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Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder

which is considered to be the most common cause of dementia. It has a greater impact

not only on the learning and memory disturbances but also on social and economy.

Currently, there are mainly single-target drugs for AD treatment but the complexity and

multiple etiologies of AD make them difficult to obtain desirable therapeutic effects.

Therefore, the choice of multi-target drugs will be a potential effective strategy inAD

treatment. To find multi-target active ingredients for AD treatment from Selaginella

plants, we firstly explored the behaviors effects on AD mice of total extracts (TE)

from Selaginella doederleinii on by Morris water maze test and found that TE has a

remarkable improvement on learning and memory function for AD mice. And then,

multi-target SAR models associated with AD-related proteins were built based on

Random Forest (RF) and different descriptors to preliminarily screen potential active

ingredients from Selaginella. Considering the prediction outputs and the quantity of

existing compounds in our laboratory, 13 compounds were chosen to carry out the

in vitro enzyme inhibitory experiments and 4 compounds with BACE1/MAO-B dual

inhibitory activity were determined. Finally, the molecular docking was applied to verify

the prediction results and enzyme inhibitory experiments. Based on these study and

validation processes, we explored a new strategy to improve the efficiency of active

ingredients screening based on trace amount of natural product and numbers of targets

and found some multi-target compounds with biological activity for the development of

novel drugs for AD treatment.
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive and irreversible
neurodegenerative disorder which is considered to be the most
common cause of dementia. With the acceleration of aging
process in human society, AD prevalence is expected to reach
the epidemic levels (Mount and Downton, 2006). Commonly,
a majority of AD patients often have both of behavioral and
psychological symptoms of dementia (BPSD). The behavioral
characteristic includes the progressive loss of memory, the
decline of cognitive function, the decrease of physical function
and ultimately problems with communication, time and space
disorientation and so on. The psychological symptom includes
psychosis, depression, agitation and anxiety (Gauthier et al.,
2010; Okura et al., 2011; Borisovskaya et al., 2014). Furthermore,
the presence of BPSD usually exacerbates the morbidity and
mortality associated with dementia. In more advanced stages,
BPSD has a greater impact on social and economic than on
the learning and memory disturbances and it has become the
major impetus to force patients choosing primary home care
and specialized psychogeriatric units. Unfortunately, the existing
therapeutic approaches for BPSD are usually efficacy-limited and
associated with serious adverse effects, such as the increasing risk
of death (Cummings, 2000; U.S. Food and Drug Administration,
2005, 2008).

Although the molecular mechanism of AD pathogenesis
has not been clearly understood, several hypotheses have
been proposed for AD pathogenesis and their interconnections
aggravate this disease a complex disorder (Šimić et al., 2017).
The amyloid hypothesis (Goedert and Spillantini, 2006) is
hallmarked by the neuropathological accumulation of amyloid
beta (Aβ) plaques in the extracellular compartment and the
intracellular accumulation of hyper-phosphorylated tau protein
in the form of neurofibrillary tangles. The cholinergic hypothesis
proposed a decreased level of acetylcholine in certain areas
of brain (Craig et al., 2011). Oxidative stress hypothesis
proposed the deregulation of endogenous detoxification redox
systems and over-production of radical species leading to
lipid peroxidation and nucleic acid mutations (Pratico, 2008).
In addition, some other hypotheses, such as glutamatergic
hypothesis (Bezprozvanny and Mattson, 2008), metal hypothesis
(Bonda et al., 2011), and inflammatory hypothesis (Trepanier
and Milgram, 2010) have also been proposed. Based on these
pathogenesis, there are more than 200 enzymes or proteins
related to AD, such as AchE, BACE1, GSK3β, MAO-B, GABA-
A receptor, Glutamate receptor, and so on (Saura et al., 1994;
Sathya et al., 2012; Fang et al., 2015; Yan et al., 2016). At
present, licensed drugs approved for AD treatment are always
based on single-target pharmacology. Now, there are two main
categories of drugs for AD treatment: one is AchE inhibitor,
including donepezil, rivastigmine, and galantamine. They can
improve ACh level in the brain by decreasing the hydrolysis of
ACh and are mainly used for mild to moderate AD treatment.
The other one is N-methyl-D-aspartate antagonist (NMDA). The
representative drug, memantine, is mainly used for the treatment
of moderate to severe AD, but it is only licensed in several
countries because of serious adverse drug reaction (Cummings,

