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Abstract
Functional selectivity (or biased agonism) is a property exhibited by some G protein-cou-

pled receptor (GPCR) ligands, which results in the modulation of a subset of a receptor’s

signaling capabilities and more precise control over complex biological processes. The

dopamine D2 receptor (D2R) exhibits pleiotropic responses to the biogenic amine dopamine

(DA) to mediate complex central nervous system functions through activation of G proteins

and β-arrestins. D2R is a prominent therapeutic target for psychological and neurological

disorders in which DA biology is dysregulated and targeting D2R with functionally selective

drugs could provide a means by which pharmacotherapies could be developed. However,

factors that determine GPCR functional selectivity in vivomay be multiple with receptors,

ligands and transducers contributing to the process. We have recently described a muta-

genesis approach to engineer biased D2R mutants in which G protein-dependent

([Gprot]D2R) and β-arrestin-dependent signaling ([βarr]D2R) were successfully separated

(Peterson, et al. PNAS, 2015). Here, permutations of these mutants were used to identify

critical determinants of the D2R signaling complex that impart signaling bias in response to

the natural or synthetic ligands. Critical residues identified in generating [Gprot]D2R and
[βarr]D2R conferred control of partial agonism at G protein and/or β-arrestin activity. Another

set of mutations that result in G protein bias was identified that demonstrated that full ago-

nists can impart unique activation patterns, and provided further credence to the concept of

ligand texture. Finally, the contributions and interplay between different transducers indi-

cated that G proteins are not aberrantly activated, and that receptor kinase and β-arrestin

activities are inextricably linked. These data provide a thorough elucidation of the feasibility

and malleability of D2R functional selectivity and point to means by which novel in vivo ther-

apies could be modeled.
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Introduction
G protein-coupled receptors (GPCRs) are dynamic conduits of extracellular messages into
complex intracellular instructions. These instructions are carried out through activation of
both G protein dependent and independent signaling pathways [1]. GPCRs exhibit functional
selectivity [2] in responses to natural or synthetic ligands by signaling through a subset of their
normal multiple pathways. This capacity for functional selectivity has been theorized to arise
from receptor conformational heterogeneity. Additionally, ligands that exhibit functional selec-
tivity are termed biased agonists [3]. The concept of functional selectivity at GPCRs could pro-
vide a means not only to understand how GPCRs mediate their actions but also for developing
more selective and efficacious therapeutic agents. Based on this concept an increasing number
of functionally selective or biased ligands have been developed for a several GPCRs [4–12].
Most GPCRs, with the exception of a few [13,14], mediate the action of a single natural ligand.
How in vivo pleiotropic signaling is determined following engagement of the receptor by its
cognate ligand is likely to be controlled by the complement of cellular accessory proteins, such
as G proteins, GPCR kinases (GRKs) and β-arrestins.

One of the major transducers of G protein independent signaling are β-arrestins, multifunc-
tional adaptor proteins and part of the desensitization machinery that scaffold GPCRs for
internalization and recycling of competent receptors to the plasma membrane [15]. β-arrestins
also scaffold signaling complexes that have been shown to alter metabolic pathways [16], tran-
scription [17], and neuronal activity leading to behavior [18]. For those GPCRs for which the
consequences of functionally selective signaling have been examined, the G protein and β-
arrestin signaling pathways typically subserve different cellular functions [19–21] but with
some notable exceptions, as observed with the AT1A receptor in its regulation of aldosterone
production [22]. The molecular details of selectivity and major signal transduction elements of
β-arrestin or G protein signaling are new avenues by which GPCR pharmacology can be
exploited for the development of novel pharmaceutical therapies [23].

The dopamine D2 receptor (D2R) is a prominently expressed GPCR for the biogenic amine
dopamine (DA). DA is critical in many central nervous system functions and D2R is the target
of many pharmaceutical interventions in which DA homeostasis is disrupted. D2R responds to
DA with activation of the inhibitory family of GαO/i subunits which leads to an inhibition of
cAMP production and liberation of Gβγ which leads to MAP kinase activation, as well as
increased cell membrane potassium conductance through GIRK channels, among other effects
[24]. Additionally, genetic and biochemical approaches have implicated β-arrestin 2 as a signif-
icant contributor to D2R signal transduction [18].

