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Although multimodal monitoring sets the standard in daily practice of neurocritical care, problem-oriented analysis tools to
interpret the huge amount of data are lacking. Recently a mathematical model was presented that simulates the cerebral perfusion
and oxygen supply in case of a severe head trauma, predicting the appearance of distinct correlations between arterial blood pressure
and intracranial pressure. In this study we present a set of mathematical tools that reliably detect the predicted correlations in data
recorded at a neurocritical care unit. The time resolved correlations will be identified by a windowing technique combined with
Fourier-based coherence calculations. The phasing of the data is detected by means of Hilbert phase difference within the above
mentioned windows. A statistical testingmethod is introduced that allows tuning the parameters of the windowingmethod in such
a way that a predefined accuracy is reached. With this method the data of fifteen patients were examined in which we found the
predicted correlation in each patient. Additionally it could be shown that the occurrence of a distinct correlation parameter, called
scp, represents a predictive value of high quality for the patients outcome.

1. Introduction

The outcome of patients suffering from catastrophic neuro-
logical events such as traumatic brain injury (TBI) or sub-
arachnoid hemorrhage (SAH) is influenced by two types
of pathophysiological mechanisms: the primary injury sus-
tained at the moment of impact and the secondary injury
caused by a cascade of ischemic, ionic, and neurochemical
insults which evolve over time after the primary insult [1].
Since the primary injuries are merely irreversible, the main
focus of neurocritical care is to detect and prevent secondary
brain injury [2]. Consequently, an array of different moni-
toring techniques for the assessment of intracranial pressure
(ICP), oxygenation status, and metabolism has been devel-
oped to unmask occult local and systemic alterations of the
brain [3–6]. However, the resulting high volume of multi-
modal datasets frequently exceeds the ability of the neuroin-
tensivist to process and integrate these data into an adequate
treatment algorithm [7].There is an urgent need for the devel-
opment of advanced biomathematical tools to analyze the
complex and interwoven data sets in real time guiding a goal

directed therapy of these patients [8]. Our group has recently
developed a mathematical model which allows simulating
brain swelling and loss of cerebral autoregulation [9]. In case
of a severe brain swelling, this model predicts a long-term
positive correlation between arterial blood pressure (ABP)
and ICP if the cerebral autoregulation is experimentally
switched off, in contrast to a negative correlation for an intact
autoregulation [10].Themain goal of our studywas to develop
a set of mathematical tools that reliably identify such positive
and negative correlations in bimodal monitoring data. The
correlations are described by three classification numbers,
called selected correlation (sc), selected correlation positive
(scp), and selected correlation negative (scn). The sc index is
deduced from windowed multitaper coherence calculations
and multitaper power spectra [11]. The phasing of the data
windows is detected by the mean value of the windowed
Hilbert phase difference [12] leading to the indices scp and
scn. For all indices a statistical testing method is presented
to determine the significance of the particular results. In
a second step we calculated the percentage allocations of
positive and negative correlations and related the results to
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the outcome of the analyzed patients. We hypothesized that
patients showing predominantly positive correlations will
have a poor prognosis. In addition we attempt to validate the
predicted episodes of diminished cerebral compliance by ana-
lysis of CT scans.