2004; Standridge, 2004). Until now, the limitation of therapeutic
treatments and their poor effectiveness make AD treatment
become the current biggest medical problem in neurology. In
fact, as described before, the complexity and multiple etiologies
of AD make the single-target strategy difficult to obtain desirable
therapeutic effects. Therefore, the choice of multi-target drugs
will be a potential effective strategy in the treatment of AD and
consequently the new chemical skeletons or active precursors
with multi-target activities for AD therapy are inspired to be
found.

As we all know, natural product is a highly valuable resource
in searching for chemical precursors with potential bioactivity
and few adverse effects because of their structural diversity.
For example, biflavonoid glycosides from Impatiens balsamina
show potential neuroprotective activity (Kim et al., 2017) and
apigenin, quercetin show potent anti-Aβaggregation activity
which is one of the major culprits in AD (Espargaró et al.,
2017). Huperzine A (Hup A) is a highly selective, reversible
and potent AChEI extracted from the Chinese medicinal herb
Huperzia serrata. Compared with tacrine and donepezil, it has
a higher bioavailability and potency but is less active toward
BChE (Silva et al., 2014; Pisani et al., 2016). Nowadays, the
purification of new chemical skeletons and activity screening
from natural products still maintain sightless and accidental.
Although more and more trace elements have been purified
with the development of separation technology, it is still scarcely
possible to carry out large-scale activity screening due to the
contingency and trace outputs of separation. In recent years, with
the rapid development of computer science and the accumulation
of chemogenomics data, multi-target SAR model for active-
ingredient screening was proposed as a useful method for seeking
active compounds and target identification (Cao et al., 2012,
2014; He et al., 2013; Yao et al., 2016). As to the multi-target SAR,
the SAR predictive model for each target protein is built based
on the relationship between the chemical structure of active and
inactive compound. This in silico method can give a preliminary
screening and target identification for a large number of natural
compounds with a prediction probability before the in vitro
activity test is carried out.

Based on the previous researches, flavonoids show extensive
pharmacological activities including anti-AD efficiency. In 2015,
Duan SW has identified silibinin, a flavonoid, as a dual inhibitor
of AChE and Aβ peptide aggregation for AD treatment (Duan
et al., 2015). And then, Song X also proved that Silibinin
can attenuate the inflammatory responses, increase glutathione
(GSH) levels, decrease malondialdehyde (MDA) levels and
upregulate autophagy levels in the Aβ25−35-injected rats (Song
et al., 2017). What’s more, Baicalein, Scutellaria barbata
flavonoids, Capparis spinose flavonoids, and 4-dimethylamine
flavonoid derivatives all show some degree of anti-AD activities
in animal experiments or in vitro tests (Gu et al., 2016; Luo
et al., 2016; Mohebali et al., 2016; Wu et al., 2016). Therefore,
it’s highly valuable and feasible to screen multi-target ingredients
from flavonoids extracts for the treatment of AD.

In this study, we aimed to find multi-targets active ingredients
for AD treatment from the flavonoids extracts of Selaginella
plants. Firstly, we explored behavioral effects on AD mice
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of total extracts (TE) from Selaginella doederleinii by Morris
water maze test. And then, we screened our home-database
consisted of compounds extracted from Selaginella plants to
hunt ingredients with anti-AD activity through multi-target SAR
models in silico. Finally, the in vitro enzyme activity inhibitory
test and the molecular docking experiment were applied to verify
the prediction results and to find the potential active ingredients
for the AD multi-targets treatment.

