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Discovery and prioritization of genetic
determinants of kidney function in 297,355
individuals from Taiwan and Japan
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Charles C. N. Wang 5, Tzu-Pin Lu 6, Chien-Yueh Lee 7,8,
Amrita Chattopadhyay1,9, Yu-Ting Lin1,2, Che-Chen Lin1, Pei-Tzu Yu1,
Chien-Fong Huang1, Chieh-Hua Lin1, Hung-Chieh Yeh3, I-Wen Ting3,
Huai-Kuang Tsai 10, Eric Y. Chuang 11,12,13, Adrienne Tin14,
Fuu-Jen Tsai 15,16,17,18,20 & Chin-Chi Kuo 1,2,3,16,19,20

Current genome-wide association studies (GWAS) for kidney function lack
ancestral diversity, limiting the applicability to broader populations. The East-
Asian population is especially under-represented, despite having the highest
global burden of end-stage kidney disease. We conducted a meta-analysis of
multiple GWASs (n = 244,952) on estimated glomerular filtration rate and a
replication dataset (n = 27,058) from Taiwan and Japan. This study identified
111 lead SNPs in 97 genomic risk loci. Functional enrichment analyses revealed
that variants associated with F12 gene and a missense mutation in ABCG2may
contribute to chronic kidney disease (CKD) through influencing inflammation,
coagulation, and urate metabolism pathways. In independent cohorts from
Taiwan (n = 25,345) and the United Kingdom (n = 260,245), polygenic risk
scores (PRSs) for CKD significantly stratified the risk of CKD (p < 0.0001).
Further research is required to evaluate the clinical effectiveness of PRSCKD in
the early prevention of kidney disease.

No cure has yet been developed for chronic kidney disease (CKD),
which affectsmore than 700million peopleworldwide and thus places
a substantial socioeconomicburdenon the global economy andpublic
health systems1. Sodium–glucose cotransporter-2 (SGLT2) inhibitors
are the only oral drugs approved by the U.S. Food and Drug
Administration to slow the progression of CKD. This therapeutic effect
was an unexpected discovery2–4. Accordingly, an effective drug dis-
covery platform for CKD should be established5. Regardless of which
type of therapy is examined, such as cell therapy or antisense
oligonucleotides6, identifying the genetic variants associatedwithCKD
is essential for accelerating drug development efforts7.

More than 250 genetic loci associated with kidney functional
markers, including the estimated glomerular filtration rate (eGFR) and
theurinealbumin-to-creatinine ratio, arehighly replicated in large-scale
population-based cohorts, such as those from the Million Veteran

Program, Biobank Japan (BBJ) Project, and UK Biobank (UKB)8–10. How-
ever, undetermined pathogenic pathways, a dominant distribution in
noncoding regions, and extensive linkage disequilibrium (LD) across
common variants in these kidney function-related loci have prevented
researchers from elucidating the functionality and pinpointing the
casual variants8,11. In addition, the relatively limited ancestral and ethnic
diversityof the individualsanalyzedinexisting large-scalegenome-wide
association studies (GWASs), which predominantly focus on Caucasian
populations,may lead to significant limitations in regional practice and
healthcare policy development for the Asian population12. Therefore,
GWASs involving diverse populations with a range of kidney functional
markers are urgently required for clinical and therapeutic translation.

Taiwan has the highest prevalence (3679 per million population)
and incidence (823 permillion population) of end-stage kidney disease
(ESKD) worldwide, making it particularly suitable for CKD-related
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GWAS13,14. In a population-based family study that involved data
obtained from Taiwan’s National Health Insurance Research Database,
a high kidney disease heritability of 31.1%was observed, indicating that
further examination of genetic inheritance is warranted15. In this study,
to determine the effect of genetic heritability on common kidney
functional markers in regions with a high prevalence of ESKD, we
conducted a systematic analysis of GWAS findings in populations from
the Taiwan Biobank (TWB), the BBJ, and a large hospital-based cohort
from China Medical University Hospital (CMUH) in Taiwan.

Results
Discovery of genetic associations with eGFR through a meta-
analysis of GWASs involving the BBJ and TWB
The present study design is depicted in Fig. 1. We conducted a fixed-
effects inverse variance-weighted meta-analysis of GWASs involving

two large biobanks containing samples from individuals of East Asian
ancestry, namely the BBJ (n = 143,658) and TWB (n = 101,294). The
mean eGFRs (standard deviations [SDs]) of the BBJ, TWB, and pooled
populations were 79.93 ( ± 15.42), 101.95 ( ± 14.75), and 89.04
( ± 15.14)mL/min/1.73m2, respectively, and their corresponding mean
ages (SDs) were 62.9 ( ± 13.2), 50.4 ( ± 10.9), and 57.7 ( ± 12.2) years,
respectively (Supplementary Data 1). The genotypes used in the two
GWASswere imputed from the East Asian reference panels of the 1000
Genomes Project Phase 316. As shown in Fig. 2 and Supplementary
Data 2, a meta-analysis of these GWASs revealed 5790 genome-wide
significant (P < 5 × 10−8) single-nucleotide polymorphisms (SNPs). In
these genome-wide significant SNPs, 2140 were unreported in the
previous eGFR GWASs10,17. A total of 238 independently significant
SNPs (LD r2 < 0.6) were represented by 111 lead SNPs (LD r2 < 0.1)
located in 97 genomic risk loci, of which 26 loci were unreported in
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Fig. 1 | Flowchart of the study design. A meta-analysis of an eGFR GWAS was
conducted using the BBJ and TWB. Replication was performed using an indepen-
dentTWB-derived replicationdataset. The relevanceof the eGFR to kidney function
was validated through the associations of the eGFRwith BUN,CKD, and ESKD in the
TWB and BBJ. Pathways and tissue types were enriched through the FUMA plat-
form. Genetic correlation analysis of 119 traits was conducted using LD score
regression. Fine mapping of causal variants was performed using GCTA-COJO, and
gene prioritization with tissue-specific cis-eQTLs was conducted using the R
package “coloc.” The PRS for CKD was derived using PRSice-2 and tested using
patient data obtained from a Taiwanese hospital cohort (CMUH-CRDR CKD) and

community-based data obtained from a UK cohort (UKB CKD). BBJ Biobank Japan,
BUN blood urea nitrogen, cis-eQTL cis-expression quantitative trait locus, CKD
chronic kidney disease, CMUH-CRDR Clinical Research Data Repository of China
Medical University Hospital, eGFR estimated glomerular filtration rate, ESKD end-
stage kidney disease, FUMA Functional Mapping and Annotation of Genome-Wide
Association Studies, GCTA-COJO genome-wide complex trait analysis–conditional
and joint analysis, GWAS genome-wide association study, LDSC linkage dis-
equilibrium score regression, PRS polygenic risk score, SNP single-nucleotide
polymorphism, TWB Taiwan Biobank, UKB UK Biobank.
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other GWASs (Supplementary Data 3). Genomic risk loci were defined
as nonoverlapping on the basis of a window size of ±250kb around LD
block of lead SNPs, and these loci weremerged into a single locus if the
distance between them was shorter than 250kb10,17. The previously
unreported genome-wide significant SNP with the lowest P value
(P = 5.1 × 10−45) was rs754331108, which was located in the intronic
region of CASP9. The minor alleles across genome-wide significant
SNPs both increased and decreased the eGFR, with lower-frequency
alleles exhibiting stronger effects (Supplementary Fig. 1a). The effects
of genome-wide significant SNPs on the eGFR were largely homo-
geneous (median I2 = 0) across the two biobank populations (Supple-
mentary Fig. 1b). According to meta-GWAS summary statistics, the
estimated genetic heritability (h2) of the eGFR was 10.9%, and the LD

score regression intercept was 1.05, indicating that the effects of bias
due to population stratification and cryptic relatedness were
negligible.

Replication of eGFR-associated SNPs in an independent TWB
dataset
We evaluated the replication of eGFR-associated SNPs, defined as
genome-wide significant SNPs, in an independent replication dataset
that comprised data from 27,058 individuals in the TWB. Of the 5790
eGFR-associated SNPs identified during the discovery stage, 5342 were
available in the replication dataset (Supplementary Data 4). These
SNPs had a consistent effect direction in the TWB-based replication
dataset, with 3899 of them having a P value of <0.05. The effect

Fig. 2 | A circularManhattanplot fromameta-analysis of eGFR-derivedGWASs
(TWB, n = 101,294; BBJ, n = 143,658; total n = 244,952). The green band corre-
sponds to–log10(P) for associationwith eGFR in themeta-analysis by chromosomal
position. The blue band corresponds to –log10(P) for association with eGFR in the
TWB-derived discovery dataset by chromosomal position. The orange band cor-
responds to –log10(P) for associationwith eGFR in theBBJ dataset by chromosomal
position. The solid red line indicates genome-wide significance (P = 5 × 10–8). Genes
labeled in black indicate SNPs exclusively identified in the meta-analysis, whereas

genes labeled in blue indicate SNPs identified in themeta-analysis and additionally
detected in theTWBorBBJ orboth. A total of 5790SNPs hadP valuesof <5 × 10−8, of
which 4732 had a consistent effect direction. The lowest P value was observed for
rs62435145 near UNCX on chromosome 7 (P = 5.23 × 10−67 Supplementary Data 2).
All statistical tests employed two-sided P values. BBJ Biobank Japan, eGFR esti-
mated glomerular filtration rate, GWAS genome-wide association study, SNP
single-nucleotide polymorphism, TWB Taiwan Biobank.

Article https://doi.org/10.1038/s41467-024-53516-7

Nature Communications |         (2024) 15:9317 3

www.nature.com/naturecommunications


estimates strongly correlated with those from the discovery stage,
exhibiting almost complete consistency in directionality (Pearson’s
r =0.97; P < 0.0001; Fig. 3). Of the 3899 replicated eGFR-associated
SNPs, 387 from 10 independent genomic risk loci were genome-wide
significant in the TWB-based replication dataset. These SNPs were
located close to genes including ABCG2, BCAS3, CSP9, CCDC158,
DCDC1, DNAJC16, LRP2, MRTFA, MUC1, NRG4, SCARNA21B, SHROOM3,
SLC34A1, STBD1, THBS3, and TRIM46 (Supplementary Data 4).