2. Methods

2.1. Patient Population. The study was conducted in accor-
dance with the ethical guidelines of the University Regens-
burg Institutional Review Board. Informed consent was
obtained from the patient’s relatives, all study results were
stored and analyzed in an anonymized fashion. We prospec-
tively investigated a cohort of 15 adult patients (5 female, 10
male) who were treated at the neurosurgical intensive care
unit for traumatic brain injury (TBI) or subarachnoid hemo-
rrhage in 10 and 5 cases, respectively. The mean age was 43.7
years (range: 20.2–72.4), the median Glasgow Coma Scale
GCS at the time of admission was 7 (range: 3–15). The mean
duration of multimodal monitoring was 142 hours (range:
20.3–349.4). The detailed patient characteristics are summa-
rized in Table 1. All patients were sedated and mechanically
ventilated during the observation period and received an
intra-arterial catheter for the continuous measurement of
arterial blood pressure as part of the standard treatment proc-
edure in our institution. ICPmonitoring was performed con-
tinuously using either an external ventricular drain equipped
with an electronic pressure device (EVD) or a parenchymal
ICP probe (both from Raumedic, Helmbrechts, Germany).
The ABP and ICP data were acquired continuously using a
data logger (Daq USB 6210, National Instruments, Munich,
Germany) with a sample frequency of 1000Hz. For the cor-
relation analysis, the data were resampled to 0.2Hz (one
data point every five seconds) to reduce noise effects and to
smooth out fast oscillations or spikes. Computed tomography
imaging was conducted when clinically indicated. Followup
was completed up to July 2013 by reviewing outpatient records
and contacting the patients family member or the patient’s
primary physician.Themean followup time was 77.9 months,
no patient was lost for followup. The neurological outcome
wasmeasured by theGlasgowOutcome Scale (GOS) [13], and
revealed a median score of 3 (range: 1–5) at the final followup
exam.

2.2. Correlation Index Calculations. To identify the above
mentioned positive and negative correlations between ABP
and ICP in monitoring data from the ICU, we used a Fourier
based method, as described in detail previously [14]. In brief,
we adopt coherence and power spectra calculations with
the multitaper method (MTM) to determine the coherence
between segments of two time series that were synchronously
recorded with a sampling rate of 0.2Hz. Additionally, we cal-
culate the mean Hilbert phase difference between these seg-
ments to determine the phasing of the correlation.TheMTM
[11, 15], based on fast Fourier transforms (FFT), is a sophisti-
cated way to determine power spectra and coherence of data
using a set of so-called Slepian tapers as window functions to
handle noisy and short data. Additionally the MTM software
comes with built-in statistical tests proving the significance

of each frequency. The principle approach of the above
mentioned windowedMTM calculations can be described as
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With the above mentioned setting for the window size 𝑠
the MTM-spectra and MTM-coherence contain exactly 𝑠/2
frequencies𝑓

𝑖
. Using the built-in significance test of theMTM
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can define the pointwise selected correlation (PSC) assuming
a significance level for the built-in significance test of 99%:
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The PSC represents a list of length 𝑠/2 with elements of
value 1 if the correspondent frequency is considered signifi-
cant in the spectra and the coherence; otherwise the value of
the element is 0. The significance of 𝑓

𝑖
in both spectra guar-

antees that only frequencies are considered that essentially
contribute to the original signals, whereas the significance
in the coherence assures that a specific 𝑓

𝑖
implies correlation

between the input signals. Repeating the PSC calculations for
𝑁 pairs of isochronous windows leads to the mean pointwise
selected correlation (MPSC):
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𝑗=𝑁

∑
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being significant in both spectra as well as in the coherence
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. Therefore, using
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correlation of a distinct pair of windows with respect to the
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Table 1: Characteristics of patients included in the study who were treated for either SAH (subarachnoid hemorrhage) or TBI (traumatic
brain injury). The column GCS describes the level of consciousness at admission according to the Glasgow Coma Scale. Measuring time
reports the duration of multimodal monitoring interval per patient. Over all correlation describes the percentage of significant correlations
within the observation period. The last column indicates the outcome determined by the Glasgow Outcome Scale at the final follow up.