MATERIALS AND METHODS

Total Extracts of Selaginella Plants
Two hundred and fifty seven compounds were purified from
Selaginella plants, including Selaginella tamariscina, Selaginella
pulvinataMaxim, Selaginella braunii Baker, Selaginella delicatula
(Desv.) Alston, Selaginella moellendorfii hieron, Selaginella
uncinate, Selaginella involven Spring, Selaginella doederleinii
Hieron. Total extracts (TE) were extracted using 75% ethanol
and then freeze-dried into extractum. The suspensions of saline
and freeze-dried extractum after ultrasonic vibration was orally
administrated for AD mice.

Morris Water Maze Test
The learning and memory ability of AD mice were evaluated by
Morris water maze test. Male specific-pathogen-free (SPF) grade
male ICR mice (body weighing 18–22 g) were purchased from
Hunan Provincial Experimental Animal Centers [Changsha,
Hunan, China, Certificate No. SYXK (Xiang) 2012-0004] (Sun
et al., 2009).

Mice were randomly divided into five groups (10 mice for
each group), namely normal control group (NCG), model control
group (MCG), low dose group (LDG, 50 mg/kg), middle dose
group (MDG, 100 mg/kg) and high dose group (HDG, 200
mg/kg). To build the ADmice model, mice inMCG, LDG,MDG,
and HDG were treated with D-gal (120 mg/kg, intraperitoneally)
for 56 days (8 weeks), and the mice in normal group were treated
with saline of the same volume for 56 days (8 weeks; dorsonuchal
subcutaneous injection). After that, the TE suspensions of saline
and freeze-dried extractum after ultrasonic vibration was orally
administrated to the mice in LDG, MDG, and HDG for 42 days
(6 weeks), and the mice in NCG and MCG were orally treated
with saline of the same volume for 42 days (6 weeks). Finally, the
spatial learning and memory ability of all the mice were tested by
Morris water maze.

The equipment of Morris Water Maze were purchased from
Anhui Zheng-hua biological equipment corporation and the test
process followed to the relevant laboratory manual. Two indexes,
the place navigation and spatial probe, were chosen as the main
monitor elements to evaluate the spatial learning and memory
ability of all the mice. The experimental method is divided into
two parts: acquisition phase and probe trial. In the acquisition
phase, we randomly put the head of the mouse into the wall
of the pool and fix the starting position. After that, the time
of finding the underwater platform was recorded. On the day
after acquisition phase, the platform was removed and the probe
trial began. The time of finding the position where the platform
is located, the swimming distance and the number of crossing

through the area where the platform is located were recorded as
the spatial memory test indexes.

This study was carried out in accordance with the
recommendations of “Laboratory Animals-Guideline of welfare
and ethics, Ethics Committee of Hunan Provincial Experimental
Animal Centers.” The protocol was approved by the “Ethics
Committee of Hunan Provincial Experimental Animal Centers.”

Multi-Target SAR Model and Prediction of
257 Compounds
According to previous studies published in recent years, we
finally found 19 significant proteins related to AD (Cavalli
et al., 2008; Fang et al., 2015). For these important AD-related
proteins, we collected their ligands that are small, drug-like
molecules from Binding database1. For each protein, activity data
were filtered to keep only activity end-point points that have
half-maximum inhibitory concentration (IC50), half-maximum
effective concentration (EC50) or Ki values. A compound would
be considered as a positive sample when its activity value was
below 10 µM. Otherwise, this compound would be considered as
a negative sample. Following this step, maybe some AD-related
proteins have very little number of negative samples. To balance
the number between positive samples and negative samples, we
randomly selected certain number of compounds from other
AD-related proteins to generate the negative samples for these
AD-related proteins. The number of these selected negative
samples together with inactive samples should be basically equal
to the number of the active samples for these AD-related proteins.
These prepared positive sets and negative sets were used for the
subsequent model building. The detailed information of AD-
related proteins and these datasets used for model building can
be seen in Supporting Information (Supplementary Material).