Functional selectivity arises from receptor conformational heterogeneity, which is the recep-
tor’s capacity to adopt multiple related conformations that activate signaling molecules [25,26].
GPCRs undergo two major conformational processes during activation: 1) G protein stimula-
tion and 2) β-arrestin recruitment. Ligands stabilize the transition state for guanine-nucleotide
exchange factor (GEF) activity of GPCRs at G proteins, while GPCR kinases (GRKs) are effi-
ciently recruited to agonist bound GPCRs where they phosphorylate intracellular domains,
most frequently the C-terminal tail of GPCRs. Phosphorylation alters the agonist bound recep-
tor conformational ensemble to favor β-arrestin recruitment, and this presumably initiates G
protein-independent signaling.

Understanding how GPCRs propagate pleiotropic signals to generate functionally selective
responses depends on the question at hand. In developing a selective ligand, recognition of
receptor conformational states by a ligand may guide the experimental approaches. However,
if an altered signaling mechanism mediating a specific cellular effect is desired for therapeutic
benefit, distinct determinants of the selectivity process may be invoked. An important caveat in
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the design of biased agonists is the relative expression levels of transducer/interacting mole-
cules, which can determine the bias because of altered coupling probability [27]. D2R’s promi-
nence as a pharmaceutical target for many disorders makes it a good receptor candidate for
precise and robust dissection of functional selectivity. We have recently reported the develop-
ment and characterization of mutant D2R that are selective for G protein activation or β-
arrestin recruitment [28]. These mutants, termed [Gprot]D2R and [βarr]D2R, respectively, show
an unprecedented separation of function and have retained essentially the unabridged major
functions of [WT]D2R.

Here, the contributions of ligand, receptor and transducer to functional selectivity are sys-
tematically assessed using several variants of the previously described mutants. These novel
mutants are characterized and assessed for their unique functional selectivity properties that
provide insight into the quality and determinants of D2R functional selectivity. The data dem-
onstrate that functional selectivity is dynamic and malleable. In addition to direct manipulation
of the receptor, the role of transducer levels altered the signaling profile of D2R, which suggests
that the in vivo complement and expression level of transducers play a significant role in shap-
ing the functional selectivity of D2R ligands.

Materials and Methods

Mutagenesis PCR
The Agilent Technologies (Santa Clara, CA) QuikChange mutagenesis kit was used to carry
out all mutagenesis according to manufacturer’s instructions. Primers were designed as
instructed, with the minimum amount of nucleotide changes required to achieve a mutation.
All work was carried out on the mouse long isoform of D2R. Multiple point mutations were
created by using the same primers for single point mutations on already mutated constructs.
All constructs were confirmed to have no coding errors by sequencing. In addition, a previ-
ously characterized D2R mutant, termed [D80A]D2R which was previously shown to ablate
sodium coordination which causes a deficit in G protein [29] and β-arrestin recruitment [28]
but not ligand binding or plasma membrane trafficking was used as a negative control.

Cell culture and transfections
HEK-293T (ATCC, Manassas, VA) cells were cultured and transfected as previously reported
[30].

G protein activity
D2R’s ability to inhibit cAMP production was carried out as previously described [8] using the
Promega (Madison, WI) GloSensor assay with minor modifications. D2R was expressed at a
mass of 1 μg of DNA (except where indicated) and the GloSensor construct was transiently
transfected along with D2R at a mass of 5 μg of DNA. The luminescence was quantified with
the Mithras LB940 instrument with no wavelength filter between the cells and the
photomultiplier.

Bioluminescent Resonance Energy Transfer
BRET was performed as previously described [30] with some minor modifications. GRK2-YFP
or β-arrestin 1-YFP replaced β-arrestin 2-YFP, where indicated. Untagged GRK2 was overex-
pressed at a ratio of 2-fold higher than receptor, while β-arrestin 2-YFP was always kept at the
maximum allowable expression. RLuc-tagged D2R constructs were not different from untagged
receptors in ligand binding and G protein coupling as previously determined for [WT]D2R [30]
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and confirmed for each mutant. Receptor expression levels were determined for each experi-
ment in order to ensure comparable levels of expression.

Alternative G protein signaling
Various D2R constructs expressed in HEK 293 cells were used to determine whether D2R could
mediate Gαs activation in the GloSensor assay described above. cAMP production following
stimulation of endogenous β2ARs was used as a control. Whether the various D2R constructs
could couple to Gαq was measured using the aequorin assay, as previously described [31]. As a
control, HEK 293 cells were transfected with the angiotensin AT1A receptor and calcium was
measured in response to agonist activation.