Correlations of eGFR loci with blood urea nitrogen and CKD
We examined the correlation between eGFR-associated SNPs and
blood urea nitrogen (BUN) to determine whether the identified SNPs
were directly related to kidney function rather than creatinine
metabolism10. Urea nitrogen is a harmful waste product that may
accumulate in the blood if kidney function is impaired18. Our BUN-
related meta-analysis of GWASs involved BBJ and TWB datasets
(n = 241,112). A total of 2365 replicated eGFR-associated SNPs were
associated with BUN (P <0.05; Supplementary Fig. 2a and Supple-
mentary Data 5). The effect sizes of 2064 replicated eGFR-associated
SNPs from 31 independent genomic risk loci associated with eGFR and
BUN were strongly and inversely correlated (defined as kidney-rele-
vant); this finding was consistent with the established understanding
of kidney pathophysiology (Pearson’s r = −0.86; P <0.0001).

To determine whether the replicated eGFR-associated SNPs
altered the risk of kidney diseases (e.g., CKD or ESKD), we conducted a
logistic regression of a validation longitudinal cohort from the Clinical
Research Data Repository of CMUH (CMUH-CRDR), which contains
data regarding CKD follow-up status (CKD, n = 4509; control,
n = 20,836). In addition, we examined the effect of replicated eGFR-
associated SNPs on CKD; the results indicated that the effect direction
of 397 replicated eGFR-associated SNPs on the eGFR was negatively
correlated with the relevant effect direction of CKD (P < 0.05;
maximum, median, and minimum odds ratios [ORs] = 1.02, 1.01, and
0.98, corresponding 95% confidence intervals [CIs] = 1.01–1.03,
1.00–1.01, 0.97–1.00, respectively; Pearson’s r = −0.94, P <0.0001;

Supplementary Fig. 2b and Supplementary Data 6). These SNPs
included 160 from 14 independent genomic risk loci likely related to
kidney function, which were located close to the following genes:
ASCC3, DCDC1, F12, FAM47E, FBXO22, HCRTR2, KNG1, LRP2, RAI14,
NRG4, PAX8, PDILT, SIM1, STC1, TINAG, UBE2Q2, and WDR72.

Data from the CMUH-CRDR (ESKD, n = 706; control, n = 20,836)
were employed to clinically validate the effect of replicated eGFR-
associated SNPs on the risk of ESKD. A total of 162 replicated eGFR-
associated SNPs exhibited negative correlations with the effect
directions of the eGFR and ESKD (P <0.05; maximum, median, and
minimum ORs= 1.01, 1.00, and 0.99, corresponding 95% CIs =
1.01–1.02, 0.99–1.00, 0.98–1.00, respectively; Pearson’s r = −0.96,
P <0.0001; Supplementary Fig. 2c and Supplementary Data 7),
including 69 likely kidney-related SNPs from 7 genomic risk loci close
to the following genes: KNG1, F12, HLA-DQA1, TINAG, RSBN1L, and
TMEM60.

Genetic correlations of the eGFR and BUN with other
phenotypes
We explored the genome-wide genetic correlations (rg) of eGFR and
BUN with 71 quantitative and 48 binary phenotypes from a TWB dis-
covery dataset to understand their shared genetic basis (Supplemen-
tary Data 8). Totals of 13 and 2 statistically significant genetic
correlations were identified for eGFR and BUN, respectively
(P < 4.2 × 10−4 = 0.05/119; SupplementaryData 8).With the exceptionof
serum creatinine (S-Cre), the strongest genetic correlations observed
between the eGFR and phenotypes were those with BUN (rg = −0.30,
P = 1.13 × 10−8), urinary albumin (rg = 0.25, P = 5.92 × 10−7), uric acid
(rg = −0.24, P = 7.15 × 10−10), and muscle mass (rg = −0.14, P = 1.67 × 10−7;
Supplementary Fig. 3a). For BUN, the strongest genetic correlation
observed was that with S-Cre (rg = 0.28, P = 4.06 × 10−8; Supplementary
Fig. 3b). Genetic correlation analysis revealed that muscle mass was
correlated with eGFR but not with BUN. These results indicated that
the eGFR-associated SNPs reflected the regulatory roles of renal
excretion and muscle generation in S-Cre levels.

Functional enrichment and pathway enrichment analyses
To determine whether the eGFR-associated SNPs weremechanistically
linked to kidney function, we conducted serial enrichment analyses to
characterize tissue-specific gene expression, regulatory annotations,
and pathway dynamics.

Multimarker Analysis of GenoMic Annotation (MAGMA) software
was used to prioritize genes for gene sets, pathways, and cell types
based on the results of a meta-analysis of eGFR GWASs. We identified
significantly enriched tissues and cell types with the strongest
enrichment of eGFR-associated SNPs observed in the kidney medulla
(P = 1.01 × 10−6) and kidney cortex (P = 1.26 × 10−6) tissues in Genotype-
Tissue Expression (GTEx) version 8 (54 tissue types; Fig. 4 and Sup-
plementary Data 9). Pathway enrichment analysis revealed nine sig-
nificant canonical pathways, including several pathways relevant to
kidney function, such as urate metabolism (Bonferroni-corrected
P = 2.0 × 10−4) and abacavir transmembrane transport (Bonferroni-
corrected P = 5.0 × 10−4; Table 1 and Supplementary Data 10). Enrich-
ment analysis of BUN-associated SNPs in specific tissues and cell types
revealed a similar expression pattern to that of eGFR-associated SNPs,
including in kidneymedulla and kidney cortex tissues (Supplementary
Data 9); this finding supports the use of BUN for prioritizing loci that
are highly likely to be associated with kidney function.

Stratified LD score regression was used to estimate the con-
tributionsof cell-type-specific functional genomic elements and tissue-
specific gene expression to heritability through GWAS summary sta-
tistics pertaining to the eGFR and BUN. Cell-type-specific functional
genomic elements were sourced from the Roadmap Epigenomics
database19, and tissue-specific gene expression data were derived from
the GTEx20 and Franke Lab databases21. In the eGFR GWAS, fetal kidney
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Fig. 3 | Replication of eGFR-associated SNPs in an independent replication
dataset derived from the TWB (n = 27,058). Data regarding 5342 out of 5790
eGFR-associated SNPs were available in the TWB-derived replication dataset. Of
these eGFR-associated SNPs, 3899 were replicated in the TWB-derived replication
dataset (two-sided P <0.05, consistent effect direction), plotted as blue dots (“Yes”
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the blue dots. Pearson’s r is 0.97 (two-sided P <0.0001). The data present the effect
estimates, and error bars correspond to 95% CIs. Further details are provided in
Supplementary Data 4. BBJ Biobank Japan, eGFR estimated glomerular filtration
rate, SNP single-nucleotide polymorphism, TWB Taiwan Biobank.
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tissues were regarded as the enriched tissues for functional genomic
elements, and kidney (A05.810.453.kidney), pancreas, and kidney
cortex tissues were regarded as the most significant tissues for tissue-
specific gene expression, followed by fetal kidney tissues (Supple-
mentary Data 11). In the BUN GWAS, fetal kidney tissues were the
enriched tissues for functional genomic elements, and kidney cortex
tissues were the enriched tissues for tissue-specific gene expression
(Supplementary Data 11). These findings indicated that kidney-specific
epigenomic elements and gene expression contributed to the herit-
ability of the eGFR and BUN.

Statistical fine mapping of causal variants from eGFR GWAS
To identify the causal variants among the eGFR-associated SNPs, a
stepwise conditional analysis was conducted using genome-wide
complex trait analysis–conditional and joint analysis (GCTA-COJO)
with an in-sample LD reference. Subsequently, statistical finemapping
of eGFR loci was conducted through summary statistics-based condi-
tional analyses for 238 independent significant SNPs mapped to 97
genomic risk loci. We found a credible set with a cumulative posterior
probability (PP) of more than 99% and amedian set size of 52 SNPs for
independent significant SNPs (Supplementary Data 12).

The potential causal variants within the small credible set were
evaluated to determine their functional impact and regulatory
potential. Missense SNPs with a cumulative PP of over 99% ormapping
to a small credible set (n < 5) are particularly important, as they suggest
a direct involvement of the affected gene. As shown in Fig. 5a and
Table 2, five missense SNPs were identified. Among these missense
SNPs, the rs17730281 missense SNP in WDR72 had a combined
annotation-dependent depletion (CADD) score of >15, which sup-
ported its potential deleterious effect (Table 2). To determine the
regulatorypotential of SNPs fromsmall credible setswithin the kidney,
we associated these SNPs with DNase I hypersensitivity sites identified
from the Roadmap Epigenomics database, which includes multiple
kidney cell types. We subsequently prioritized 23 eGFR-associated
SNPs that weremapped to one of these epigenomic annotations with a

credible set size of <5 and a PP of >95%, indicating their potential as
causal regulatory variants (Supplementary Data 13). The rs9895661
SNP close to the BCAS3 locus had a PP of >95% and a CADD score of
17.47, which suggested its regulatory potential for gene expression in
kidney tissues (Fig. 5b).

Statistical colocalization for causal gene prioritization
Colocalization analyses of 111 eGFR-associated lead SNPs were con-
ducted using cis-expression quantitative trait locus (cis-eQTL) data and
eGFR GWASs within ±100 kb regions of the lead SNPs. Specifically, cis-
eQTLs across 51 tissues were sourced from GTEx version 8 and the
Human Kidney eQTL Atlas, which includes data regarding tissues from
renal glomerular and tubulointerstitial compartments11. A PP of >80%
for colocalization was observed in 287 genes encompassing multiple
tissue types, including 43 genes in at least one kidney tissue type
(Supplementary Data 14). Changes in the expression of these 43 genes
in the kidney may be linked to the eGFR, as several genes have been
reported10. For instance, UMOD was identified as a casual gene for
CKD22, with higher UMOD gene expression associated with a lower
eGFR (Supplementary Fig. 4). We observed that the rs77924615 SNP
was associated with high UMOD gene expression and a low eGFR in
both glomerular and tubulointerstitial compartments (Supplementary
Fig. 4), while Wuttke et al. observed the rs77924615 SNP only in
tubulointerstitial compartments10. Overall, our findings underscore
the key roles of several kidney function-related genes—including
UNCX, TBX2, and SHROOM3—and are consistent with those of related
studies10,23,24.