For each protein, a series of high confidence SAR models
were built by Random Forest (RF) and different fingerprint
representations (FP2, MACCS, Daylight, ECFP2, ECFP4, and
ECFP6). RF was introduced by Breiman and Cutler for regression
and classification modeling in 2001 firstly (Breiman, 2001).
The method is based upon an ensemble of decision trees,
from which the prediction of a classification task is provided
as the majority vote of the predictions of all trees. Recent
studies have suggested that RF offers several striking features
which make it very attractive for QSAR/QSPR studies. These
include relatively high accuracy of prediction, built-in descriptor
selection, and a method for assessing the importance of each
descriptor to the model (Cao et al., 2011a,b; Yun et al., 2016).
RFs were trained using the RF library in the statistical computing
environment, R. All the fingerprints were calculated by some
tools developed by our group: ChemDes, BioTriangle webserver
and ChemoPy package (Cao et al., 2013; Dong et al., 2015,
2016). To improve the prediction ability of the SAR model, we
assembled all fingerprint models to obtain the consensus models
with average output. All the assembled models were validated
by 5-fold cross validation and test set validation to demonstrate
their prediction performance. In this part, some popular statistic
parameters were applied to evaluate the performance of these

1http://www.bindingdb.org/bind/index.jsp
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classification models: true positive (TP); false negative (FN); true
negative (TN); false positive (FP); sensitivity (SE); specificity (SP);
accuracy (ACC); area under receiver operating characteristic
curve (AUC). These classification evaluation parameters are
defined as follows:

SE =
TP

TP+ FN

SP =
TN

TN+ FP

ACC =
TP+ TN

TP+ FP+ TN+ FN

After a series of modeling and validation processes, we aimed
to obtain reliable SAR models for above-mentioned AD-related
proteins. And then, 257 compounds purified from Selaginella
plants were predicted by these robust and practical models and
their inhibitory activities were identified preliminarily for further
study.

Target Enzyme Inhibitory Activity In vitro
For the compounds that have been regarded as active ingredients
by the multi-target SAR models, the in vitro target enzyme
inhibitory activity test was applied to verify their actual activity
for AD treatment. The inhibitory activities were determined
by fluorimetric method on Infinite M200 Multi scan Spectrum
(Tecan, Swiss). Each concentration was analyzed in triplicate
and IC50 values were determined by nonlinear regression of
inhibition vs. log concentration plots, using GraphPad Prism 7
for Windows, Version 7.00 (GraphPad Software Inc.). BACE1
fluorescence resonance energy transfer assay kits were purchased
from the Pan Vera Co and Monoamine Oxidase B (MAO-B)
inhibitor screening kits were purchased from Bio Vision Inc.

In the BACE1 inhibition test, the assay was performed in
384-well plates. The assay solution was consisted of 10 µL test
compounds (concentrations: 0.017, 0.050, 0.167, 0.500, 1.667,
5.000, 16.667, and 50.000 µM), 10 µL BACE1 substrate and 10
µL BACE1 enzyme. LY2811376 was selected as the reference
compound with IC50 = 0.242 µM and the blank buffer was set
as the negative control. The mixture was incubated for 60 min at
room temperature. At the end, 10 µL BACE1 stop solution was
added to stop the reaction and the fluorescence was detected at
the Ex/Em = 545/585 (12 nm bandwidth) settings on Multi scan
Spectrum.

In the MAO-B inhibition test, the assay was performed in
96-well plates. The assay solution was consisted of 10 µL test
compounds(concentrations: 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, and
25.6 µM), 37 µL MAO-B assay buffer, 1 µL MAO-B substrate, 1
µL developer and 1 µL OxiRed Probe. Selegiline was used as the
reference control with IC50 = 0.028 µM and the blank buffer was
set as the negative control. The mixture was incubated for 10min
at 37◦C. The fluorescence was measured at Ex/Em= 535/587 nm
kinetically at 37◦C for 10–40min. Two points (T1 and T2) in
the linear range of the plot were chosen and the corresponding
fluorescence values (RFU1 and RFU2) were obtained to calculate
the slope for all samples. The Calculation of % relative inhibition
was following the manual of MAO-B inhibitor screening kit.