Radioligand Binding
[3H]-raclopride (Promega, Waltman, MA) binding was carried out as previously described
[32]. When sodium was removed, the salt was not replaced with any other ion in the buffer.
Rluc counts were conducted on the same membrane preparations, the same day that the ligand
binding was carried out, using the same RLuc counting protocol as [30].

Data Analysis
Dose response curves were fit to the nonlinear regression curve y = Bottom + (Top-Bottom)/(1
+10^((LogEC50-X))) for agonist curves and y = Bottom + (Top-Bottom)/(1+10^
((X-LogIC50))) for antagonists in Graphpad Prism 5. Statistical tests were performed (described
in Table legends) in Graphpad Prism 5. Bias quantification was carried out as previously
described in [33] and [34]. For bias plots (Fig 1D and S1C and S1D Fig) the points were calcu-
lated from normalized (to [WT]D2R) responses to the two assays and fit to a quadratic equation
with the constraint that B0 = 0. Each bias quantification used the same G protein activity when
compared to endogenous and GRK2 overexpression data sets at β-arrestin. All values calcu-
lated in S1–S4 Tables were normalized to [WT]D2R (or control receptors in S4 Table) for each
individual assay for efficacy but not potency.

Results

A rich landscape of receptor dictated functional selectivity
The functional selectivity of a receptor can be simply viewed as its propensity to engage one sig-
naling mechanism over another. The ability of the GPCR kinase 2 (GRK2) to affect the interac-
tion of various D2R mutants with β-arrestin 2 was compared to a previously characterized
biased D2R that was engineered [35,36] by mutating a motif unique to D2-like receptors
(IYIV) to four alanines ([IYIV]D2R). As seen in Fig 1A and S1A Fig, when expressed in HEK293
cells [IYIV]D2R displays a decrease in G protein signaling activity, along with a nearly complete
absence of β-arrestin 2 recruitment, as previously observed [36]. Thus, [IYIV]D2R is a G pro-
tein-preferring mutant receptor under these conditions. However, when GRK2 is overex-
pressed (Fig 1B), β-arrestin 2 recruitment potency is enhanced at [WT]D2R and [IYIV]D2R, and
only slightly potentiated for the previously characterized [Gprot]D2R and [βarr]D2R when com-
pared to HEK293 cells expressing endogenous levels of GRK2 [28]. Quantifying the bias
between [Gprot]D2R and [IYIV]D2R using a statistical formalism [33] (Fig 1C and S1B Fig), a bias
plot [34] (Fig 1D and S1C and S1D Fig) and ΔΔlog(τ/KA) calculations (S2 Table) reveal the
quality of G protein bias. These different bias quantifications allow for comparisons of efficacy
(calculated from EMAX to τ) and potency (calculated from EC50 to KA) in different ways, which
facilitates conclusions based on their relationship. For instance, [Gprot]D2R and [IYIV]D2R
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display similar degrees of bias using each method because while G protein activity is slightly
perturbed at [IYIV]D2R, at

[Gprot]D2R the G protein activity is completely intact, while a small
amount of β-arrestin activity remains. However, when GRK2 is overexpressed [Gprot]D2R does
not gain appreciable β-arrestin efficacy, whereas [IYIV]D2R gains significantly in efficacy, this is
revealed by the greater shift observed using the bias statistical formalism (Fig 1C). In contrast,
the bias plot (Fig 1C) reveals that [IYIV]D2R is biased toward G protein activity but the mutant
never reaches 100% activity, and ΔΔlog(τ/KA) values reveal that

[IVIV]D2R bias is dependent on
GRK2 levels (S2 Table). Since the GRK2 overexpression assay demonstrates the receptor’s
capacity for β-arrestin recruitment under the most favorable conditions, it shows that [IYIV]D2R
can display partial agonism at both G protein and β-arrestin activities. In contrast, [Gprot]D2R
retains its original biased signaling profile: full agonism at the G protein pathway and weak
partial agonism at the β-arrestin pathway even when GRK2 is highly expressed.