According to our colocalization findings, FGF5 and F12 are
potential effector genes that influence an individual’s eGFR. Notably,
the rs16998073 SNP associated with FGF5 gene expression was
detected in both renal glomerular and tubulointerstitial compart-
ments (Supplementary Fig. 4). FGF5, which encodes fibroblast growth
factor 5, has been associated with blood pressure, coronary artery
disease, and kidney function10. In the present study, the rs16998073
SNP associated with F12 gene expression was exclusively identified in
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Fig. 4 | Tissue-specific analysis of eGFR GWASs. Functional analysis of an eGFR-
derived GWAS was conducted using GTEx version 8 (54 tissue types) in MAGMA.
Kidney medulla and kidney cortex tissues had P values of <0.05 (above the dashed
line). All statistical tests employed two-sided P values. Further details are provided

in Supplementary Data 9. eGFR estimated glomerular filtration rate, GTEx
Genotype-Tissue Expression, GWAS genome-wide association study, MAGMA
Multimarker Analysis of GenoMic Annotation.
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renal tubulointerstitial compartments (Supplementary Fig. 4). F12,
which encodes coagulation factor XII protein, plays a role in the
renin–angiotensin–aldosterone system,whichmay be linked to kidney
function25. Our analyses revealed that eGFR-associated SNPs demon-
strate colocalization with eQTL in kidney tissues. Among these SNPs,
some also colocalized with gene expressions in other tissue types and
showed consistent effect directions, similar to those observed as in
kidney tissue, with the exceptions of CEP89 and PAX8 (Supplemen-
tary Fig. 4).

Cumulative incidence of CKD throughout an individual’s life,
stratified by polygenic risk scores
To examine the relevance of our findings regarding genetic suscept-
ibility to CKD, we constructed a polygenic risk score (PRS) for CKD
(PRSCKD) by using GWAS-derived summary statistics for the eGFR. An
optimal PRS model was obtained through a meta-analysis of eGFR-
related GWAS summary statistics, with BBJ- and TWB-derived dis-
covery data used as the base datasets and with TWB-derived replica-
tion data regarding CKD used as the target dataset (with a cut-off
P value of 0.048). Information regarding the onset of CKD is particu-
larly useful for validating the longitudinal predictive performance of
PRSs derived from eGFR-associated SNPs. We observed a significantly
higher cumulative incidence of CKD in patients with a PRSCKD two SDs
above themean comparedwith thosewith a PRSCKD twoSDs below the
mean in an external Taiwanese dataset. This difference in cumulative
incidence remained constant throughout the lives of the participants,
particularly from age 50 to age 80 (Fig. 6a). An analysis of the adjusted
hazard ratio (HR) of CKD revealed a dose–response pattern between
patients with a PRSCKD two SDs above the mean and those with a
PRSCKD within two SDs of the mean, with the corresponding adjusted
HRs for patients with a PRSCKD two SDs below themean being 2.3 (95%
CI = 1.7–3.0; P <0.0001) and 1.6 (95% CI = 1.3–2.1; P < 0.0001) (Sup-
plementary Fig. 5), respectively. We also examined the time to reach a
10% cumulative incidence of CKD in the three PRSCKD groups. This
threshold is close to the global CKD prevalence of 9.1%1. The time to
reach a 10th percentile cumulative incidence of CKD in the three
PRSCKD groups (above, within, and below two SDs) were 61.8, 63.8, and
69.8 years after birth, respectively. Notably, the PRSCKD effectively
differentiated between high- and low-risk groups in both East Asians
and White British populations, as demonstrated in the UKB (Fig. 6b).
The area under the receiver-operating characteristic curve (AUROC)
for PRSCKD was consistent across the Taiwanese and White British
populations, namely 0.788 for both (95% CIs = 0.781–0.794 and
0.783–0.793, respectively; Fig. 6c). In addition, the calibration curve
for our PRSCKD model indicated that the predicted probability was
highly consistent with the observed probability, particularly between
0.4 and 0.5, indicating the model’s accuracy (Fig. 6d).

Discussion
This study represents a large GWAS examining the eGFR of East Asian
populations fromTaiwan and Japan, which are among the regions with
the highest prevalence of ESKD worldwide. A total of 26 unreported
genomic risk loci closely linked to kidney function were identified. We
discovered that individuals whose PRSCKD was within the highest two
SDs of the PRSCKD distributionweremore likely than others to develop
CKD and also developed CKD approximately 8 years earlier than did
those whose PRSCKD was within the lowest two SDs. When PRSCKD was
combined with age and sex, it demonstrated good discriminative and
calibrating performance in forecasting CKD development, achieving
an AUROC of 0.788. Functional enrichment analysis revealed that the
identified biological pathways were primarily associated with urate
metabolic process. This finding aligns with the fine-mapping result,
which identified a missense mutation in ABCG2 as a potential causal
variant.
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A major gap between research regarding translation of genetic
nephrology and real-world practice manifests as the under-
representation of certain ancestry groups, particularly Asian
populations26,27. The present study sought to address this gap and
expand the current level of understanding regarding the long-term
epidemiology and susceptibility patterns of CKD in Taiwan28. The
escalating prevalence of ESKD in Taiwan imposes a substantial socio-
economic burden, yet its primary causes remain unidentified29. Over
the preceding three decades, extensive efforts have been made to
determine the factors underlying Taiwan’s high incidence of CKD.
Some researchers have suggested the involvement of Chinese herbal
medicine30 or environmental exposures, such as arsenic31. Others have
speculated that Taiwan’s universal healthcare system may have

resulted in an increase in CKD diagnoses32. However, these theories
lack causal evidence. Conversely, the present findings uniquely
demonstrate a genetic predisposition to early CKD onset in the Tai-
wanese population, thereby corroborating the results of a population-
based familial aggregation study that revealed a moderate heritability
rate of 31.1% for the phenotypic variance of ESKD15.

After applying the highest PRSCKD threshold of two SDs, we
observed an earlier onset of CKD, by an average of 8 years, among
individuals in their mid-50s who were at the highest genetic risk of
CKD. Although the predictive performance of PRSCKD was modest in
the White British dataset, it effectively differentiated between groups
with high and low risk of developing CKD as defined by PRSCKD. These
findings underscore the importance of shifting toward early

Fig. 5 | Fine mapping of credible sets of exonic and regulatory SNPs. a Fine
mapping of exonic SNPs. The triangles represent exonic SNPs, and their sizes
correspond to their CADD scores. The red triangles indicate exonic SNPs with a
credible set size of <5 or a PP of >99%. b Fine mapping of regulatory SNPs. Each
color corresponds to a unique tissue type, as indicated by Roadmap Epigenomics

data. The labels indicate credible set sizes of≤10 andPPs of >95%. All statistical tests
employed two-sided P values. Further details are provided in Supplementary
Data 13. CADD combined annotation-dependent depletion, PP posterior prob-
ability, SNP single-nucleotide polymorphism.
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prevention of CKD through genetic counseling. Our proposed, PRS-
based risk stratification has the potential to provide anopportunity for
the early implementation of CKD preventive care strategies, such as
intensive prediabetes management and rigorous blood pressure
monitoring and optimization. Nevertheless, a more comprehensive
pragmatic trial is required to assess the real-world effectiveness of
PRSCKD in preventing CKD or slowing its progression.

From the enrichment analysis, we identified three eGFR-
associated genes that were physiologically relevant, which may serve
as potential targets for CKD drug development33. Compared to prior
findings mainly derived from Caucasian and African American popu-
lations, this study focused on East Asian populations and revealed that
UMOD but not APOL1 was significantly associated with the eGFR10,34.
The UMOD variant was discovered in a 2009 GWAS that employed the
S-Cre-based eGFR as a phenotype35. Extensive research has under-
scored the promising prognostic value of UMOD for CKD in general
populations of various ethnicities22. A recent discovered variant of
UMOD, namely p.Thr62Pro, has been found to have a moderate effect
on the risk of CKD in a large proportion of individuals with European
ancestry, with endoplasmic reticulum homeostasis and maturation
being potential pathogenic pathways36. A large Mendelian Randomi-
zation (MR) study with a sample size of 567,460 provided evidence
further supporting a causal relationship betweenUMOD and the risk of
CKD37. These findings highlight the potential for drug discovery by
exploring whether modulating UMOD expression could be a viable
strategy for CKD prevention.

The F12 gene was consistently identified in all our replication and
validation analyses (Supplementary Data 15). F12 gene encodes the
plasma coagulation factor XIIa, which can subsequently cleave plasma
pre-kallikrein to kallikrein, thereby initiating the kallikrein-kinin system
(KKS)38. In a subset of twin and sibling participants recruited from
southern California, F12 was found to involve the renin–angiotensin
system (RAS) pathway and potentially regulate blood pressure25.
Association of the F12 polymorphism and serum osteopontin (OPN)
levels was identified in the German Chronic Kidney Disease (GCKD)
study39. OPN is a phosphorylated glycoprotein encoded by SPP1; it is
predominantly synthesized in kidney tissue and has been associated
with kidney fibrosis in animal experiments and in the German Chronic
KidneyDisease (GCKD) study39,40. In addition, the association of the F12
genewithCKDmaybeattributable todysregulatedbloodpressure and
chronic inflammation resulting from the activationof theRASandKKS,
respectively25,39. A recent study from China has identified F12 as a
druggable target through extensive MR and colocalization analysis,
using data from the CKDGen Consortium and cell-type-dependent
eQTL data from kidney tubular and glomerular samples41. Continued
research efforts are required to elucidate the potential beneficial role
of targeting F12 in patients across a range of kidney disease spectrums,
with a focus on replication studies and large clinical trials.

Among the three index genome-wide-significantly SNP associated
with OPN, rs10011284 was mapped to an intergenic region between
SPP1 and MEPE, and MEPE was found to be involved in bone miner-
alization, phosphate homeostasis, andbone turnover39,42,43. The variant
rs10011284, also linked to gout, may be influenced by ABCG2, which is
located near SPP1 and MEPE. This proximity suggests a potential
pathogenic role for ABCG2 in the development of CKD39. Although the
ABCG2gene iswell known for its connectionwith serumuric acid levels
and gout, as demonstrated in previous GWASs44–46, mechanistic
studies47,48, and human research49–51, its independent role in CKD
development remains to be clarified. The ABCG2 protein, also known
as thebreast cancer resistanceprotein, is amultidrug transporter and a
high-capacity urate exporter47,52,53. In a human study, reduced ABCG2
function was associated with a rapid decline in the age-dependent
eGFR among individuals with serum uric acid levels exceeding 6mg/
dL. This finding underlines the potential role ofABCG2 in eGFRdecline,
especially given the high prevalence of hyperuricemia in East Asia54.Ta
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These insights underscore the importance of further exploring the
feasibility of integrating ABCG2 function quantification into routine
practice to enhance CKD care and disease prevention.

