with Severe Lung
Infections. Figure 12 shows the lesion distribution of pa-
tients with severe lung infections. It was noted that there
were 20 cases, 10 cases, 3 cases, and 3 cases with subpleural

distribution, middle internal zone distribution, diffuse dis-
tribution, and irregular distribution in patients with ground-
glass shadows in CT; of the patients with consolidation
shadows in CT, there were 21, 8, 5, and 4 cases with sub-
pleural distribution, midinternal zone distribution, diffuse
distribution, and irregular distribution, respectively; of the
patients with nodules or masses in CT, there were 10 cases, 3
cases, 12 cases, and 1 case with the subpleural distribution,
the middle and inner zone distribution, the diffuse distri-
bution, and the irregular distribution, respectively; of the
patients with network or line-like shadows in CT, there were
12 cases, 1 case, 3 cases, and 2 cases with the subpleural
distribution, the middle inner zone distribution, the diffuse
distribution, and irregular distribution, respectively; of the
patients with hollow shadows in CT, there were 13 cases, 1
case, 4 cases, and 3 cases with subpleural distribution,
midinternal zone distribution, diffuse distribution, and ir-
regular distribution, respectively.

3.6. Comparison of the Incidence of Different CT Morpho-
logical Characteristics of Lung Infections with Different
Pathogens. Figure 13 shows the incidence of different CT
morphological characteristics lung infections with different

28%
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Fungi
Bacteria
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Tuberculosis
Mixed

Figure 9: (e types of pathogens in patients with severe lung infections.
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Figure 10: CTmorphological characteristics of patients with severe
lung infections.

Journal of Healthcare Engineering 7



pathogens. It was noted that the incidence of ground-glass
shadows, consolidation shadows, nodules or mass shadows,
network or line-like shadows, and hollow shadows in pa-
tients with fungal infections was 25%, 25%, 14.3%, 7.1%, and
28.6, respectively; the incidence of ground-glass shadow,
consolidation shadow, nodule or mass shadow, network or
linear shadow, and hollow shadow in patients with bacterial
infections was 16.7%, 5.6%, 44.4%, 22.2%, and 11.1%, re-
spectively. (ere were statistically significant differences in
the incidence of ground-glass shadows, consolidation
shadows, nodules or mass shadows, network or line-like
shadows, and hollow shadows in patients with fungal and
bacterial infections (P< 0.05).

3.7. Diagnosis Accuracy of Patients with Severe Lung Infection
inTwoWays. Figure 14 shows the sensitivity, specificity, and
accuracy of the two methods of diagnosis. It was noted that
the sensitivity of the traditional method was 88.31%, the
specificity was 75.74%, and the accuracy was 74.23%; the
sensitivity of CT image diagnosis based on the U-Net +DC
algorithm was 98.13%, the specificity was 94.32%, and the

(a) (b)

(c) (d)

(e)

Figure 11: Various morphological feature images of patients with severe lung infections. (a) Ground-glass shadow, (b) consolidation
shadow, (c) nodule or mass shadow, (d) network or line-like shadow, and (e) hollow shadow.
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accuracy was 97.22%; the specificity and accuracy of CT
image diagnosis based on U-Net +DC algorithm were sig-
nificantly higher than those of traditional method, and the
difference was statistically significant (P< 0.05).

4. Discussion

At present, the morbidity and mortality of patients after the
surgery are extremely high due to severe lung infections [16].
CT imaging plays an important role in the diagnosis of
severe pulmonary infections and there are high require-
ments on the accuracy and resolution of the images. With
the rapid development of artificial intelligence and infor-
mation technology, the application of deep learning in
medical imaging has made great contributions to the seg-
mentation and diagnosis of medical images [17, 18]. In this
study, DC was incorporated into the U-Net network to
simplify and improve the U-Net network, and then the
improved one was used to process the lung CT images, and
its segmentation effect was compared with that of the CNN
algorithm. (e results showed that the U-Net +DC algo-
rithm had shorter single training time and a lower Loss value
than the CNN algorithm, and the difference was statistically
significant (P< 0.05). Specifically, the single training time
was reduced by 59.4% and the Loss value was reduced by
9.8%. (e Dice of the U-Net +DC algorithm was larger than
the Dice of the CNN algorithm by 3.6%, and the difference
was statistically significant (P< 0.05). It showed that, with
the gold standard as a reference, the U-Net +DC algorithm’s
various indicators were improved versus the CNN algo-
rithm. It can segment the contours of the lungs more ac-
curately, and the edges were smoother, which was closer to
the gold standard.