Fig 1. Context dependent functional selectivity. (A) β-arrestin 2 recruitment comparing [WT]D2R and [IYIV]D2R as determined by bioluminescent resonance
energy transfer (BRET). (B) GRK2 overexpression enhances β-arrestin 2 recruitment by BRET for [IYIV]D2R and [WT]D2R, but only slightly for

[Gprot]D2R,
[βarr]D2R, and

[D80A]D2R when compared to [28]. All data are presented with SEM from n = 3–4 independent experiments, with statistical significance
calculated in S1 Table. Quantification of bias between G protein activity (data presented in S1 Fig and[28]) and β-arrestin 2 recruitment (data presented in Fig
1A and [28]) using (C) a statistical formalism where KA, calculated from EC50 = 1 [33] or (D) bias plot mapping under normal (solid lines) and GRK2
overexpression enhanced (broken lines) conditions.

doi:10.1371/journal.pone.0141637.g001
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The controlled perturbation of G protein and β-arrestin pathways allows for a more detailed
examination of partial agonism and how it can be utilized in generating receptor bias. The con-
served residue A3.53 (A135) was previously mutated into all 19 possible amino acids [28]
because it conferred remarkable functional selectivity properties. In fact, when the proximity of
A135 to the G protein in the receptor/G protein complex (Fig 2A) is compared to its proximity
to arrestin in the receptor/arrestin complex (Fig 2B) it is clear that the G protein more closely
associates with A135. When A135 is mutated to basic residues, D2R lost ~50% of its G protein
activity, while still retaining complete, and slightly more potent β-arrestin activity (S2A and
S2B Fig, respectively). In contrast, acidic substitutions ablated activity at both pathways. Fur-
thermore, substitution with a bulky polar residue (tyrosine) yielded a balanced reduction in
both G protein and β-arrestin 2 activity to roughly 75% (S2C and S2D Fig) and substitution
with a bulky nonpolar residue (phenylalanine) yielded a balanced 50% reduction (S2C and
S2D Fig). These mutants were combined with one residue substitution from [Gprot]D2R
(L125N) or [βarr]D2R (M140D) to generate mutants that maintain the loss of signaling associ-
ated with either [Gprot]D2R or [βarr]D2R while also exhibiting partial agonism at the retained
pathway. In other words, these mutants selectively lose signaling at on pathway nearly
completely, while allowing precise control of the degree of efficacy (partial agonism) still pres-
ent at the other pathway.

Agonist texture reveals novel modes of functional selectivity
A unique G protein-biased mutant (termed [Gprot4PM]D2R) displayed remarkable retention of
G protein activity and loss of β-arrestin 2 recruitment when the reference agonist quinpirole
was used to probe activity (Fig 3A and 3B, respectively). This mutation was generated by the
same iterative Evolutionary Trace process that produced [Gprot]D2R and [βarr]D2R [28]. How-
ever, when the endogenous ligand DA was used, the G protein activity was unchanged, but the
β-arrestin activity was ~50% of [WT]D2R (Fig 3A and 3B, S3 Table). At [Gprot4PM]D2R both DA
and quinpirole were able to recruit β-arrestin 2 to almost the same extent of [WT]D2R when
GRK2 was overexpressed (Fig 3C, S3 Table). However, the recruitment of GRK2 by
[Gprot4PM]D2R showed the same agonist selectivity between DA and quinpirole (Fig 3D) as
observed with β-arrestin 2. These data demonstrate the concept of agonist texture [40], which
predicts that full agonists induce distinct receptor activation states and conformations.

While [Gprot]D2R and [βarr]D2R display unprecedented separation of signal in response to
DA [28], various additional D2R agonists and antagonists were used to probe the extent of ago-
nist texture between the mutants at G protein and β-arrestin 2 activation. Each agonist tested
at cAMP inhibition was effectively equivalent for [WT]D2R and [Gprot]D2R while being severely
disrupted for [βarr]D2R and [D80A]D2R (Fig 4A, 4C and 4E, S3 Table). In contrast, [βarr]D2R was
nearly as effective at β-arrestin 2 recruitment as [WT]D2R whereas [Gprot]D2R and [D80A]D2R
were deficient (Fig 4B, 4D and 4F, S3 Table). Similarly, the well characterized antagonist raclo-
pride, typical antipsychotic haloperidol, and atypical antipsychotic aripiprazole inhibited DA-
induced cAMP reduction for [Gprot]D2R and [WT]D2R (Fig 4G, 4I and 4K, S3 Table), and β-
arrestin 2 recruitment for [βarr]D2R and [WT]D2R (Fig 4H, 4J and 4L, S3 Table). These diverse
D2R ligands behave as expected for each assay and provide evidence that the complex activa-
tion states of [Gprot]D2R and [βarr]D2R remain intact, as opposed to [Gprot4PM]D2R, which has
lost responsiveness to quinpirole at β-arrestin 2 recruitment selectively.
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The status of receptor interacting partners in extremely biased mutant
D2Rs
Allosteric modulators were assessed at [Gprot]D2R and [βarr]D2R while being compared to posi-
tive and negative controls ([WT]D2R and [D80A]D2R, respectively). The interaction of each
receptor with other components of the desensitization machinery mirrored the recruitment of
β-arrestin 2. GRK2 (Fig 5A) and β-arrestin 1 (Fig 5B) showed a similar slight potentiation and
loss of efficacy at [βarr]D2R when compared to [WT]D2R, while