We identified three of five causal missense SNPs in the present
study differ from those reported in previous CKD genetic studies8,10,54.
The genes associated with these missense SNPs, such as TRIM46 and
GON4L, have been linked to tubular fibrosis and BUN levels,
respectively10,55. Our study highlights the genetic diversity in CKD risk
between populations of European ancestry and East Asian ancestry.
For instance, rs4715491 in the FAM83B gene and rs4148155 in the
ABCG2 gene were found to be associated with eGFR exclusively in
Asian populations. The genetic variants contributing to CKD risk
across different ancestries warrant cautious interpretation and limited
generalizability from regional evidence, potentially arising from the
following reasons: population-specific variations such as founder
effects, changes in allele frequency due to genetic drift and local
selection12, and interactions between genetic backgrounds and envir-
onmental exposure56. Therefore, the null association between
rs4148155 and eGFR decline in European populations may be under-
estimated, as the allele frequency of rs4148155 in the ABCG2 gene is
only 0.104 in European populations, compared to 0.319 in East Asian
populations57. The variance in rs4148155 allele frequency indicates the
necessity of larger European sample sizes for achieving statistical sig-
nificance. In addition, the effect of rs4148155 in ABCG2 may be

amplified by the purine-rich diet prevalent in Taiwan, which is known
to exacerbate gout and hyperuricemia—both of which are risk factors
forCKD. This concernunderscores the importanceof utilizing regional
genetic data to develop feasible PRSs for disease prevention and early
CKD screening in specific populations. Future studies should investi-
gate how the distinct genetic risk patterns defined by PRSCKD interact
with environmental exposures and contribute to geographical dis-
parities in CKD epidemiology worldwide.

This study hadseveralmethodological strengths, including a large
sample size comprising relatively homogenous East Asianpopulations;
the use of standardized, high-quality genotype imputation and phe-
notype identification; and a comprehensive bioinformatic analysis of
eGFR-associated genes and pathways. In addition, the potential causal
association in this study was suggested by the validation of PRSCKD
through longitudinal predictionwith the phenotype ofCKDonset in an
independent dataset. This study also had some limitations. First, our
findings may not be generalizable to people with non-Asian ancestry.
In addition, the assumption of fixed-allele effects across multiple
geographical areas in Asia may not hold given the potential for geo-
graphical differences in environment–gene interaction58. Despite this
inherent limitation, we observed similar PRSCKDmodel performance in
both the independent Taiwanese and White British populations. Sec-
ond, the proposed PRS for risk of CKDwas derived from the GWAS for
kidney function estimated by eGFR based on S-Cre rather than CKD,

a. b.

c. d.
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Fig. 6 | Cumulative incidence of CKD based on PRS stratification with a Tai-
wanese dataset obtained from the CMUH-CRDR and a White British dataset
obtained from the UKB. The high-PRS group exhibited a higher cumulative inci-
dence of CKD than did the low-PRS group across age in the a external Taiwanese
dataset (CMUH-CRDR, n = 25,345, P = 2.06 × 10−7) and bWhite British dataset (UKB,
n = 260,245, P = 2.60 × 10−29). The data present the PRS and error bars correspond
to 95% CIs. All statistical tests employed two-sided P values. The dashed line
represents a CKD cumulative incidence of 10%, which is an estimate of the global

prevalenceof CKD. cTheAUROCof theCKDPRSmodel is 0.788 in both the CMUH-
CRDR andUKBdatasets.dThe calibration curve of our PRSCKDmodel indicates that
the predicted probability was closely aligned with the observed probability when
the predicted probability ranged between 0.4 and 0.5 in the CMUH-CRDR dataset
and between 0.0 and 0.2 in the UKB dataset. AUROC area under the receiver-
operating characteristic curve, CI confidence interval, CKD chronic kidney disease,
CMUH-CRDR Clinical Research Data Repository of China Medical University Hos-
pital, PRS polygenic risk score, SD standard deviation, UKB UK Biobank.
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the responsible phenotype. While this approach has been debated in a
previous study59, it may not be feasible to perform GWAS directly for
CKD as CKD itself stands for a highly heterogenous disease spectrum
from arbitrary definitions to etiologies of primary or secondary kidney
degeneration. Third, the possibility of an underestimation of potential
eGFR-associated SNPs and their genetic impact on CKD development
cannot be excluded, despite our study having a large sample size
among those conducted on East Asian populations to date9,60,61.

In this GWAS of eGFR using large data exclusively from an East
Asian population, we identified 2140 previously unreported genome-
wide significant SNPs. One of the prioritized genes was, F12, has been
potentially linked to CKD through RAS and KKS dysregulation and
supported by a recent GWAS-based drug repurposing study41. The
robust association between PRSCKD and the cumulative incidence of
CKD across different ancestries sets the stage for further research to
verify its clinical effectiveness in early CKD prevention.

Methods
Biobank data source
BBJ. The BBJ is a hospital-based registry of DNA samples, serum sam-
ples, and clinical information collected from approximately 200,000
patients with one or more of a collection of 47 common diseases (e.g.,
cancers, neurological diseases, cardiovascular diseases, and infectious
diseases) identified by physicians at 66 hospitals affiliated with 12
medical institutions between 2003 and 200762. Informed consent was
obtained from all participants in writing, and the ethics committees of
the RIKEN Center for Integrative Medical Sciences and the Institute of
Medical Sciences, at the University of Tokyo approved the study. The
RIKEN Center made available the GWAS summary statistic for public
download at the Japanese Encyclopedia of Genetic Associations by
Riken [http://jenger.riken.jp/en/result] without requiring data appli-
cation. TheBBJ comprised 143,658available eGFR and 139,817 available
BUN from patient population with a mean age (SD) of 62.9 ( ± 13.2)
years, amean eGFR (SD) of 79.93 ( ± 15.42)mL/min/1.73m2, and amean
(SD) BUN level of 15.44 ( ± 4.77)mg/dL9; 54.9% of this groupweremale.

TWB. The TWB is an ongoing project that contains data and samples
from a national prospective cohort of the Taiwanese population; its
goal is to longitudinally collect a wide range of phenotypic measure-
ments and genomic data from Han Chinese individuals aged 20–70
years without cancer history63. The TWB includes two customized
arrays, namely TWBv1 and TWBv2, which are specifically designed for
the Taiwanese population (see “Genotyping and imputation”). In the
present study, in addition to demographic and phenotypic data, we
obtained TWBv2 genotyping data for 101,294 individuals for our dis-
covery dataset. The TWB-based discovery dataset included individuals
with amean age (SD) of 50.4 ( ± 10.9) years, amean eGFR (SD) of 101.95
( ± 14.75)mL/min/1.73m2, and a mean BUN level (SD) of 13.07
( ± 3.90)mg/dL.; 45.6% of the individuals were male. We also obtained
TWBv1 genotyping data for 27,058 individuals for our replication
dataset. The TWB-based replication dataset included individuals with a
mean age (SD) of 49.26 ( ± 11.10) years, a mean eGFR (SD) of 101.83
( ± 15.22)mL/min/1.73m2, and a mean BUN level (SD) of 13.26
(4.00)mg/dL; 49.9% of the individuals were male. The data utilization
and research conduct were approved by the Ethics Committees of
Academia Sinica, the TWB, and CMUH25.

UKB. The UKB is a large prospective database of biological samples
obtained from ~500,000 individuals aged 40–69 years with extensive
phenotypic data (http://www.ukbiobank.ac.uk)64. Genotyping was
performedusing theAffymetrixUKBiLEVEAxiomarray on an initial set
of 50,000 participants; the Affymetrix UKB Axiom arraywas then used
on the remaining set of participants. In the UKB, 91.7%, 1.9%, 0.8%, and
5.6% of the included data are fromEuropean (White) individuals, Asian
individuals, Black individuals, and individuals of other ethnicities,

respectively. In this study, we used data for 260,245 White British
participants as validation data to confirm the predictive performance
of PRSCKD. The validation cohort had a mean age (SD) of 54.98
( ± 18.20) years and 8821 cases of CKD, and 45.7% of them were male.

CMUH-CRDR. We used independent data from the CMUH-CRDR as
clinical validation data. Between 2003 and 2020, the CMUH-CRDR
documented the electronicmedical records data of 3,077,895patients,
including demographic (e.g., age, self-report sex) and administrative
data, diagnostic data, surgical data, laboratory measurements, and
mortality data, from theHealth andWelfareData Science Center of the
Ministry of Health and Welfare65. CMUH also conducted its Precision
Medicine Project to gather genetic data using the TWBv2 genotyping
array66. TheCMUH’s PrecisionMedicine Project consecutively enrolled
outpatient participants since 201867. A total of 25,345 patients with
eGFRmeasurements were identified from the combined CMUH-CRDR
(clinical data) and CMUH’s Precision Medicine Project (genotyping
data) cohort. This cohort had a mean age (SD) of 56.72 ( ± 15.73) years,
4509 cases of CKD, and 706 cases of ESKD; 44.3% of the cohort was
male. All the participants provided written informed consent. The
study protocol was approved by the Big Data Center and the Research
Ethics Committee and Institutional Review Board (REC/IRB) of CMUH
(IRB No. CMUH105-REC3-068, CMUH110-REC2-145, CMUH111-REC3-
138, and CMUH112-REC2-036).

Phenotype definition
The primary phenotype of concern was the eGFR, which is based on
S-Cre measurements. S-Cre and BUN levels were measured using the
Jaffe rate method and enzymatic conductivity rate method, respec-
tively, on a Beckman UniCel DxC 800 immunoassay system (Beckman
Coulter, Brea, CA, USA). S-Cre values were calibrated using an isotope
dilution mass spectrometry reference method68. The Chronic Kidney
Disease Epidemiology Collaboration equation was employed to
determine eGFR values69. Before GWAS analysis, BUN and eGFR values
were normalized using rank-based inverse normal transformation
(RINT)70. In addition, the predictive performance of the proposed PRS
was validated using the CKD phenotype, which was differentially
defined in the three study populations. In the TWB validation cohort,
CKDwas identified by a baseline eGFR of <60mL/min/1.73m2, whereas
in the CMUH-CRDR validation cohort, it was identified by the presence
of at least two outpatient eGFRmeasurements of <60mL/min/1.73m2,
with a minimum interval of 90 days between measurements. In the
sensitivity analysis of the UKB cohort, CKD was defined in accordance
with the International Classification of Diseases (ICD) codes for CKD
(ICD-10 codes N18.3, N18.4, N18.5, and N18.6). CKD controls were
defined as individuals with no CKD and a baseline eGFR of >90mL/
min/1.73m2. In the CMUH-CRDR cohort, progression to ESKD was
defined as the initiation of long-term renal replacement therapy
(peritoneal dialysis, hemodialysis, or kidney transplantation) identified
from certificates of catastrophic illness issued by the National Health
Insurance Administration, Ministry of Health and Welfare, Taiwan.
ESKD controls were individuals with no ESKD and a baseline eGFR of
>90mL/min/1.73m2.