ID Gender Age Diagnosis GCS Measuring time (hours) Overall Correlation (%) GOS
1 m 54.8 SAH 6 173.87 4.45 1
2 m 51.6 SAH 8 118.16 48.74 1
3 f 26.2 TBI 7 20.28 75.91 5
4 f 20.2 TBI 3 68.09 83.17 1
5 m 53.0 SAH 3 191.67 72.65 1
6 m 42.6 SAH 15 316.41 30.06 3
7 f 60.2 TBI 10 349.37 50.90 3
8 f 72.4 TBI 14 241.86 32.94 3
9 m 21.5 TBI 7 53.4 30.97 2
10 m 42.7 TBI 11 123.26 22.77 1
11 m 51.7 TBI 3 140.74 24.60 3
12 m 33.1 TBI 3 123.1 7.91 4
13 m 49.9 TBI 14 40.29 16.74 1
14 f 42.8 TBI 5 95.58 21.46 4
15 m 32.7 TBI 10 78.66 7.86 5

belonging to the frequencies in 𝑈. This sum divided by the
length of 𝑈 is called selected correlation (sc):
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A pair of windows is called selected correlated if sc > lsc
for any chosen threshold lsc. A statistical test, to be described
later on, is used to determine the significance of the lsc
value. The sc value therefore serves as a measure for the
degree of correlation of a pair of data windows with respect
to a specific frequency range where the specified correlation
occurs. Consequently, to gather time resolved information
about the correlation between ABP and ICP time series in a
specific frequency range, we determine the index sc𝐴,𝐼

𝑚,𝑛
(𝑙, 𝑙)

for isochronous windows while shifting the starting point 𝑙
along the time axis (Figure 1).

2.3. Hilbert Phase Differences. Having identified a pair of
windows exhibiting a sufficient high correlation index sc, we
calculate, in a next step, the Hilbert phase difference [12] of
the corresponding time series segments to detect the phasing
of the signals. For two time series 𝑎(𝑡), 𝑏(𝑡) the Hilbert phase
difference is defined by the components of the corresponding
analytical signals,
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Figure 1: Time evolution of the sc value of a patient included in this
study. Each time the sc value is higher than limit lsc a profound cor-
relation between ABP and ICP is detected. If additionally the mhpd
value surpasses either lmhpdpos or lmhpdneg a distinctive negative
correlation (depicted as dots) or a distinctive positive correlation
(depicted as crosses) is detected.

where P.V. stands for the Cauchy principal value of the of the
integral considered. Prior to this calculation both segments
are normalized to zeromean and unit standard deviation, just
as it is done for the MTM-calculations. From the resulting
hpd(𝑡)we calculate themean value of theHilbert phase differ-
ence as a measure for the phasing of the two input windows.
A correlation is called negative if the mean Hilbert phase
difference (mhpd) is higher a predefined limit lmhpdneg
and correspondingly is called positive if lower a predefined
lmhpdpos. Finally, a statistical test is used to determine the
significance of lmhpdneg and lmhpdpos.

2.4. Statistical Test. The statistical test, presented in the fol-
lowing, is a specific type of perturbation test ([16]) and based
on the model prediction that correlations between ABP and
ICP occur isochronous. Consequently, two segments should
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not be correlated if their starting points are quite apart from
each other and the corresponding sc value should be zero or
at least very low. Assuming that a sc value is meaningful if it is
higher a predefined specific threshold lsc, we can count how
often this separated and therefore uncorrelated windows pro-
duce sc values higher than lsc. From this obviously wrong
hit we deduce the error rate and finally the significance of
the sc value with respect to the predefined threshold. In a
first step we will determine an appropriate separation length,
or time shift, to guarantee the uncoupling of the time series
with respect to the chosen segment length 𝑠. If at least one of
the signals exhibits a distinctive autocorrelation the time shift
between the segments has to be chosen big enough to mini-
mize this source of irritation. First we construct test data
sets ABPall and ICPall by simply joining the appropriate data
sets of all patients involved. Within such a test data set we
randomly determine a starting point for the first window
of length 𝑠. The starting point of the second window, then,
results from the first starting point plus a specified time shift
𝑜. Subsequently we can calculate the sc value for this distinct
pair of windows. To cover the characteristics of the whole test
data set this procedure is repeated 𝐸 times. Afterwards, the
time shift 𝑜 is increased, and the whole procedure is repeated
until ending in the calculation of the mean windowed
autocorrelation (mwa):

mwa𝐴 (𝑜) := ( 1
𝐸
)