After that, it was applied to the diagnosis of 100 patients
with severe lung infections, and it was compared with the
traditional method for the sensitivity, specificity, and ac-
curacy of the diagnosis. (e results found that, of the 100
patients with severe lung infections, 28% (28 cases) had
fungal infections, 18% (18 cases) had bacterial infections, 7%
(7 cases) had viral infections, 7% (7 cases) had tuberculosis
infections, and 40% (40 cases) had mixed infections, ac-
counting for the highest proportion.(is was in line with the
results of Suleyman et al. [19] that, of the 88 patients with
lung infections after hematopoietic stem cell transplanta-
tion, 27 cases had fungal infections, 12 cases had bacterial
infections, and 88 cases had viral infections. Of the 36 pa-
tients with ground-glass shadows in CT, there were 20 cases,
10 cases, 3 cases, and 3 cases with subpleural distribution,
middle internal zone distribution, diffuse distribution, and
irregular distribution; of the 38 patients with consolidation
shadows in CT, there were 21, 8, 5, and 4 cases with sub-
pleural distribution, midinternal zone distribution, diffuse
distribution, and irregular distribution, respectively; of the
26 patients with nodules or masses in CT, there were 10
cases, 3 cases, 12 cases, and 1 case with the subpleural
distribution, the middle and inner zone distribution, the
diffuse distribution, and the irregular distribution, respec-
tively; of the 17 patients with network or line-like shadows in
CT, there were 12 cases, 1 case, 3 cases, and 2 cases with the
subpleural distribution, the middle inner zone distribution,
the diffuse distribution, and irregular distribution, respec-
tively; of the 20 patients with hollow shadows in CT, there
were 13 cases, 1 case, 4 cases, and 3 cases with subpleural
distribution, midinternal zone distribution, diffuse distri-
bution, and irregular distribution, respectively. (is was
consistent with the results of Ioannou et al. [20] that 4 out of
10 cases of Aspergillus infection had subpleural wedge-
shaped consolidation shadows. (e incidence of ground-
glass shadows, consolidation shadows, nodules or mass
shadows, network or line-like shadows, and hollow shadows
in patients with fungal infections was 25%, 25%, 14.3%, 7.1%,
and 28.6, respectively; the incidence of ground-glass shadow,
consolidation shadow, nodule or mass shadow, network or
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Figure 13: Comparison of the incidence of different CT mor-
phological characteristics of lung infections with different patho-
gens. Note. ∗ means the difference was statistically significant
compared to fungal infections (P< 0.05).
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Figure 14: Comparison of the sensitivity, specificity, and accuracy
of the two diagnosis methods. (a) Traditional method diagnosis.
(b) CT image diagnosis based on U-Net +DC algorithm. Note. ∗
indicates that, compared with the traditional method, the difference
was statistically significant (P< 0.05).
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linear shadow, and hollow shadow in patients with bacterial
infections was 16.7%, 5.6%, 44.4%, 22.2%, and 11.1%, re-
spectively. (ere were statistically significant differences in
the incidence of ground-glass shadows, consolidation
shadows, nodules or mass shadows, network or line-like
shadows, and hollow shadows in patients with fungal and
bacterial infections (P< 0.05). (e specificity (94.32%) and
accuracy (97.22%) of CT image diagnosis based on
U-Net +DC algorithm were significantly higher than those
of traditional method (75.74% and 74.23%), and the dif-
ferences were statistically significant (P< 0.05). (is is better
than Chung et al. [21]. (e addition of deep learning al-
gorithm makes the diagnosis and segmentation of severe
lung patients more accurate and helps medical staff to
control the disease more effectively, so as to better treat it.

5. Conclusion

In this study, the DC was incorporated into the U-Net
network to simplify and improve the U-Net network, and
the improved algorithm was used to process lung CT images,
and then it was compared with the CNN algorithm for the
sensitivity, specificity, and accuracy of diagnosis. (e results
showed that the network of the algorithm in this study had
better image segmentation effects; in medical diagnosis, CT
images based on U-Net +DC algorithm can be used to
diagnose severely infected patients, demonstrating high
diagnostic value. However, some limitations in the study
should be noted. (e sample size is small, which will reduce
the power of the study. In the followup, expanded sample
size is necessary to strengthen the findings of the study. In
conclusion, CT images based on hollow convolution
U-Net algorithm are analyzed, which improves the seg-
mentation effect of images and provides a new direction for
the diagnosis of patients with severe pulmonary infection.
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