Genotyping and imputation
Genotyping was conducted using two custom SNP arrays based on the
Taiwanese population, namely TWBv1 and TWBv263,71,72. The TWBv1
array was based on the Thermo Fisher Axiom Genome-Wide CHB
Array, with customized content containing ~650,000 markers on the
GRCh37 coordinates, aimed at capturing functional variants. The
TWBv2 array covers rare coding risk alleles based on whole genomic
sequence data obtained from 946 TWB samples. It also contains data
on ~690,000 markers aligned to the GRCh38 reference build.

For imputation, low-quality samples and variants were filtered
out, including those with an SNP genotype call rate of <95%, an
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individual call rate of <95%, a minor allele frequency (MAF) of <1%, and
a Hardy–Weinberg equilibrium (HWE) P value of <1 × 10−4. The 1000
Genome Project Phase 3 was used as the reference to exclude samples
obtained from populations of non-East Asian ethnicity, as determined
through principal component analysis (PCA). The genotyping data
were converted from GRCh38 to GRCh37 using LiftOver73. Then, we
pre-phased genotyping data using SHAPEIT274 and imputed it using
IMPUTE275, which generated 81,698,455 imputed SNPs. We further fil-
tered out imputed SNPswith an INFO score of lower than0.7, resulting
in the retention of 18,609,316 imputed SNPs. All quality control pro-
cedures were conducted using PLINK v2.076.

GWAS
We conducted a GWAS by using a machine-learning method, called
REGENIE77. Before REGENIE, both raw and imputed genotyping data
were subjected to quality control checks at an SNP genotype call rate
of <99%, a MAF of <1%, an HWE P value of <1 × 10−15, an individual call
rate of <98%, and a heterozygosity rate greater than ±3 SDs. In addi-
tion, PCA was conducted using the reference population of the 1000
Genomes Project16. In the first step of REGENIE, we calculated the
genetic correlation of the samples and then used this information as
covariates in the second step of REGENIE. In the second step, we
applied a linear regression test for quantitative traits, assuming an
additive genetic model, and conducted a Firth logistic regression test
for binary traits. To adjust for potential confounding effects, we
employed age, sex, and the first six principal components (PCs) as
covariates in the GWAS of the eGFR. The circular Manhattan plot was
generated using the R package “circlize” in R software v.4.3.1
(R Foundation for Statistical Computing, Vienna, Austria)78.

Meta-analysis of GWASs
Afixed-effects inverse variance-weightedmeta-analysis was conducted
usingMETAL software to increase the accuracy of effect estimates and
their standard errors79. Genomic control (GC) correction was applied
when the GC factor λGC exceeded 1. This meta-analysis yielded 5790
SNPs for the eGFR and 3600 SNPs for BUN, with a genome-wide sig-
nificance level of 5 × 10−8. Heterogeneity among studies was evaluated
using the I2 statistic. We used LDwith an r² threshold of 0.6 to identify
independently significant SNPs, and an LD r² threshold of 0.1 to
identify lead SNPs from among these independently significant SNPs.
Genomic risk loci were defined as regions with a window size of
±250 kb centered on independently significant SNPs. In addition, the
genomic risk loci were merged into a single locus if the distance
between them was shorter than 250kb80.

Genetic heritability
We examined the genetic heritability of the eGFR by using GWAS
summary statistics obtained from our meta-analysis, LD score
regression was used to estimate genetic heritability81. LD scores were
estimated from the East Asians panel of the 1000 Genomes Project
Phase 3 by using an r2 estimator with 1 cM windows. SNPs with a MAF
of less than 1% and loci with significantly large effect sizes or long-
range LD were excluded from all regressions81. This approach
enabled us to avoid potential bias from confounding factors, such as
cryptic relatedness or population stratification. Each SNP’s con-
tribution was evaluated by examining the correlation between test
statistics and LD16.

Replication in an independent TWB dataset
A replication procedure was conducted to validate the findings of the
original GWAS meta-analysis through an independent cohort. The
TWB dataset, which comprises data regarding 27,705 individuals with
available eGFR and TWBv1 genotyping data, was used as a replication
dataset. The quality control steps applied for the replication dataset
were the same as those described in the subsection of this paper titled

“GWAS.” To assess the association between SNPs and RINT (eGFR) in
the replication cohort, a linear regressionmodel was used in REGENIE.
A SNP was considered replicated if it had the same effect direction as
the corresponding SNP in the original GWAS and a P value of <0.05 in
the replication dataset.

Associations of eGFR-associated SNPs to BUN level, CKD, and
ESKD status
To investigate the eGFR-associated SNPs with other markers of kidney
function, we conducted a meta-analysis of BUN levels by using data
from the BBJ- and TWB-based discovery datasets. We then examined
the associations between eGFR-associated SNPs and BUN levels. SNPs
were considered relevant to kidney function if they had an opposite
effect direction on BUN levels relative to the eGFR and a P value of
<0.05. Logistic regression modeling was used to evaluate the asso-
ciationbetween these eGFR-associated SNPs and the risk of developing
CKD or ESKD in the CMUH-CRDR cohort. We searched for an opposite
effect direction between eGFR-associated SNPs and CKD or ESKD as
well as a P value of <0.05.

Genetic correlations of eGFR and BUNwith other complex traits
and diseases
To examine the genetic correlations between complex quantitative
traits and diseases, a GWAS-based analysis of 119 phenotypes was
conducted using the TWB-based discovery dataset. Genetic correla-
tions were estimated using LD score regression81, which involved two
steps. First, the LD scores of each SNP in two GWAS summary statistics
were calculated using predetermined East Asian population-based LD
scores from the 1000 Genomes Project. Second, cross-trait LD score
regression was conducted, which involved regressing the product of
the LD scores of SNPs in the two GWAS summary statistics against the
observed correlation in effect sizes between traits.

Gene prioritization, gene set enrichment, and tissue enrichment
analysis
Functional analysis was conducted for genes, gene sets, and tissue
enrichment by using MAGMA software version 1.0882, which was
integrated into the Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA) platform version 1.5.280. Data
regarding EastAsianpopulations from the 1000GenomesProjectwere
used for LD calculation. Gene prioritization was performed using the
mean P value of SNPs located within 1 kb upstream or downstream of
genes. Gene set enrichment analysis was conducted on curated gene
sets and Gene Ontology (GO) terms obtained from MSigDB version
7.083. For all tested gene sets, the P values utilized in theMAGMA-based
gene set analysis were adjusted using Bonferroni correction. A total of
10,678 gene sets were used; these sets were divided into 4761 curated
gene sets and 5917 GO terms. Tissue enrichment analysis was con-
ducted using the GTXv8 database20.

Cell-type-specific enrichment through stratified LD score
regression
StratifiedLD score regressionwas used to identify tissues and cell types
relevant to eGFR and BUNGWASmeta-analysis results. Heritability was
partitioned from GWAS summary statistics to sets of cell-type-specific
regulatory elements and gene expression84,85. The precalculated LD
score for East Asians was obtained from the LD score regression
resource website (https://alkesgroup.broadinstitute.org/LDSCORE/).
The regulatory annotation datasets for cell-type-specific analysis con-
tained 220 cell types featuring four histonemarkers, namely H3K4me1,
H3K4me3, H3K9ac, andH3K27ac86–88. The gene expression datasets for
cell-type-specific analysis were from GTEx and Franke Lab. GTEx con-
tains RNA sequencing data of 53 human cell types, while Franke Lab
includesarraydataof152humanandmousecell types21.Thesignificance
threshold was set at a false discovery rate of less than 5%.
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Fine mapping and credible set identification in a meta-analysis
Genomic risk loci containing functional SNPs were subjected to sta-
tistical fine mapping using GCTA-COJO-Slct, a stepwise model selec-
tion procedure for identifying independent SNPs89. Approximate
conditional analyses were then performed to determine the condi-
tional effect sizes of all remaining independent SNPs in a locus using
the GCTA-COJO-Cond algorithm89. For each SNP within a locus, the
approximate Bayes factors (ABFs) derived from the effect estimate on
the eGFR and its standard error of conditional estimates were used to
compute the posterior probability (PP) of the SNP being responsible
for the association signal (potential causal variant). To calculate the
ABF for each SNP, the R package “gtx” version 2.1.6 (https://github.
com/tobyjohnson/gtx) was employed, applying Wakefield’s formula90.
The 99% credible sets were calculated by summing the PP-ranked SNPs
until the cumulative PP exceeded 99%, thereby representing the
credible set of SNPs that included the SNP responsible for the asso-
ciation with eGFR. For the deleterious scoring of functional SNPs in
genomic risk loci, we utilized the FUMA platform to integrate anno-
tations from CADD (version 1.4)80,91.

Colocalization analysis of eGFR-associated SNPs with cis-eQTLs
Colocalization analysis was conducted through a Bayesian test to
examine the question ofwhether two traits can share a causal variant92.
We examined the correlation between the eGFR and gene expression
by evaluating the colocalization between eGFR-associated SNPs and
cis-eQTLs from the Human Kidney eQTL Atlas for tubules and
glomeruli11 andbyusingGTEx version 8 for 49 tissues20. Both cis-eQTLs
and GWAS-derived effect alleles were harmonized and identified
within ±100 kb of each GWAS-derived lead SNP for colocalization
analysis. We used the R package “coloc” (version 5) with default set-
tings to identify loci with a PP of >80%. In cases where the harmonized
effect alleles had the same effect directions in both the eQTL and
GWAS data, the aligned allelic effect direction was defined as positive.