Molecular Docking Simulation
To further verify the results of multi-target SAR prediction and
enzyme inhibitory experiments, the molecular docking process
was applied to simulate the binding position and binding affinity
between the active compounds and target proteins. Generally
speaking, docking is a computer simulation modeling technique
used to predict the interaction between a ligand and a receptor
active site, and is an important tool in structure-based drug
design. The technique of docking is to position the ligand in
different orientations and conformations within the binding site
to calculate optimal binding geometries and energies. In this part,
the molecular operating environment (MOE, version 2014.) was
applied to carry out the molecular docking process. MOE’s dock
application searches for favorable binding modes between small-
to medium-sized ligands and a not-too-flexible macromolecular
target. For each ligand, a number of placements called poses
are generated and scored. The score can be calculated as either
a free energy of binding including among others solvation
and entropy terms, or enthalpy based on polar interaction
terms including metal ligation, or as qualitative shaped-based
numerical value. According to the score values, ligands with
different conformations can be ranked and the optimal structural
conformation will be affirmed (Wang J. et al., 2015). To make
the interactions with the binding site easy to see, the ligand
interaction was carried out. It will automatically be loaded with a
2D diagram of the original ligand and a schematic representation
of the binding site residues, with the important interactions
between ligand and binding site shown. In this study, we selected
two proteins as the docking acceptors: BACE1 (PDB ID: 1TQF)
(Cobum et al., 2004); MAO-B (PDB ID: 2V5Z) (Binda et al.,
2007). As a control, the original ligand included in the crystal
structure should also be docked. A series of parameters were set:
Dock: rescoring 1=ASE; retain= 100; rescoring 2=ASE; retain
= 100. Configure force field: final gradient = 0.0001; maximum
iterations = 1,000; force constant = 10; radius offset = 0.4. For
rest parameters, the default treatment was applied.

RESULTS AND DISCUSSION

Behavioral Evaluation of AD Mice Dealt
with Total Extracts
Learning and memory ability of AD mouse was evaluated by
Morris water maze test in which the navigation and space
exploration are used as indexes. There were five groups of mice
under study and the behavioral results can be seen in Table 1

and Figure 1. In the Table 1, the residence time and residence
distance of each quadrant, the total distance and the number
through platform for each group of mice were listed. From the
table, we can see that the residence time of MCGwas significantly
decreased (P < 0.05) in 1st and 4th quadrant compared with
NCG. The stay intervals in 1st quadrant for MCG group were
significantly lower than NCG (P < 0.05). However, the residence
distance in 3rd quadrant increased prominently (P < 0.05).
HDG showed longer distance in 1st quadrant (P < 0.05) and
opposite trends in 3rd quadrant (P < 0.05) compared with MCG
after 42 days’ dosage. With respect to the total distance and
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numbers through platform, they were significantly reduced for
MCG (P < 0.05) compared with NCG. They were increased
significantly for HDG (P < 0.05) compared with MCG after
42 days’ dosage. What’s more, the crossing through number for
MDG were also significantly increased (P < 0.05).

Figure 1 shows the navigation and space exploration for
different groups of mice. From the figure, we can see that the
spatial learning and memory ability of NCG were significantly
increased, but there was an opposite trend for MCG and
mice in MCG mainly ran along the cell wall. What’s more,
all the low, medium and high dose of TE can significantly
increase the numbers of exploration platform. Considering
both results in Table 1 and Figure 1, TE of Selaginella has a
remarkable improvement on learning and memory function
for AD mice. This result inspires us to further explore the
effect of the chemical ingredients from Selaginella on AD
treatment.

Performance Evaluation and the Inhibitory
Activity Prediction
Based on the results of the Morris water maze test, the TE of
Selaginella plants show a potential benefit for AD treatment.
To quickly screen the active ingredients from a number of
compounds preliminarily, multi-target SAR models associated
with AD-related proteins were constructed as described before.
In this part, we finally obtained a series of ensemble predictive
models for AD-related proteins. Their statistic results of 5-
fold cross validation and test set validation were listed in
Table 2. From this table, we can see that for each predictive
model, the accuracy is good enough not only for cross
validation (0.808–0.955) but also the test set validation (0.846–
0.970). With respect to other statistic parameters, the similar
results were obtained and it can be strong evidence for the
good predictive ability of this model. Therefore, we have
reasons to believe that these ensemble models are robust
and practical and can be used to predict the inhibitory
activity for a new compound in the early stage of drug
discovery.