[Gprot]D2R was severely deficient
(S4 Table). To test whether the mutagenesis mediated loss of function at G protein and β-
arrestin interactions achieved with [Gprot]D2R and [βarr]D2R could potentially have induced
aberrant activation of normally inactive receptor interacting proteins, two other non-conven-
tional D2R signaling avenues (Gαs and Gαq) were assessed and neither were activated by any of
the D2R mutants (Fig 5C and 5D, respectively, S4 Table).

The effect of the GPCR allosteric modulator sodium has been previously shown to enhance
dopamine binding to D2R [29] and has been proposed to function as an efficacy switch for
receptor bias [41]. As previously demonstrated [29], when sodium is removed from D2R bind-
ing buffer this results in a 50% reduction in BMAX, similar to the phenomenon observed in the

Fig 2. Receptor control of partial agonism at D2R with A135mutations. (A) Relative proximity of G proteins (green spheres) and A135 (red sphere) in D3
(blue ribbon, PDB ID: 3PBL [37]) as determined by alignment of D3R to β2AR in receptor/G protein complex (PDB ID: 3SN6, [38]). (B) Arrestin (yellow
spheres) does not reside close to A135 when D3R is aligned to rhodopsin in receptor/arrestin complex (PDB ID: 4ZWJ [39]). (C) G protein activity as
determined by inhibition of isoproterenol-induced cAMP accumulation is titrated by substitution of A135 with a bulky polar (tyrosine) or nonpolar
(phenylalanine) residue and combined with L125N or M140D to impart controlled loss of G protein function. (C) β-arrestin 2 recruitment as determined by
BRET is similarly controlled. All data are presented with SEM from n = 3–5 independent experiments, with statistical significance calculated in S1 Table.

doi:10.1371/journal.pone.0141637.g002
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A2AR [42]. To assess sodium dynamics in D2R, radioligand binding was used to determine
BMAX with and without sodium on the Renilla luciferase tagged D2R constructs [30]. In this
way, luminescence counts yield total receptors available for binding (relative to [WT]D2R) and
BMAX yields total binding sites, modulated by sodium. This assay yielded a 50% reduction in
[WT]D2R and [βarr]D2R apparent BMAX (Fig 5E) when binding was performed without sodium
and [Gprot]D2R also showed a sodium dependent reduction, although [Gprot]D2R expresses
lower than [WT]D2R as previously described [28]. [D80A]D2R BMAX did not change regardless of
the presence of sodium, which validates the experiment as [D80A]D2R is mutated at the pre-
sumed site of sodium interaction and has been previously shown to not bind sodium [29].

Discussion
The functional selectivity of D2R is dynamic and malleable. Ligands that target D2R have sig-
nificant therapeutic impact [24] and the quality of agonism or antagonism of these ligands can
be operationally defined in monitoring systems [8,30]. The agonist or antagonist quality of a
ligand/receptor pair is dependent upon the assay used for detection [43]. Here, the capacity,
quality and character of D2R functional selectivity has been examined for different mutated
D2Rs.