𝑒=𝐸
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If the time shift 𝑜 if large enough to exclude autocorrela-
tion artifacts, the subsequentmwa values should be small and
stable. With the ability to exclude interference from autocor-
relation effects, the above mentioned calculation of the error
rate for sc with respect to a predefined threshold lsc could
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correlations should only occur for isochronous windows
these values of sc reflect a threshold that should be passed
by correlated windows. In other words, if we call a sc value
meaningful if higher than a predefined threshold lsc, all sc
values of such nonisochronous windows satisfying the lsc
criterion are wrong hits. Accordingly, we deduce the error
index ei𝐴,𝐼
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(𝑎, 𝑏), indicating whether the selected correlation
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Figure 2: Mean pointwise selected correlation (MPSC) of ABP
signal of all included patients. After reaching its maximum at about
𝑓 = 0.001Hz a sharp decrease follows. For frequencies 𝑓 > 0.005Hz
the MPSC values almost reach zero apart from a few local maxima
that are far less pronounced than the low frequency band.

The resulting error rate asc describes the percentage of
obviously wrong hits in the above mentioned sense with
respect to a predefined limit lsc.Thus asc represents the prob-
ability of a distinct value sc > lsc to be generated by accident
and therefore describes the significance of sc with respect to
lsc. The above described method can easily be modified to
calculate the error rates of the mean Hilbert phase difference
(mhpd) by substituting the lsc criterion in ei𝐴,𝐼

𝑚,𝑛
(𝑎, 𝑏) through

appropriate criteria lmhpdpos and lmhpdneg. If mhpd >

lmhpdneg the correlation between the appropriate windows
will be called negative; if mhpd < lmhpdpos the correlation
will be called positive. Accordingly, the error rates will be
named amhpdpos and amhpdneg, respectively, and will be
used to determine the significance of the lmhpdpos and
lmhpdneg. The above described tools will be used to deter-
mine for an arbitrary pair of input windows whether these
windows are significantly correlated and, if so, whether the
correlation is significantly positive or negative. Shifting the
input windows synchronously along the time axis of themea-
sured data produces a time resolved information about the
different possible correlations (see Figure 1). Additionally we
will calculate the percentage of correlated windows with
respect to lsc and the percentage of distinct positive and neg-
ative correlations, with respect to lmhpdpos and lmhpdneg.
The percentage of distinct positive correlatedwindowswill be
termed as selected correlation positive (scp) and correspond-
ingly the percentage of distinct negative correlated windows
will be termed as selected correlation negative (scn).

3. Results

For all subsequent calculation a window size 𝑠 of 2048 data
points was used. In Figure 2 the MPSC value for each indi-
vidual frequency is depicted. For this analysis the time series
of all included patients were used. The MPSC value reaches
its maximum of about 0.12 at a frequency of approximately
0.001Hz and then rapidly decreases. Between 0.005Hz and
0.008Hz MPSC values reach their lower limit of 0.0. Addi-
tional bands appear at 0.011Hz and 0.013Hz which are far
less distinct. For a better visualization of the lower frequency
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Figure 3: Mean windowed autocorrelation (mwa) of the ABP (dashed line) and ICP (solid line) signal for a window size of 2048 points
(a). The mwa value decreases very rapidly for both signals. For offsets greater than 500 data points the mwa value remains stable at mwa <
0.011 (a). Error rate asc with respect to sc: choosing the criterion for a pair of windows to be correlated as lsc = 0.03 leads to a asc < 0.05
(b). Error rate amhpdneg with respect to the limit lmhpdneg for correlations to be called negative: a lmhpdneg of 130 deg for the mean Hilbert
phase difference (mhpd) generates an amhpdneg < 0.05 (c). Error rate amhpdpos with respect to the limit lmhpdpos for correlations to be called
positive: a lmhpdpos of 50 deg for the mean Hilbert phase difference generates an amhpdneg < 0.05 (d).