To evaluate the probability of inhibitory activity for the
19 AD-related targets, 257 compounds were purified from
the TE including 143 flavonoids, 9 selaginellins and some
other compounds. Before the inhibitory activity prediction
by SAR models, the preliminary druggability evaluation was
carried out to exclude some compounds that have no
beneficial property for further drug development process. In
this part, we mainly evaluated the molecular weight and
two important ADME (absorption, distribution, metabolism,
elimination) properties for druggability by corresponding QSAR
models developed by our group: logD7.4 (the distribution
coefficients at pH = 7.4) (Wang J. B. et al., 2015; Wang
et al., 2017), and logPapp (the Caco-2 membrane permeability)
(Wang et al., 2016). Based on previous studies, a good
drug candidate should have a logD7.4 value smaller than
5, a logPapp value larger than −5.15 and a molecular
weight smaller than 500. After excluding compounds that
perform very poorly in at least two of three aforementioned
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FIGURE 1 | The spatial learning and memory ability of AD mice tested by Morris water maze [(A) NCG: normal control group; (B) MCG: model control group;

(C) LDG: low dose group; (D) MDG: middle dose group; (E) HDG: high dose group]. This figure shows that TE has a remarkable improvement on learning and

memory function for AD mice which mainly lies in the increased distance and this functional improvement is dose-dependent.

TABLE 2 | The statistic results of these predictive models (5-fold cross validation and test set validation).

Uniprot_ID Gene name 5-fold cross validation Test set validation

AUC ACC SE SP AUC ACC SE SP

P08908 HTR1A 0.950 0.904 0.884 0.924 0.961 0.921 0.911 0.931

Q9Y5N1 HRH3 0.985 0.955 0.944 0.967 0.991 0.970 0.967 0.973

P50406 HTR6 0.969 0.930 0.918 0.942 0.986 0.953 0.932 0.974

P22303 ACHE 0.892 0.845 0.818 0.871 0.944 0.903 0.886 0.922

Q99720 SIGMAR1 0.967 0.918 0.897 0.938 0.979 0.949 0.944 0.955

P11229 CHRM1 0.864 0.808 0.798 0.818 0.938 0.882 0.882 0.883

P49841 GSK3B 0.892 0.821 0.786 0.856 0.963 0.903 0.902 0.905

P06276 BCHE 0.879 0.820 0.797 0.842 0.926 0.855 0.862 0.848

P56817 BACE1 0.961 0.930 0.919 0.942 0.971 0.942 0.951 0.934

P27338 MAOB 0.888 0.826 0.809 0.842 0.941 0.877 0.860 0.895

P36544 CHRNA7 0.875 0.824 0.791 0.857 0.916 0.846 0.792 0.899

Q07343 PDE4B 0.957 0.914 0.884 0.945 0.974 0.942 0.953 0.930

P27815 PDE4A 0.951 0.917 0.911 0.924 0.962 0.922 0.910 0.934

Q13639 HTR4 0.963 0.943 0.921 0.965 0.976 0.950 0.920 0.977

P46098 HTR3A 0.894 0.853 0.810 0.896 0.928 0.892 0.833 0.949

Q96BI3 APH1B 0.942 0.899 0.917 0.882 0.973 0.948 0.963 0.935

P05067 APP 0.973 0.915 0.881 0.950 0.944 0.912 0.867 0.961

Q9NZ42 PSENEN 0.945 0.924 0.946 0.903 0.951 0.914 0.953 0.880

Q8WW43 APH1B 0.937 0.920 0.938 0.902 0.952 0.935 0.924 0.944

properties, there were 238 compounds left for further activity
screening.