GPCR bias is operationally defined by the degree of engagement of a given signaling path-
way versus another. It is clear that [IYIV]D2R and [Gprot]D2R both share G protein bias, however
the quality of bias differs, depending on their operational definition. For example, in some
cases it may be beneficial to retain all of the G protein activity, while in others it may be crucial
to abolish all β-arrestin recruitment at the sacrifice of some G protein activity. In fact, [IYIV]D2R

Fig 3. A unique G protein biasedmutant demonstrates agonist texture. (A) Dopamine (DA) and
quinpirole equivalently inhibit cAMP production, which is equivalent to [WT]D2R for [Gprot4PM]D2R (T69F Y133L
Y209N A372S). (B) [Gprot4PM]D2R has roughly 50% efficacy in response to DA but not quinpirole for β-arrestin
2 recruitment. (C) GRK2 overexpression rescues both DA and quinpirole β-arrestin 2 recruitment activity
nearly to [WT]D2R levels (dotted line, from Fig 1B). (D) GRK2 recruitment as determined by BRET (where
GRK2 is tagged with YFP) shows the same ligand discrepancy as β-arrestin 2. All data are presented with
SEM from n = 3 independent experiments, with statistical significance calculated in S3 Table.

doi:10.1371/journal.pone.0141637.g003
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Fig 4. Agonists and antagonists with diverse pharmacophores elicit predictable responses at [Gprot]D2R
and [βarr]D2R. The D2R agonists quinpirole, apomorphine, and N-propylapomorphine (NPA) were tested for G
protein activity (A,C,E) and β-arrestin 2 recruitment (B,D,F). For each agonist, [Gprot]D2R showed a response
similar to [WT]D2R at G protein activation and more similar to [D80A]D2R for β-arrestin recruitment, while [βarr]D2R
was not active at the G protein pathway but retained activity at the β-arrestin pathway. The antagonists
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was mutated to contain fewer alanine substitutions which resulted in full G protein activity and
partial β-arrestin activity [36]. Nevertheless, both [IYIV]D2R and [Gprot]D2R were used to dissect
D2R-mediated ERK phosphorylation [28,35] and both mutants yielded a similar conclusion:
that D2R-mediated ERK phosphorylation is largely G protein mediated.

Operational consistency allows for meaningful conclusions about D2R signaling pathways
to be drawn. The partial agonist activity of aripiprazole has raised the possibility that complete
blockade of D2R is not necessary to impart antipsychotic efficacy [44]. This partial agonism
allows for effective targeting of G protein or β-arrestin pathways [8]. However, the causal

raclopride (G,H) haloperidol (I,J) and partial antagonist aripiprazole (K,L) were able to block DA elicited D2R
activation at the G protein pathway (G,I,K) for [Gprot]D2R and [WT]D2R to the same extent, while [D80A]D2R and
[βarr]D2R had no effect to inhibit. In contrast, these antagonists block DA elicited β-arrestin 2 recruitment (H,J,L)
for [βarr]D2R and [WT]D2R. All data are presented with SEM from n = 3–4 independent experiments, with
statistical significance calculated in S3 Table.

doi:10.1371/journal.pone.0141637.g004

Fig 5. Interacting partners and allosteric D2R determinants of functional selectivity. (A) GRK2 and (B)
β-arrestin 1 recruitment as assessed by BRET show a similar profile as β-arrestin 2: [βarr]D2R recruits
normally, while [Gprot]D2R is severely deficient. (C) Each D2R construct was expressed in HEK 293T cells and
assessed for its ability to stimulate cAMP in response to DA. Stimulation of endogenous receptor by
isoproterenol was used as a control response. (D) Gαq mediated Ca2+ flux, as measured by the aequorin
luminescence assay, is not stimulated by [WT]D2R,

[Gprot]D2R,
[βarr]D2R or [D80A]D2R, compared to AngII

induced Ca2+ flux induced by transient expression of AT1AR. (E) BMAX was determined by binding, while
luciferase-tagged receptors provided a BMAX-independent measure of receptor number. In this assay, the
responsiveness to sodium is retained for all mutants (except [D80A]D2R). All data are presented with SEM from
n = 3–4 independent experiments, with statistical significance calculated in S4 Table.

doi:10.1371/journal.pone.0141637.g005
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relationship of partial agonism and biased partial agonism (as opposed to partial antagonism)
has not been explored. The mutants described here that are derivations of A135-mutated D2R
are tools that would allow for operationally defined agonism.

While receptor manipulation is desirable to demonstrate causal relationships, biased ligands
provide valuable insight and are a more reasonable avenue toward therapy development. How-
ever, precise details and principles governing ligand action remain elusive. Here, the phenome-
non of agonist texture [40] is demonstrated with [Gprot4PM]D2R. As previously observed, full
agonists can stabilize different receptor activation states that have functional consequences
[40]. Therefore, functional selectivity could occur from the loss of function at one pathway or it
could be thought of as a gain of new receptor activity. This phenomenon represents a valuable
conceptual framework for a fundamental property of receptor activation that is relevant to
functional selectivity.