PRS for CKD
To determine whether our findings can support the genetic suscept-
ibility of CKD, we established a PRS for CKD on the basis of GWAS
summary statistics for the eGFR. Clumping and thresholdingwere used
to calculate the PRS93,94. Briefly, PRSice-2 softwarewasused to calculate
the PRS and to evaluate the most appropriate PRS model with the
highest R2 value95. The base dataset used in PRSice-2 was derived from
themeta-analysis summary statistics of eGFRGWASs involving the BBJ-
and TWB-based discovery datasets. The target dataset in PRSice-2
consisted of independent samples from the TWB replication dataset
with CKD status available, defined as a baseline eGFR of <60mL/min/
1.73m2. These samples underwent the same quality control procedure
as that described in the GWAS section. Theweight of the proposed PRS
model was determined from the beta coefficient of the eGFR GWAS
summary statistic of the base dataset. After SNPswere clumpedwith an
LD r2 of 0.1 and a window size of ±250 kb, a P value threshold was
established to select independent significant SNPs for inclusion in the
PRS. The PRS model was established through adjustment for age, sex,
and the first six PCs. Since the PRSmodel adopts beta coefficients from
eGFR GWAS, a higher PRS indicates higher eGFR and consequently low
CKDrisk. Tobetter interpret the roleof thePRS inCKD risk predictions,
we multiplied the PRS by −1 as the operative value of PRSCKD.

Predictive performance of the PRS for CKD
The predictive performance of the PRS for CKD development was
evaluated in two independent datasets by using a cumulative inci-
dence curve, which was used to represent the probability of a CKD
event over time. After we examined the predictive performance of the
PRS by using the CMUH-CRDR dataset (n = 25,345), we externally ver-
ified this performance by using the UKB dataset (n = 260,245).

The Kaplan–Meier method was used to generate cumulative
incidence curves, and a log-rank test was conducted to determine the
differences between the curves of different PRSCKD subgroups, cate-
gorized as <−2 SDs, −2 to 2 SDs, and >2 SDs of the mean PRSCKD.
The index date was set as each patient’s date of birth, and follow-up
was conducted until the first CKD diagnosis was established, until the
patient died, until the patient was lost to follow-up, or until the
administrative censor date. In theCMUH-CRDRvalidation cohort, each
patient’s date of death was verified by the National Death Registry of
the Ministry of Health and Welfare of Taiwan. In the UKB cohort, the
date of death was verified by NHS Digital for patients in England and
Wales and by theNHSCentral Register (part of the National Records of
Scotland) for patients in Scotland. The administrative censor dates
were December 31, 2021, for the CMUH-CRDR validation cohort and
December 31, 2016, for the UKB cohort. To examine the level of CKD
risk associated with PRSCKD, a competing risk analysis with deaths
considered as censoring events was conducted using cause-specific
Cox proportional hazards modeling, with age used as the time scale.
The discriminative performance of the Cox proportional hazards
model that incorporated PRSCKD and sex data was evaluated using the
AUROC. In addition, we plotted the observed versus predicted risk
probability to evaluate the calibration of the Cox proportional
hazards model.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The GWAS summary data supporting our findings are available on
Figshare (https://doi.org/10.6084/m9.figshare.24356587), and the
statistical data are available in the Supplementary Data. The data from
TaiwanBiobank (TWB; ApplicationNo. TWBR11111-02) andUKBiobank
(UKB; Application No. 81803) were obtained through approved
applications and they are publicly available to approved researchers
for health-related research (TWB: https://www.biobank.org.tw/english.
php; UKB: https://www.ukbiobank.ac.uk/enable-your-research/apply-
for-access). The GWAS summary data from Biobank Japan (BBJ) are
publicly available without permission at http://jenger.riken.jp/en/
result. The individual-level raw data from CMUH are unavailable
because they contain information that may compromise participant
privacy.

References
1. Collaboration GBDCKD. Global, regional, and national burden of

chronic kidney disease, 1990-2017: a systematic analysis for the
Global Burden of Disease Study 2017. Lancet 395,
709–733 (2020).

2. Chertow, G. M. et al. Effects of dapagliflozin in stage 4 chronic
kidney disease. J. Am. Soc. Nephrol. 32, 2352–2361 (2021).

3. Heerspink, H. J. L. et al. Dapagliflozin in patients with chronic
kidney disease. New Engl. J. Med 383, 1436–1446 (2020).

4. Jafar, T. H. FDA approval of dapagliflozin for chronic kidney dis-
ease: a remarkable achievement? Lancet 398, 283–284 (2021).

5. Savage, N. Tapping into the drug discovery potential of AI.
Biopharm. Deal. B37–B39 https://www.nature.com/articles/
d43747-021-00045-7 (2021).

6. Aghajan, M. et al. Antisense oligonucleotide treatment amelio-
rates IFN-γ-induced proteinuria in APOL1-transgenic mice. JCI
Insight 4, e126124 (2019).

7. Hubaud, A. & Singh, A. P. Genetics in drug discovery. Trends
Genet. 37, 603–605 (2021).

8. Tin, A. & Kottgen, A. Genome-wide association studies of CKD and
related traits. Clin. J. Am. Soc. Nephrol. 15, 1643–1656 (2020).

Article https://doi.org/10.1038/s41467-024-53516-7

Nature Communications |         (2024) 15:9317 12

https://github.com/tobyjohnson/gtx
https://github.com/tobyjohnson/gtx
https://doi.org/10.6084/m9.figshare.24356587
https://www.biobank.org.tw/english.php
https://www.biobank.org.tw/english.php
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
http://jenger.riken.jp/en/result
http://jenger.riken.jp/en/result
https://www.nature.com/articles/d43747-021-00045-7
https://www.nature.com/articles/d43747-021-00045-7
www.nature.com/naturecommunications


9. Kanai, M. et al. Genetic analysis of quantitative traits in the Japa-
nese population links cell types to complex human diseases. Nat.
Genet. 50, 390–400 (2018).

10. Wuttke, M. et al. A catalog of genetic loci associated with kidney
function from analyses of a million individuals. Nat. Genet. 51,
957–972 (2019).

11. Sheng, X. et al. Mapping the genetic architecture of human traits
to cell types in the kidney identifies mechanisms of disease and
potential treatments. Nat. Genet. 53, 1322–1333 (2021).

12. Sirugo, G., Williams, S. M. & Tishkoff, S. A. Themissing diversity in
human genetic studies. Cell 177, 1080 (2019).

13. United States Renal Data System. 2020 USRDS Annual Data
Report: Epidemiology of kidney disease in the United States.
(National Institutes of Health, National Institute of Diabetes and
Digestive and Kidney Diseases, Bethesda, MD, 2020).

14. Bello, A. K. et al. ISN–Global Kidney Health Atlas: a report by the
International Society of Nephrology: an assessment of global
kidney health care status focussing on capacity, availability,
accessibility, affordability and outcomes of kidney disease.
https://www.theisn.org/wp-content/uploads/media/ISN%
20Atlas_2023%20Digital.pdf (International SocietyofNephrology,
Brussels, 2023).

15. Wu, H. H. et al. Family aggregation and heritability of ESRD in
Taiwan: a population-based study. Am. J. Kidney Dis. 70,
619–626 (2017).

16. Genomes, ProjectC. et al. A global reference for human genetic
variation. Nature 526, 68–74 (2015).

17. Stanzick, K. J. et al. Discovery and prioritization of variants and
genes for kidney function in >1.2million individuals.Nat. Commun.
12, 4350 (2021).

18. Seki, M. et al. Blood urea nitrogen is independently associated
with renal outcomes in Japanese patients with stage 3-5 chronic
kidney disease: a prospective observational study. BMC Nephrol.
20, 115 (2019).

19. Bernstein, B. E. et al. The NIH roadmap epigenomics mapping
consortium. Nat. Biotechnol. 28, 1045–1048 (2010).

20. Consortium, G. T. The GTEx Consortium atlas of genetic reg-
ulatory effects across human tissues. Science 369,
1318–1330 (2020).

21. Fehrmann, R. S. et al. Gene expression analysis identifies global
gene dosage sensitivity in cancer. Nat. Genet. 47, 115–125 (2015).

22. Devuyst, O. & Pattaro, C. The UMOD locus: insights into the
pathogenesis and prognosis of kidney disease. J. Am. Soc.
Nephrol. 29, 713–726 (2018).

23. Zhao, J. et al. An early predictionmodel for chronic kidneydisease.
Sci. Rep. 12, 2765 (2022).

24. Kispert, A. T-Box genes in the kidney and urinary tract. Curr. Top.
Dev. Biol. 122, 245–278 (2017).

25. Biswas, N. et al. Polymorphisms at the F12 and KLKB1 loci have
significant trait associationwith activation of the renin-angiotensin
system. BMC Med. Genet. 17, 21 (2016).

26. Köttgen, A. et al. Genetics in chronic kidney disease: conclusions
from a Kidney Disease: Improving Global Outcomes (KDIGO)
Controversies Conference. Kidney Int. 101, 1126–1141 (2022).

27. Martin, A. R. et al. Clinical use of current polygenic risk scoresmay
exacerbate health disparities. Nat. Genet. 51, 584–591 (2019).

28. Bikbov, B. et al. Global, regional, and national burden of chronic
kidney disease, 1990–2017: a systematic analysis for the Global
Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

29. Hsu, C. C., Hsu, Y. H., Wu, M. S. & Hwang, S. J. Achievements and
challenges in chronic kidney disease care in Taiwan. J. Formos.
Med. Assoc. 121, S3–s4 (2022).

30. Wu, F. L. et al. Does Chinese herb nephropathy account for the
high incidence of end-stage renal disease in Taiwan? Nephron
Clin. Pr. 120, c215–c222 (2012).

31. Hsu, L. I. et al. Arsenic exposure from drinking water and the
incidence of CKD in low to moderate exposed areas of Taiwan: a
14-year prospective study. Am. J. Kidney Dis. 70, 787–797 (2017).

32. Yang, W. C. & Hwang, S. J. Incidence, prevalence and mortality
trends of dialysis end-stage renal disease in Taiwan from 1990 to
2001: the impact of national health insurance. Nephrol. Dial.
Transpl. 23, 3977–3982 (2008).

33. Reay, W. R. & Cairns, M. J. Advancing the use of genome-wide
association studies for drug repurposing. Nat. Rev. Genet. 22,
658–671 (2021).

34. Friedman, D. J. & Pollak, M. R. APOL1 nephropathy: from genetics
to clinical applications. Clin. J. Am. Soc. Nephrol. 16,
294–303 (2021).