As described before, the inhibitory activity of these 238
compounds were predicted by the multi-target SAR model.
The predictive result for a new compound was outputted as
a probability value. For each compound that was classified
as active ingredient by SAR models, if its probability value

>0.5, it is considered to be active, otherwise, it is inactive.
From the predictive result, it can be seen that 54 flavonoids
and 4 selaginellins present a good inhibitory correlation with
MAO-B, 21 flavonoids may show BACE1 inhibitory activity.
However, to improve the reliability of prediction, we apply the
prediction probability of 0.8 as a cut-off value to select the active
compounds for some related targets. As a result, 18 compounds

Frontiers in Pharmacology | www.frontiersin.org 6 August 2017 | Volume 8 | Article 539

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Deng et al. Natural Products Screening for AD

FIGURE 2 | The chemical structures of 13 compounds that with inhibitory activity after multi-target SAR model prediction. Among them, eight are biflavones and the

left five are selaginellins.

TABLE 3 | The IC50 values of 13 compounds under study.

Compound S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10 S-11 S-12 S-13 Z-factor

IC50 (µM) BACE1 70.89 17.20 2.75 81.93 7.58 20.70 3.97 0.75 4.32 3.40 2.27 2.82 2.72 0.93

MAO-B –a 15.74 11.72 13.89 2.91 8.81 23.17 3.62 18.21 10.24 –a 3.52 3.42 0.89

aThe IC50 value cannot be calculated in the predetermined concentration range.

FIGURE 3 | Verification of BACE1 and MAO-B Inhibition. This figure shows that all these four compounds (S-5, S-8, S-12, S-13) have good inhibitory activity in the

in vitro validation test.

Frontiers in Pharmacology | www.frontiersin.org 7 August 2017 | Volume 8 | Article 539

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Deng et al. Natural Products Screening for AD

TABLE 4 | Four active compounds and their docking results.

Compound BACE1 MAO-B

Score Binding residues Binding force Score Binding residues Binding force

S-5 −29.7 THR (232A); GLN (12A);THR (232A) H-acceptor; pi-H; pi-H −44.0 CYS (397A); GLY (13A) H-donor; pi-H

S-8 −32.7 ASP (32A); THR (231A) H-donor; pi-H −38.4 TYR (398A) H-pi

S-12 −27.8 THR (231A) pi-H −35.4 TRP (388A) H-pi

S-13 −28.4 GLN (73A); ARG (307A) H-donor; H-acceptor −34.1 TRP (388A) H-pi

Ligand −35.8 – – −51.7 – –

FIGURE 4 | The docking results of S-8 bounding to BACE1 (left, PDB ID: 1TQF) and MAO-B (right, PDB ID: 2V5Z). The structure of S-8 is rendered green and the

docking pocket surface was adjected to a suitable transparency.

FIGURE 5 | The ligand interaction diagram of S-8 bounding to BACE1 (left, PDB ID: 1TQF) and MAO-B (right, PDB ID: 2V5Z). It is a 2D diagram of the original ligand

and a schematic representation of the binding site residues, with the important interactions between ligand and binding site shown. For BACE1, the main binding

force is the hydrogen bond force and pi-bond force with ASP (232A) and THR (231A); for MAO-B, the main binding force is the hydrogen bond force and pi-bond

force with CYS (397A) and GLY (13A).

with a probability value larger than 0.8 were extracted. These
compounds were prepared for further validation in the inhibitory
activity test and their detailed information can be seen in the
Supporting Information (Supplementary Material).

In vitro Validation of Inhibitory Activity for
Target Enzyme
Based on the prediction outputs, we focused on the screening
of BACE1/MAO-B dual inhibitory activity of flavonoids and
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selaginellins. The enzyme BACE1 is considered as a prime target
to design therapeutics for ADmainly because of that the catalysis
process by BACE1 is the rate-limiting step in APP proteolysis
and the BACE1 knock-out mice lacking Aβ production survives
with normal physiology (Roberds et al., 2001). As the majorβ-
secretase enzyme that initiates the generation of Aβ, BACE1 is
undoubtedly a prime target for anti-Aβtherapy in AD (Ohno,
2016). The increase of MAO-B activity is associated with gliosis,
which can result in higher levels of H2O2 and oxidative free
radicals (Nebbioso et al., 2012). Thus, the MAO-B inhibitors are
potential candidates for anti-AD drugs due to their capacity to
regulate neurotransmitters and inhibit oxidative damage in the
central nervous system.