Intracellular signal transduction proteins are key elements in dictating bias. Their interac-
tions with receptors dictate agonist efficacy [45] and targeting their activation with biased ago-
nists is an avenue by which already validated receptor targets can be leveraged for improved
therapies. Here, the related desensitization allosteric modulators (β-arrestin 1, β-arrestin 2, and
GRK2, Fig 5A and 5B) were shown to fall into a common activation family using [βarr]D2R.
These findings could have an impact on future studies of more detailed elements of D2R’s β-
arrestin signaling arm, such as barcoded phosphorylation patterns [46], GRK subfamily contri-
butions [47], pleiotropic β-arrestin conformation states [48], and other posttranslational modi-
fications [49]. Additionally, related allosteric modulators (different G proteins, Fig 5C and 5D)
remained inactive at each mutant receptor, which indicates that none of the mutants have a
gross abnormal gain of function.

Interactions with small molecule allosteric modulators are also exciting avenues by which
functional selectivity can be modulated. Sodium, an intracellular GPCR allosteric modulator,
binds both [Gprot]D2R and [βarr]D2R, indicating that both G protein and β-arrestin activation
require dynamic sodium regulation. However, allosteric biased ligands may confer functional
selectivity by exploiting the recently solved extracellular vestibule [50] to generate noncompeti-
tive negative or positive allosteric modulators [51] or bitopic ligands [52].

Novel mutants and rigorous examinations of strongly biased mutants provided a conceptual
framework for the feasibility of such exercises. Furthermore, these studies provide robust and
versatile tools for further investigations of partial agonism or agonist texture in complex, physi-
ologically relevant systems. The actions of dopamine, and D2R, are dysregulated in many neu-
rological and psychiatric disorders, yet the complete and precise molecular actions of D2R
remain elusive. The work presented here highlights new tools available for the molecular dis-
section of D2R and provides valuable insight into methods that can be used to increase the util-
ity of targeting D2R pharmacologically for improved therapeutics.

Supporting Information
S1 Fig. Comparison of receptor bias. (A) cAMP partial agonism at [IYIV]D2R recapitulates
previously published values [36]. Data are presented with SEM from n = 3 independent experi-
ments. (B) Comparison of each biased mutant quantified using a statistical formalism [33]
with endogenous GRK levels (solid lines) compared to GRK2 overexpression (broken lines).
(C) and (D) bias plots to compare each receptor with and without GRK2 overexpressed,
respectively. The data presented in B,C, and D is the full data set of mutants, while Fig 1C and
1D show only the G protein-biased mutants of these data.
(TIF)
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S2 Fig. Molecular determinants of signal efficacy at A135. (A) G protein activity, as assessed
by cAMP inhibition and (B) β-arrestin 2 recruitment, as assessed by BRET are compared to
[WT]D2R efficacy for the G protein pathway (dotted line, A) and potency for the β-arrestin 2
recruitment (dotted line, B) respectively. Basic residue substitutions (blue) strongly bias D2R
toward β-arrestin with an increase in potency, while acidic residues ablate signaling at both
pathways. All data are presented with SEM from n = 3 independent experiments.
(TIF)

S1 Table. Receptor controlled perturbation of functional selectivity. Values derived from
Figs 1 and 2 to demonstrate the receptor’s contributions to functional selectivity. �p<0.05
when compared to [WT]D2R for efficacy and potency as determined by Bonferroni post-hoc
test after p<0.05 for one-way ANOVA.
(DOCX)

S2 Table. Quantifying bias at G protein preferring mutant D2R. BINF and ΔΔlog(τ/KA) were
calculated according to references in the table. Some control data (DA at cAMP inhibition and
β-arrestin 2 recruitment for [WT]D2R) calculated from [28].
(DOCX)

S3 Table. Ligand contributions to functional selectivity. Calculated from Figs 3 and 4.
�p<0.05 when compared to [WT]D2R for efficacy and potency at each ligand as determined by
Bonferroni post-hoc test after p<0.05 by one-way ANOVA.
(DOCX)

S4 Table. Transducer contributions to functional selectivity. Calculated from Fig 5. �p<0.05
when compared to [WT]D2R or control receptors (β2AR for Gαs or AT1AR for Gαq) for efficacy
and potency as determined by Bonferroni post-hoc test after p<0.05 for one-way ANOVA.
(DOCX)
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