35. Köttgen, A. et al. Multiple loci associated with indices of renal
function and chronic kidney disease. Nat. Genet. 41,
712–717 (2009).

36. Olinger, E. et al. An intermediate-effect size variant in UMOD
confers risk for chronic kidney disease. Proc. Natl. Acad. Sci. USA
119, e2114734119 (2022).

37. Ponte, B. et al. Mendelian randomization to assess causality
between uromodulin, blood pressure and chronic kidney disease.
Kidney Int. 100, 1282–1291 (2021).

38. Kalinin, D. V. Factor XII(a) inhibitors: a review of the patent litera-
ture. Expert Opin. Ther. Pat. 31, 1155–1176 (2021).

39. Cheng, Y. et al. Genetics of osteopontin in patients with chronic
kidney disease: the German Chronic Kidney Disease study. PLoS
Genet. 18, e1010139 (2022).

40. Irita, J. et al. Osteopontin deficiency protects against aldosterone-
induced inflammation, oxidative stress, and interstitial fibrosis in
the kidney. Am. J. Physiol. Ren. Physiol. 301, F833–F844 (2011).

41. Chen, X. et al. Drug repurposing opportunities for chronic kidney
disease. iScience 27, 109953 (2024).

42. Marks, J., Churchill, L. J., Debnam, E. S. & Unwin, R. J. Matrix
extracellular phosphoglycoprotein inhibits phosphate transport.
J. Am. Soc. Nephrol. 19, 2313–2320 (2008).

43. Rowe, P. S. The chicken or the egg: PHEX, FGF23 and SIBLINGs
unscrambled. Cell Biochem Funct. 30, 355–375 (2012).

44. Dehghan, A. et al. Association of three genetic loci with uric acid
concentration and risk of gout: a genome-wide association study.
Lancet 372, 1953–1961 (2008).

45. Kamatani, Y. et al. Genome-wide association study of hematolo-
gical and biochemical traits in a Japanese population. Nat. Genet.
42, 210–215 (2010).

46. Tin, A. et al. Target genes, variants, tissues and transcriptional
pathways influencing human serum urate levels. Nat. Genet. 51,
1459–1474 (2019).

47. Takada, T. et al. ABCG2 dysfunction increases serum uric acid by
decreased intestinal urate excretion. Nucleosides Nucleotides
Nucleic Acids 33, 275–281 (2014).

48. Woodward, O. M. et al. Identification of a urate transporter,
ABCG2, with a common functional polymorphism causing gout.
Proc. Natl. Acad. Sci. USA 106, 10338–10342 (2009).

49. Kannangara, D. R. W. et al. Hyperuricaemia: contributions of urate
transporter ABCG2 and the fractional renal clearance of urate.
Ann. Rheum. Dis. 75, 1363–1366 (2016).

50. Matsuo, H. et al. ABCG2 dysfunction causes hyperuricemia due to
both renal urate underexcretion and renal urate overload. Sci.
Rep. 4, 3755 (2014).

51. Bhatnagar, V. et al. Analysis of ABCG2andother urate transporters
in uric acid homeostasis in chronic kidney disease: potential
role of remote sensing and signaling. Clin. Kidney J. 9,
444–453 (2016).

52. Ejendal, K. F. &Hrycyna, C. A.Multidrug resistance andcancer: the
role of the human ABC transporter ABCG2.Curr. Protein Pept. Sci.
3, 503–511 (2002).

Article https://doi.org/10.1038/s41467-024-53516-7

Nature Communications |         (2024) 15:9317 13

https://www.theisn.org/wp-content/uploads/media/ISN%20Atlas_2023%20Digital.pdf
https://www.theisn.org/wp-content/uploads/media/ISN%20Atlas_2023%20Digital.pdf
www.nature.com/naturecommunications


53. Kukal, S. et al.Multidrug efflux transporter ABCG2: expression and
regulation. Cell Mol. Life Sci. 78, 6887–6939 (2021).

54. Ohashi, Y. et al. Urate transporter ABCG2 function and asympto-
matic hyperuricemia: a retrospective cohort study of CKD pro-
gression. Am. J. Kidney Dis. 81, 134–144.e131 (2023).

55. Liao, L. et al. TRIM46 upregulates Wnt/beta-catenin signaling by
inhibiting Axin1 to mediate hypoxia-induced epithelial-mesench-
ymal transition in HK2 cells. Mol. Cell Biochem. 477,
2829–2839 (2022).

56. Tremblay, J. & Hamet, P. Environmental and genetic contributions
to diabetes. Metabolism 100S, 153952 (2019).

57. Karczewski, K. J. et al. The mutational constraint spectrum quanti-
fied fromvariation in 141,456humans.Nature581, 434–443 (2020).

58. Kozlitina, J., Xing, C., Pertsemlidis, A. & Schucany, W. R. Power of
genetic association studies with fixed and random genotype fre-
quencies. Ann. Hum. Genet. 74, 429–438 (2010).

59. Khan, A. et al. Genome-wide polygenic score to predict chronic
kidney disease across ancestries. Nat. Med. 28, 1412–1420 (2022).

60. Chen, Y. C. et al. Genome-wide association study for eGFR in a
Taiwanese population. Clin. J. Am. Soc. Nephrol. 17,
1598–1608 (2022).

61. Lee, D. J. et al. Genome-wide association study and fine-mapping
on Korean biobank to discover renal trait-associated variants.
Kidney Res Clin. Pr. 43, 299–312 (2024).

62. Hirata, M. et al. Cross-sectional analysis of BioBank Japan clinical
data: a large cohort of 200,000 patients with 47 common dis-
eases. J. Epidemiol. 27, S9–S21 (2017).

63. Feng, Y. A. et al. Taiwan Biobank: a rich biomedical research
database of the Taiwanese population. Cell Genom. 2,
100197 (2022).

64. Bycroft, C. et al. The UK Biobank resource with deep phenotyping
and genomic data. Nature 562, 203–209 (2018).

65. King, E. K. et al. Prediction of non-responsiveness to pre-dialysis
care program in patients with chronic kidney disease: a retro-
spective cohort analysis. Sci. Rep. 11, 13938 (2021).

66. Liu, T. Y. et al. Comparison of multiple imputation algorithms and
verification using whole-genome sequencing in the CMUH
genetic biobank. Biomedicine 11, 57–65 (2021).

67. Sun, T. H. et al. Utility of polygenic scores across diverse diseases
in a hospital cohort for predictive modeling. Nat. Commun. 15,
3168 (2024).

68. Siekmann, L. Determination of creatinine in human serum by iso-
tope dilution-mass spectrometry. Definitive methods in clinical
chemistry, IV. J. Clin. Chem. Clin. Biochem. 23, 137–144 (1985).

69. Levey, A. S. et al. A new equation to estimate glomerular filtration
rate. Ann. Intern. Med. 150, 604–612 (2009).

70. McCaw,Z. R., Lane, J.M., Saxena, R., Redline, S. & Lin, X.Operating
characteristics of the rank-based inverse normal transformation
for quantitative trait analysis in genome-wide association studies.
Biometrics 76, 1262–1272 (2020).

71. Chen, C. H. et al. Population structure of Han Chinese in the
modern Taiwanese population based on 10,000 participants in
the Taiwan Biobank project. Hum. Mol. Genet. 25,
5321–5331 (2016).

72. Wei, C. Y. et al. Genetic profiles of 103,106 individuals in the Tai-
wan Biobank provide insights into the health and history of Han
Chinese. NPJ Genom. Med. 6, 10 (2021).

73. Hinrichs, A. S. et al. The UCSCGenome Browser Database: update
2006. Nucleic Acids Res. 34, D590–D598 (2006).

74. O’Connell, J. et al. A general approach for haplotype phasing
across the full spectrum of relatedness. PLoS Genet. 10,
e1004234 (2014).

75. Howie, B. N., Donnelly, P. & Marchini, J. A flexible and accurate
genotype imputation method for the next generation of genome-
wide association studies. PLoS Genet. 5, e1000529 (2009).

76. Chang, C. C. et al. Second-generation PLINK: rising to the chal-
lenge of larger and richer datasets. Gigascience 4, 7 (2015).

77. Mbatchou, J. et al. Computationally efficient whole-genome
regression for quantitative and binary traits. Nat. Genet. 53,
1097–1103 (2021).

78. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize Implements
and enhances circular visualization in R. Bioinformatics 30,
2811–2812 (2014).

79. Willer, C. J., Li, Y. & Abecasis, G. R. METAL: fast and efficient meta-
analysis of genomewide association scans. Bioinformatics 26,
2190–2191 (2010).

80. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D.
Functional mapping and annotation of genetic associations with
FUMA. Nat. Commun. 8, 1826 (2017).

81. Bulik-Sullivan, B. et al. An atlas of genetic correlations across
human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

82. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA:
generalized gene-set analysis of GWAS data. PLoS Comput. Biol.
11, e1004219 (2015).

83. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-
based approach for interpreting genome-wide expression pro-
files. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

84. Finucane, H. K. et al. Heritability enrichment of specifically
expressedgenes identifiesdisease-relevant tissues andcell types.
Nat. Genet. 50, 621–629 (2018).

85. Finucane, H. K. et al. Partitioning heritability by functional anno-
tation using genome-wide association summary statistics. Nat.
Genet. 47, 1228–1235 (2015).

86. Trynka, G. et al. Chromatin marks identify critical cell types
for fine mapping complex trait variants. Nat. Genet. 45,
124–130 (2013).

87. Schizophrenia Working Group of the Psychiatric Genomics, C.
Biological insights from 108 schizophrenia-associated genetic
loci. Nature 511, 421–427 (2014).

88. Hnisz, D. et al. Super-enhancers in the control of cell identity and
disease. Cell 155, 934–947 (2013).

89. Yang, J. et al. Conditional and jointmultiple-SNP analysis of GWAS
summary statistics identifies additional variants influencing com-
plex traits. Nat. Genet. 44, 369–375 (2012).

90. Wakefield, J. Bayes factors for genome-wide association studies:
comparison with P-values. Genet Epidemiol. 33, 79–86 (2009).

91. Kircher, M. et al. A general framework for estimating the relative
pathogenicity of human genetic variants. Nat. Genet. 46,
310–315 (2014).

92. Giambartolomei, C. et al. Bayesian test for colocalisation between
pairs of genetic association studies using summary statistics. PLoS
Genet. 10, e1004383 (2014).