band Figure 2 only shows the MPSC value for frequencies
lower than 0.015Hz. For frequencies higher than 0.015Hz
MPSC values are mostly zero except of a view small regions
with MPSC values lower than 0.00012. Therefore we choose
a frequency interval of 𝑓 < 0.005Hz for further analysis. The
mean windowed autocorrelations (mwa) of ABP signal and
ICP signal are depicted in Figure 3(a), where 5000 different
pairs of input windows were used for the calculation of a
single offset 𝑜. If no time shift is applied (step size 0), themwa
value is highest but not one. This is due to the fact that in
this case all exploited frequencies are sufficiently correlated
but some of them prove to be not significant in the spectra.
With growing step size the mean windowed autocorrelation
decreases rapidly for both signals and at least after a step size
of half the window size is reached and mwa is low and stable
(mwa < 0.011). From this we can conclude that if the windows
are simply nonoverlapping, the time shift is big enough to
exclude autocorrelation effects in both signals. Therefore we
used an offset 𝑜 of three times the window size (𝑜 = 3 ∗ 𝑠)
for the statistical testing. For the calculation of the different
error rates 2×106 different pairs of input windows were used.
The resulting error rates asc, amhpdpos, and amhpdneg are
depicted in Figures 3(b)–3(d). From lsc > 0.03 an asc < 0.05
follows. If we choose lsc > 0.1, asc reduces to asc < 0.0015.
Choosing the upper and lower limits for the mean Hilbert
phase difference according to earlier work from our group
[10] as 130 deg and 50 deg results in amhpdneg, amhpdpos <
0.05. Using 150 deg a 30 deg for the upper and lower limit
reduces the error rates, amhpdpos, amhpdneg < 0.004 (see

Figures 3(c) and 3(d)). To achieve a significance level higher
than 95% for the detection of correlations we therefore used
lsc = 0.03 and lmhpdneg = 130 deg, lmhpdpos = 50 deg for
the detection of negative and positive correlations. Using
the above defined thresholds, significant correlations bet-
ween the parameters ABP and ICP were recorded in all
patients; however, the time span of correlating parameters per
observation period differed considerably between the indi-
vidual patients (see Table 1). All patients, from which CT
scans were obtained during positive selected correlation
phases, indicating a loss of autoregulation combined with
reduced intracranial compliance, showed dramatic changes
indicating severe edema, hemorrhagic transformation, or
brain ischemia (Figure 4).

In addition, the value of selected correlation positive (scp)
during the observational period correlated highly signifi-
cantly with the patients outcome as measured by the Glasgow
Outcome Scale (𝑃 < 0.0001, see Figure 5). Interestingly, all
patients showing scp values higher than 10% died during the
course of the disease. Multiple regression analysis including
age, diagnosis, scp, and the GCS score at admission revealed
the selected correlation positive as independent factor for
patients outcome (𝑃 < 0.001).

4. Discussion

Despite promising in vivo results in several animal models,
investigating neuroprotective agents such as glutamate antag-
onists, free radical scavengers, or growth factors, clinical trials
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(a) (b)

Figure 4: Serial CT scans of a patient following SAH (GCS 8). Initial scans show an intraventricular hemorrhage without signs of stroke
or brain edema (a). Followup scan performed at a period of selected positive correlation between ABP and ICP shows severe brain edema
reducing the subarachnoid space, a diminished demarcation of the cortical-subcortical border, and a partial stroke of the anterior cerebral
artery (b).
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Figure 5: Relation between the selected correlation positive (scp)
and the outcome measured by the Glasgow Outcome Score. Spear-
man correlation analysis revealed a highly significant association
between the parameters (𝑃 < 0.0001). Note that a scp greater than
10% of the observation time resulted in the death of all afflicted
patients.

