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An approach towards a perfect 
thermal diffuser
Krishna P. Vemuri & Prabhakar R. Bandaru

A method for the most efficient removal of heat, through an anisotropic composite, is proposed. It is 
shown that a rational placement of constituent materials, in the radial and the azimuthal directions, 
at a given point in the composite yields a uniform temperature distribution in spherical diffusers. Such 
arrangement is accompanied by a very significant reduction of the source temperature, in principle, to 
infinitesimally above the ambient temperature and forms the basis for the design of a perfect thermal 
diffuser with maximal heat dissipation. Orders of magnitude enhanced performance, compared to 
that obtained through the use of a diffuser constituted from a single material with isotropic thermal 
conductivity has been observed and the analytical principles underlying the design were validated 
through extensive computational simulations.

The rapid dissipation of thermal energy from a heat source as well as an accurate control of the path of heat trans-
fer is necessary for a wide variety of applications, and has been considered under the scope of efficient thermal 
management1,2. At the very outset, it may be thought that the optimal method of dissipating thermal energy 
would involve omnidirectional transfer and could be mediated either through spherical or cylindrical symmetry, 
for point and line sources of heat, respectively. However, as we will show, materials design considering isotropic 
thermal conductivity is inefficient1. Additionally, spherical/cylindrical thermal energy diffusers based on such 
considerations yield nonlinear temperature distribution and concomitant non-uniform heat flux. The staggering 
of the temperature throughout the volume of the heat-dissipating element in such cases may also result in the cre-
ation of undesirable hot spots3. As a solution to the above shortcomings we report on the fundamental notion of 
an optimal materials arrangement necessary for the most efficient removal of heat, in which a linear temperature 
profile along with the desirable characteristic of isotropic heat transfer would be obtained. We will show that, in 
the steady state, our design allows for a significant reduction of the source temperature.

We examine a typical situation where a given steady-state heat flux (qin), produced by a thermal energy source 
(which releases heat uniformly in all directions), needs to be dissipated to the ambient (at a temperature of Tamb). 
For this purpose, a thermal diffuser of a certain shape/geometry needs to be placed between the heat source and 
the ambient. If any rectangular geometry, comprising a material with isotropic and constant thermal conductivity 
(κ ), were chosen, the azimuthal asymmetry results in a non-uniform temperature gradient and anisotropic heat 
transfer. In comparison, isotropic heat transfer with unequally spaced isotherms (along the heat flux direction) 
would be obtained in circular geometries with constant thermal conductivity. This results in an undesired stag-
gering of isotherms near the heat source: Fig. 1(A). A more desired diffuser configuration, wherein the isotherms 
would be equally spaced yielding a uniform temperature distribution, is indicated in Fig. 1(B).

The design of the desired heat diffuser proceeds through a conformal mapping4,5 from the rectangular 
geometry-shown in Fig. 2(A) to a circular configuration – shown in Fig. 2 (B), so as to obtain a linear temperature 
gradient concomitant with isotropic heat transfer. The space spanned in the rectangular geometry: U =  (x, y, z) is 
related to the space in the circular geometry: V =  (X, Y, Z) through a relation of the form:
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The mapping of the (x, y, z) space to (X, Y, Z) space, indicated through Eqn. 1, is conformal as it preserves the 
parallelism of the isotherms in the two spaces. In these relations, R refers to a mean radius pertinent to the 
semi-circular strip of width: 2W (the inner and the outer radius of the circular strip, in Fig. 2(B), are Ri and Ro, and 
R =  [Ri +  Ro]/2 and W =  [Ro − Ri]/2). For a correspondence to the (r, θ, z) system in this figure, x =  R Tan−1 
(X/Y) =  Rφ ,  and r =   +X Y2 2. Symmetry considerations allow the probing of a semi-circular half space and a 
two-dimensional layout. The thermal conductivity of one coordinate system (say, the rectangular system, where 
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the thermal conductivity is denoted through κ rect) could be related to another (say, the circular system with ther-
mal conductivity: κ c) through a transformation6–8 described through: κc =  (Jκ rectJT)/det (J), where J is the Jacobian 
for the considered transformation, JT is the transpose, and det (J) is the determinant of the Jacobian. It can then 
be derived (see Section I of the Supplementary Materials for details) that the thermal conductivity of the 
semi-circular diffuser in Fig. 2(B), would be a function of the distance from the heat flux source (r), through:
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The physical implication, of Eqn. (2), is that the regularization of the heat transport, to obtain a uniform tem-
perature distribution and isotropic heat transfer, requires the modification of matter following the path of heat 
transfer. Consider, for instance, the thermal conductivity in the radial direction κr

c. At r <  R (/r >  R), κr
c (= [R/r]κ ) 

would be larger (/smaller) than the nominal isotropic thermal conductivity κ , implying that the resultant distance 
between isotherms in the anisotropic diffuser: Fig. 1(B), would be farther (/closer) than its isotropic counterpart: 
Fig. 1(A). Such imposed variation, yielding a respective expansion (/contraction) of the isotherm spacing close to 

Figure 1. A comparison of diffusional heat flow in spherical geometry, in a thermal diffuser, constituted from 
(A) a material with isotropic and a constant thermal conductivity, with unequally spaced isotherms, and  
(B) an ideal configuration with uniformly spaced isotherms and lower source temperature. The latter is feasible 
through the optimized arrangement of the constituent materials in a composite thermal diffuser.