93. Prive, F., Vilhjalmsson, B. J., Aschard, H. & Blum, M. G. B. Making
the most of clumping and thresholding for polygenic scores. Am.
J. Hum. Genet. 105, 1213–1221 (2019).

94. Novembre, J. et al. Addressing the challenges of polygenic scores
in human genetic research. Am. J. Hum. Genet. 109,
2095–2100 (2022).

95. Choi, S.W. &O’Reilly, P. F. PRSice-2: polygenic risk score software
for biobank-scale data. Gigascience 8, giz082 (2019).

96. Zhu, W., Deng, Y. & Zhou, X. Multiple membrane transporters and
some immune regulatory genes aremajor genetic factors to gout.
Open Rheumatol. J. 12, 94–113 (2018).

97. Lee, C. J. et al. Phenome-wide analysis of Taiwan Biobank reveals
novel glycemia-related loci and genetic risks for diabetes. Com-
mun. Biol. 5, 1175 (2022).

98. Boocock, J. et al. Genomic dissection of 43 serum urate-
associated loci provides multiple insights into molecular
mechanisms of urate control. Hum. Mol. Genet. 29,
923–943 (2020).

Article https://doi.org/10.1038/s41467-024-53516-7

Nature Communications |         (2024) 15:9317 14

www.nature.com/naturecommunications


99. Lu, P. et al. The developmental regulator protein Gon4l associates
with protein YY1, co-repressor Sin3a, and histone deacetylase 1
and mediates transcriptional repression. J. Biol. Chem. 286,
18311–18319 (2011).

100. Lu, P. et al. The Justymutation identifiesGon4-like as a gene that is
essential for B lymphopoiesis. J. Exp. Med. 207, 1359–1367 (2010).

101. Adenaeuer, A. et al. Severe high-molecular-weight kininogen
deficiency: clinical characteristics, deficiency-causing KNG1 var-
iants, and estimated prevalence. J. Thromb. Haemost. 21,
237–254 (2023).

102. Santacroce, R., D’Andrea, G., Maffione, A. B., Margaglione, M. &
d’Apolito, M. The genetics of hereditary angioedema: a review. J.
Clin. Med. 10, 2023 (2021).

103. Sinnott-Armstrong, N. et al. Genetics of 35 blood and urine bio-
markers in the UK Biobank. Nat. Genet. 53, 185–194 (2021).

104. Lin, C. T. et al. The ABCG2 rs2231142 polymorphism and the risk of
nephrolithiasis: a case-control study from the Taiwan biobank.
Front. Endocrinol. 14, 1074012 (2023).

105. Garcia-Nieto, V. M. et al. Gout associated with reduced renal
excretionof uric acid. Renal tubular disorder that nephrologists do
not treat. Nefrologia 42, 273–279 (2022).

106. Chen, C. J. et al. ABCG2 contributes to the development of gout
and hyperuricemia in a genome-wide association study. Sci. Rep.
8, 3137 (2018).

107. Nakayama, A. et al. Subtype-specific gout susceptibility loci and
enrichment of selection pressure on ABCG2 and ALDH2 identified
by subtypegenome-widemeta-analyses of clinically defined gout
patients. Ann. Rheum. Dis. 79, 657–665 (2020).

108. Katsura, K. et al. WDR72 regulates vesicle trafficking in amelo-
blasts. Sci. Rep. 12, 2820 (2022).

109. Zhang, H. et al. WDR72 mutations associated with amelogenesis
imperfecta and acidosis. J. Dent. Res. 98, 541–548 (2019).

110. Kuechler, A. et al. A novel homozygous WDR72 mutation in two
siblingswith amelogenesis imperfecta andmild short stature.Mol.
Syndromol. 3, 223–229 (2012).

111. Morris, A. P. et al. Trans-ethnic kidney function association study
reveals putative causal genes and effects on kidney-specific dis-
ease aetiologies. Nat. Commun. 10, 29 (2019).

112. Benonisdottir, S. et al. Sequence variants associating with urinary
biomarkers. Hum. Mol. Genet. 28, 1199–1211 (2019).

Acknowledgements
The authors thank the staff of the iHi Platform at the Big Data Center of
CMUH for their assistance with data exploration, statistical analysis, and
manuscript preparation. The authors thank the Health and Welfare Data
Science Center, Ministry of HealthWelfare, and the Health Data Science
Center, CMUH, for providing administrative, technical, and funding
support. This study was supported by the National Science and Tech-
nologyCouncil of Taiwan (grant no. 112-2321-B-468-001 toC.-C. Kuo, 111-
2320-B-039-052-MY3 to C.-C Kuo, 113-2634-F039-001 to C.-C. Kuo),
Academia Sinica, Taiwan (grant no. AS-HLGC-111-04 to Y.-T. Lin), and
CMUH (grant nos. DMR-112-119 to H.-L. Chen, and DMR-112-188 to C.-C.
Kuo, DMR-113-177 to C.-C. Kuo).

Author contributions
Manuscript writing: H.-L. Chen, H.-Y. Chiang, David R. Chang, C.-F.
Cheng, and C.-C. Kuo. Study design: H.-L. Chen, C.-F. Cheng, and C.-C.
Kuo. Management of an individual contributing study: H.-L. Chen, C.-F.
Cheng, Y.-T. Lin, and C.-C. Lin. Statistical analysis: H.-L. Chen, C.-F.
Cheng, Y.-T. Lin, C.-C. Lin, P.-T. Yu, and C.-F. Hung. Bioinformatics: H.-L.
Chen, C.-F. Cheng, Charles C.-N. Wang, T.-P. Lu, C.-Y. Lee, A. Chatto-
padhyay, and C.-H. Lin. Interpretation of the results: H.-L. Chen, David R.
Chang, C.-F. Cheng, A. Tin, and C.-C Kuo. Critical review of the manu-
script: H.-L. Chen, H.-Y. Chiang, Charles C.-N. Wang, T.-P. Lu, H.-C. Yeh,
I.-W. Ting, H.-K. Tsai, E.-Y. Chuang, F.-J. Tsai, A. Tin, and C.-C. Kuo.
Subject recruitment: F.-J. Tsai, H.-Y. Chiang, Y.-T. Lin, C.-C. Lin, and
C.-C. Kuo.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-53516-7.

Correspondence and requests for materials should be addressed to
Fuu-Jen Tsai or Chin-Chi Kuo.

Peer review information Nature Communications thanks Matthias
Wuttke and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License,
which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if you modified the licensed
material. Youdonot havepermissionunder this licence toshare adapted
material derived from this article or parts of it. The images or other third
party material in this article are included in the article’s Creative
Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

1BigDataCenter,ChinaMedical UniversityHospital,ChinaMedical University, Taichung, Taiwan. 2Department of Biomedical Informatics, College ofMedicine,
China Medical University, Taichung, Taiwan. 3Division of Nephrology, Department of Internal Medicine, China Medical University Hospital, China Medical
University, Taichung, Taiwan. 4Department of Biomedical Informatics, HarvardMedical School, Boston, MA, USA. 5Department of Bioinformatics andMedical
Engineering, Asia University, Taichung, Taiwan. 6Institute of Health Data Analytics and Statistics, Department of Public Health, College of Public Health,
National Taiwan University, Taipei, Taiwan. 7Master Program in Artificial Intelligence, Innovation Frontier Institute of Research for Science and Technology,
National Taipei University of Technology, Taipei, Taiwan. 8Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan.
9Institute of Epidemiology and Preventive Medicine, Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
10Institute of Information Science, Academia Sinica, Taipei, Taiwan. 11Biomedical Technology and Device Research Laboratories, Industrial Technology

Article https://doi.org/10.1038/s41467-024-53516-7

Nature Communications |         (2024) 15:9317 15

https://doi.org/10.1038/s41467-024-53516-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
www.nature.com/naturecommunications


Research Institute, Hsinchu, Taiwan. 12Department of Electrical Engineering, College of Electrical Engineering and Computer Science, National Taiwan
University, Taipei, Taiwan. 13Graduate Institute of Biomedical Electronics and Bioinformatics, College of Electrical Engineering and Computer Science,
National Taiwan University, Taipei, Taiwan. 14Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center,
Jackson, MS, USA. 15School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan. 16Department of Medical
Research, China Medical University Hospital, China Medical University, Taichung, Taiwan. 17Division of Medical Genetics, China Medical University Children’s
Hospital, Taichung, Taiwan. 18Department of Medical Laboratory Science & Biotechnology, Asia University, Taichung, Taiwan. 19College of Medicine, China
Medical University, Taichung, Taiwan. 20These authors contributed equally: Fuu-Jen Tsai, Chin-Chi Kuo. e-mail: 000704@tool.caaumed.org.tw;
chinchik@gmail.com

Article https://doi.org/10.1038/s41467-024-53516-7

Nature Communications |         (2024) 15:9317 16

mailto:000704@tool.caaumed.org.tw
mailto:chinchik@gmail.com
www.nature.com/naturecommunications

	Discovery and prioritization of genetic determinants of kidney function in 297,355 individuals from Taiwan and Japan
	Results
	Discovery of genetic associations with eGFR through a meta-analysis of GWASs involving the BBJ and TWB
	Replication of eGFR-associated SNPs in an independent TWB dataset
	Correlations of eGFR loci with blood urea nitrogen and CKD
	Genetic correlations of the eGFR and BUN with other phenotypes
	Functional enrichment and pathway enrichment analyses
	Statistical fine mapping of causal variants from eGFR GWAS
	Statistical colocalization for causal gene prioritization
	Cumulative incidence of CKD throughout an individual’s life, stratified by polygenic risk scores

	Discussion
	Methods
	Biobank data source
	BBJ
	TWB
	UKB
	CMUH-CRDR

	Phenotype definition
	Genotyping and imputation
	GWAS
	Meta-analysis of GWASs
	Genetic heritability
	Replication in an independent TWB dataset
	Associations of eGFR-associated SNPs to BUN level, CKD, and ESKD status
	Genetic correlations of eGFR and BUN with other complex traits and diseases
	Gene prioritization, gene set enrichment, and tissue enrichment analysis
	Cell-type-specific enrichment through stratified LD score regression
	Fine mapping and credible set identification in a meta-analysis
	Colocalization analysis of eGFR-associated SNPs with cis-eQTLs
	PRS for CKD
	Predictive performance of the PRS for CKD
	Reporting summary

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