have failed to show any benefit for patients with TBI or SAH
[17, 18]. Since causal treatment is lacking so far, the main goal
of neurointensive care is to provide an optimal physiological
and cellular environment to prevent secondary injury and to
facilitate endogenous regeneration of the injured brain [19].
To achieve thismission, a number of technically sophisticated
monitoring devices measuring ICP [20], brain oxygenation
[21], metabolism [22], cerebral blood flow [23], and EEG
activity [24] have been developed recently. However, the
interpretation of these multimodal data sets is until today

based on experience and adequate intuition of the treating
neurointensivist, who may be facing more than 200 variables
per patient [6]. As shown previously, it is almost impossible
to grasp the interrelation between more than two data sets
without the support of biomathematical analysis tools [25].
For example, an elevated ICP may require the increase of the
systemic blood pressure in a patient with functional autoreg-
ulation to provide adequate cerebral perfusion pressure
(CPP), whereas it can be harmful to a patient with a loss of
autoregulation [2]. It is therefore necessary to avoid dogmatic
threshold values as a foundation for treatment algorithms
[26] but to individually tailor therapeutic intervention for
each patient [5, 7]. This aspect becomes even more vital as
recent studies have demonstrated significant adverse effects
of treatment strategies targeting CPP or brain oxygenation if
executed inadequately [27, 28]. The main goal of our study
was therefore to employ advanced biomathematical tools to
identify patients at risk and to improve the pattern of care
and prognostication in patients treated in the neurointensive
care unit. With only 15 patients, the sample size of our cohort
is rather small, which may be a potential limitation. Further
studies are underway to prospectively validate our findings
and their potential impact on treatment outcome.

In conclusion, the usedmethods are able to reliably detect
correlations with different phasing as predicted by a mathe-
matical model. By means of a statistical testing method the
accuracy of the results could be tuned as needed for a reliable
judgment of the patients status. Interestingly, the frequency
of positive selected correlations highly was identified as an
independent factor for the prognosis of our study patients.
Our results indicate that a real time application of this analysis
would potentially allow for an early intervention improving
the outcome of patients by preventing secondary injury in a
more timely fashion [29].
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Abbreviations

amhpdneg: Error rate for limit of negative mhpd
(percentage of false positives of mhpd with
respect to lmhpdneg)

amhpdpos: Error rate for limit of positive mhpd
(percentage of false positives of mhpd with
respect to lmhpdpos)

asc: Error rate of selected correlation (percentage
of false positives of sc with respect to lsc)

ei: Error Index (ei is defined as 1 if the sc value is
higher than lsc and 0 otherwise; for data
windows of abp and icp with an offset, ei
indicates false positives)

FFT: Fast Fourier transform (method to calculate
the discrete Fourier transformation of a
dataset)

hpd: Hilbert phase difference (difference of the
Hilbert phase of two signals)

lmhpdneg: Limit mean Hilbert phase difference negative
(arbitrary limit for mhpd to indicate a
negative phasing)

lmhpdpos: Limit mean Hilbert phase difference positive
(arbitrary limit for mhpd to indicate a
positive phasing)

lsc: Limit selected correlation (arbitrary limit for
sc to indicate correlation)

mhpd: Mean Hilbert phase difference (mean value
of the Hilbert phase difference for a fixed
data window)

MPSC: Mean pointwise selected correlation
(element by element mean of PSC vectors of
a selection of data windows)

MTM: Multitaper method (sophisticated fft based
method to calculate power spectra and
coherence from a data window)

mtmc: Multitaper coherence (coherence calculated
with multitaper method)

mtms: Multitaper spectrum (power spectrum
calculated with multitaper method)

mwa: Mean windowed autocorrelation (mean
value of sc for data windows of identical data
(abp or icp) with a predefined offset but
varying starting points)

PSC: Pointwise selected correlation (a vector
containing a 1 if the corresponding frequency
is significant in the spectra and the coherence
and 0 otherwise; the PSC is calculated for a
fixed pair of corresponding data windows)

sc: Selected correlation (sum over the elements
of PSC normed by the length of PSC)

scn: Selected correlation negative (percentage of
sc with additionally a negative mhpd)

scp: Selected correlation positive (percentage of
sc with additionally a positive mhpd).
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