Figure 2. Isotropic heat transfer concomitant with uniform temperature distribution is obtained through the 
conformal mapping of the thermal conductivity of a (A) rectangular block of length L and width 2W on to a  
(B) semi-circle, with inner radius Ri , outer radius Ro and width 2W. Both the geometries in (A,B) have the same 
out of plane thickness. Two representative correspondent points (indicated, for example, by the  and ) are 
indicated.
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(/further away) from the heat source in the spherical geometry, would help achieve a linear temperature profile 
along the heat flux direction. The spatial change of the κ c (r), indicated in Fig. 3(A), would indicate that the ther-
mal conductivity of the semi-circular heat diffuser would be identical to that of the isotropic thermal conductivity 
only at r =  R, and det (J) =  1 for the semi-circular geometry with respect to the rectangular geometry. While the 
through thickness variation in the diffuser, through the κz

cmay be similarly interpreted, the thermal conductivity 
change in the azimuthal direction κθc (r), is proportional to the variation of r. As such unusual anisotropy cannot 
be found in nature, at any particular r, the radial/perpendicular and azimuthal variation of the thermal conduc-
tivity must be considered through suitable and specific material placement7,9 for obtaining uniform temperature 
distribution.

In this regard, we have experimentally demonstrated in previous work6 that a layered composite of just two 
disparate materials (say, of thermal conductivity: κ 1 and κ 2) and of thickness (l) would be sufficient to obtain any 
desired anisotropic thermal conductivity at a given r (see Section II of the Supplementary Materials). Moreover, 
the influence of any particular value of l  on the propagation of heat flux can be eliminated through the creation 
of an effective thermal medium (ETM)10. An ETM based theory essentially assumes a homogeneous composite 
and the lack of interfaces. While such an idealization is not readily apparent in the case of heat diffusion due to 
the lack of a definable length scale, possible ways to alleviate the problem include choosing the contacting layers 
with a high thermal conductivity contrast, or the use of a layer/contacting adhesive with a small thermal con-
ductivity contrast11. Following Fig. 3(A), at r <  R, the thermal conductivity in the radial (/perpendicular) direc-
tion: κr

c (/κz
c) would be larger than the κθc, implying an orientation of elements parallel to the heat flux, while for 

r >  R, i.e., when κr
c (/κz

c) is smaller compared to the κθ
c, the orientation of the elements would be perpendicular 

to the heat flux. Essentially, the size of a composite element (yielding the desired κ c) should be such that a con-
stant temperature gradient across the element could be assumed, in accordance with the tenets of an ETM. We 
will show later, through computational simulations, that the related arrangement of materials indeed ensures 
uniform heat flow and a linear temperature gradient. The facilitating methodology involves a metamaterial 
architecture12–15, constituted from individual thermal meta-atoms at a given r, and with spatially varying values 
of the thermal conductivity (i.e., through κr

c, κz
c, and κθc). Such r dependent variation yields an anisotropic10 

character to the diffuser.
We discuss next the temperature variation in the thermal diffuser employing such spatial conductivity modu-

lation. Through consideration of the heat flux continuity in (a) an isotropic cylindrical diffuser: Fig. 1(A), vis-à-vis, 
(b) an anisotropic cylindrical diffuser: Fig. 1(B), and a convective heat transfer coefficient h between the outer 
radial surface r =  Ro and the ambient (at Tamb), it can be derived (see Section III of the Supplementary Materials) 
that the source temperature (at r =  Ri), in the isotropic and the anisotropic case, would be respectively:

κ
=



















+


















+=T q R R
R h

R
R

Tln 1

(3a)
r R
iso

in
i o

i

i

o
ambi

κ
=









− +


















+=T q R
R

R R
h

R
R

T( ) 1

(3b)
r R
aniso

in
i

o i
i

o
ambi

While Eqn. 3(a) predicts a logarithmic temperature variation, it is apparent from Eqn. 3(b) that a linear temper-
ature profile is obtained through the use of an anisotropic materials architecture: Fig. 3(B). The latter attribute 
now yields a lower temperature at the source (r =  Ri) by an amount, Δ Tr=Ri , obtained by subtracting (3b) from 
(3a), and is:

Figure 3. (A) The variation of the in plane radial (κr
c), and azimuthal (κθ c) thermal conductivity, along with the 

cross-plane thermal conductivity (κZ
c) with radial distance (r) from the heat source. (B) While the radial 

variation of the temperature, i.e., Tiso(r), is nonlinear for a diffuser constituted from isotropic material, a linear 
temperature gradient together with a resultant lower source temperature may be obtained through the use of an 
anisotropic material (the temperature variation of which is depicted through Taniso(r).
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One way to understand Eqn. (4), from a physical perspective, involves considering the first term:
κ

q Rin i , as the 
thermal energy input, while the multiplying bracketed term represents the reduced temperature due to induced 
anisotropy. The resulting plots of ∆ =Tr Ri

 as a function of the mean radius (R =  ½ [Ri +  Ro]) and the width of the 
diffuser (W =  ½ [Ri −  Ro]) are shown in Fig. 4. The constraint of Ri >  0, mandates that R >  W and marks the begin-
ning of the curve. At large R (/small W), the anisotropic composite would degenerate to an isotropic case, implying 
a very small ∆ =Tr Ri

.  We also observe that at increasingly larger R, with a fixed W, the logarithm in Eqn. (4) could 
be linearized yielding a correspondingly diminished temperature difference. The peak in the ∆ =Tr Ri

corresponds 
to an r where the enhanced thermal diffusion due to the induced anisotropy would be balanced by the increasing 
heat input. A very significant reduction of the source temperature can be obtained, in principle to infinitesimally 
above the ambient temperature, and lays the basis for a perfect thermal diffuser with maximal heat dissipation.

Figure 4. The variation of the difference in temperature, at the source (r =  Ri): ∆ =T r Ri
, between using a thermal 

diffuser constituted from a single material with isotropic thermal conductivity and the desired anisotropically 
architected material, with the mean radius (R =  ½ [Ri +  Ro]) and the width of the diffuser (2W =  [Ri −  Ro]), per 
Eqn. (4). The marked points ( ) indicate results from the computational simulations.

Figure 5. (A) Computational simulations indicating the notion of a perfect thermal diffuser, for an input heat 
flux qin =  2 ×  106 W/m2. A uniform temperature distribution in the composite was obtained through the use of 
an anisotropic arrangement (see Table S1 of the Supplementary Materials for the details on the arrangement 
scheme), composed of materials of constant and isotropic thermal conductivity. The symbols refer to the nominal 
thermal conductivity of the used isotropic materials, i.e., a (= 282 W/mK), b (= 12 W/mK), c (= 118 W/mK), 
d (= 29 W/mK), e (= 110 W/mK), f (= 31 W/mK), g (= 169 W/mK), and h (= 20 W/mK). (B) The resulting 
temperature variation, for the isotropic case: T iso(r), and the anisotropic case: Taniso(r), determined from the 
simulations (Sim.), was found to be in excellent accord with the analytical (Analytical) relation derived in Eqn. 3(b). 
The ambient temperature (Tamb) was chosen to be 293 K. The respective temperatures at the center (r =  Ri) are 
587 K and 687 K, for the anisotropic and the isotropic cases, respectively.
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Computational simulations were performed to validate our analytical derivations and the principles underly-
ing the perfect thermal diffuser design: Fig. 5(A). We consider a diffuser needing to dissipate a qin, of 2 ×  106 W/m2,  
as may occur in heat assisted magnetic recording (HAMR)16,17, with R =  2.5 cm and W =  2 cm (related to the 
point at the maximum of the curve in Fig. 4). The corresponding anisotropic thermal conductivity of the diffuser 
and placement of the material, per Eqn. (2), was derived (also see Section IV of the Supplementary Materials) 
assuming a nominal isotropic κ  =  60 W/mK. The corresponding simulations and agreement with the theoretical 
predictions for a point away from the maximum of the curve (with R =  5 cm and W =  2 cm) –as indicated by 
the marked point in Fig. 4 has also been shown in Section IV of the Supplementary Information (Figure S3).  
The suggested thermal conductivity values are very practicable and may easily be experimentally implemented 
through the use of existing and readily available materials. A comparison of the analytically predicted tempera-
ture variation from Eqn. 3b, with the computational results is illustrated in Fig. 5(B). The temperature variation 
was found to be linear in excellent accord with the predictions, and has been achieved through the use of rela-
tively few layers. As predicted, a remarkable reduction in the source temperature (following Eqn. 4) by ~100 K in 
the engineered composite, is a highlight of our design and indicates the validity of our approach as a proposal for 
a new type of a thermal management technique.

In summary, we have implemented a simultaneous variation of the radial and the azimuthal thermal conduc-
tivity at a given point in an anisotropic material and have hence demonstrated the path towards creating a perfect 
thermal diffuser. The significant lowering of the source temperature in such a diffuser, compared to that obtained 
through the use of a single material with isotropic thermal conductivity, would find many applications. Our work 
also exemplifies the utility of anisotropic architectures. As heat transfer is fundamentally anisotropic, as (a) in 
thermal conduction, e.g., due to phonon dispersion18,19, (b) in convection, e.g., due to buoyancy effects20, and 
(c) in radiative heat transfer, e.g., due to view factor related effects21, the regularization of diffusive heat transfer 
through the use of anisotropic composites may indeed be appropriate.
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