Considering the quantity of existing compounds in our
laboratory, 13 compounds were chosen to carry out the inhibitory
activity validation experiments. Their chemical structures were
displayed in Figure 2 and their IC50 values can be seen in
Table 3. To evaluate the inhibitory activity of these compounds,
a threshold value of IC50 = 10 µM was applied. If a compound
has a IC50 values smaller than 10 µM, it would be considered
to be active. Otherwise, it is inactive. We can find that nine
of them show good inhibition on BACE1 with IC50 values
ranged from 0.7454 to 7.578 µM and five of them show good
inhibition on MAO-B with IC50 values ranged from 2.913 to
8.813 µM. Among them, S-8, S-5, S-13, and S-12 all have
significant dual BACE1/MAO-B inhibitory activities with IC50

values in the micromole magnitude and S-8 has been proved
to be the most potent against BACE1 and MAO-B with IC50

values of 0.7454 and 3.619 µM, respectively. Among them, S-5
and S-8 are biflavones, S-12 and S-13 are selaginellins. The
inhibitory curves for these four compounds were summarized in
Figure 3.

Molecular Docking
As described before, for each structural conformation of S-5,
S-8, S-12, and S-13, a score value was obtained to evaluate
the binding affinity between this active compound and each
target protein (BACE1 and MAO-B). Generally, a lower score
is better. Therefore, the optimal conformation can be decided
from a series of generated conformations for each compound
according to their score values. Combining the result of ligand
interaction, four active compounds and their docking results
were listed in Table 4. From the table, we can see that four
compounds indeed all have some degree of interaction with
BACE1 and MAO-B compared with their original ligands. For
BACE1, the most active molecule is S-8 for which the score value
is −32.7 and the main binding force is the hydrogen bond force
and pi-bond force with ASP (232A) and THR (231A). As to
the rest three molecules, the mainly binding force are also the
hydrogen bond and pi-bond force with different residues. For
MAO-B, the most active molecule is S-5 for which the score
value is −44.0 and the main binding force is the hydrogen bond
force and pi-bond force with CYS (397A) and GLY (13A). In
summary, the molecular docking results were consistent with
the results of aforementioned inhibitory experiments that S-8
has the strongest inhibition activity for BACE1 and S-5/S-8
performs better than S-12/S-13 in the inhibition of MAO-B.

Therefore, as the conclusion obtained from above in intro
inhibitory test, S-5, S-8, S-12, S-13 all have significant dual
BACE1/MAO-B inhibitory activities and S-8 promises to be the
most potent against BACE1 and MAO-B. The docking results
and corresponding 2D ligand interaction diagram of S-8 bound
to BACE1 and MAO-B can be seen in Figures 4, 5. The detailed
information of all conformations and docking results for other
three compounds can be seen in the Supporting Information
(Supplementary Material).

CONCLUSION

In this study, we explored that the TE extracted from Selaginella
plants has a remarkable improvement on learning and memory
function for AD mice by Morris water maze test. And then,
we preliminarily screened our home-database consisting of
flavonoids compounds bymulti-target SARmodels in silico. After
that, the in vitro enzyme activity inhibitory test was applied to
evaluate 13 compounds that were considered to be active by
multi-target SAR models and finally 4 compounds (S-8, S-5, S-
13, and S-12) were found to have significant inhibitory activities
on both BACE1 and MAO-B. Among them, S-8 has been proved
to be the most potent ingredient against BACE1 and MAO-B
with IC50 values of 0.745 and 3.619 µM, respectively. What’s
more, the molecular docking experiment was applied to verify
the prediction results and to find the binding position and
binding strength between the active ingredient and AD-related
proteins. All in all, after these study and validation processes, we
explored a new strategy to improve the efficiency of screening
the active ingredients based on trace amount of natural product
and numbers of targets and finally obtained some multi-targets
potential compounds for the development of novel drugs for AD
treatment.
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