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Abstract 

Background:  The immune system plays a vital role in the pathological process of ischaemic stroke. However, the 
exact immune-related mechanism remains unclear. The current research aimed to identify immune-related key genes 
associated with ischaemic stroke.

Methods:  CIBERSORT was utilized to reveal the immune cell infiltration pattern in ischaemic stroke patients. Mean‑
while, a weighted gene coexpression network analysis (WGCNA) was utilized to identify meaningful modules signifi‑
cantly correlated with ischaemic stroke. The characteristic genes correlated with ischaemic stroke were identified by 
the following two machine learning methods: the support vector machine-recursive feature elimination (SVM-RFE) 
algorithm and least absolute shrinkage and selection operator (LASSO) logistic regression.

Results:  The CIBERSORT results suggested that there was a decreased infiltration of naive CD4 T cells, CD8 T cells, 
resting mast cells and eosinophils and an increased infiltration of neutrophils, M0 macrophages and activated 
memory CD4 T cells in ischaemic stroke patients. Then, three significant modules (pink, brown and cyan) were identi‑
fied to be significantly associated with ischaemic stroke. The gene enrichment analysis indicated that 519 genes in 
the above three modules were mainly involved in several inflammatory or immune-related signalling pathways and 
biological processes. Eight hub genes (ADM, ANXA3, CARD6, CPQ, SLC22A4, UBE2S, VIM and ZFP36) were revealed to be 
significantly correlated with ischaemic stroke by the LASSO logistic regression and SVM-RFE algorithm. The external 
validation combined with a RT‒qPCR analysis revealed that the expression levels of ADM, ANXA3, SLC22A4 and VIM 
were significantly increased in ischaemic stroke patients and that these key genes were positively associated with 
neutrophils and M0 macrophages and negatively correlated with CD8 T cells. The mean AUC value of ADM, ANXA3, 
SLC22A4 and VIM was 0.80, 0.87, 0.91 and 0.88 in the training set, 0.85, 0.77, 0.86 and 0.72 in the testing set and 0.87, 
0.83, 0.88 and 0.91 in the validation samples, respectively.

Conclusions:  These results suggest that the ADM, ANXA3, SLC22A4 and VIM genes are reliable serum markers for the 
diagnosis of ischaemic stroke and that immune cell infiltration plays a crucial role in the occurrence and development 
of ischaemic stroke.
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Background
Stroke is a serious disease with high morbidity and 
mortality. Stroke is a leading cause of lifelong disability 
in adults worldwide, and ischaemic stroke accounts for 
more than 80%. With the increasing severity of social 
ageing, the acceleration of urbanization, the persis-
tence of cardiovascular risk factors and the prevalence 
of unhealthy lifestyles, the burden of ischaemic stroke 
is rapidly increasing [1]. Currently, reliable diagnos-
tic methods for ischaemic stroke mainly rely on imag-
ing methods, such as computed tomography (CT) [2] 
and magnetic resonance imaging (MRI) [3], which are 
time-consuming and laborious. Meanwhile, the tradi-
tional and effective treatment strategy is to carry out 
drug thrombolysis and interventional thrombolysis 
or thrombectomy as soon as possible after the occur-
rence of ischaemic stroke. These treatments not only 
require immediate treatment and intervention but also 
are significantly correlated with an increased risk of 
fatal bleeding, such as intracerebral haemorrhage and 
gastric bleeding [4]. Therefore, the early diagnosis, pre-
vention and treatment of ischaemic stroke are facing 
serious challenges. There is an urgent need to further 
explore potential reliable serum biomarkers signifi-
cantly correlated with ischaemic stroke.

At present, a large number of studies have suggested 
that traditional risk factors including hypertension, 
hyperlipidaemia and hyperglycemia are significantly 
associated with several diseases, such as cancer [5–7] 
and ischemic cardiovascular and cerebrovascular dis-
eases [8, 9]. However, in addition to these common 
cardiovascular risk factors, the role of inflammation 
or immune related mechanisms in ischemic cardiovas-
cular and cerebrovascular diseases has received more 
and more attention. Krishnan et al. found that inflam-
matory cell infiltration can effectively stimulate and 
lead to a strong immune response, resulting in dys-
function in the immune microenvironment in the cen-
tral nervous system and ultimately further leading to 
the deterioration of patients with cerebral ischaemia 
[10]. Smith et  al. also suggested that proinflammatory 
cytokines, especially interleukin-1 (IL-1), play a key 
role in the early inflammatory response after ischae-
mic stroke, and these inflammatory responses are 
associated with poorer clinical outcomes in patients 
with ischaemic stroke [11]. In recent years, immuno-
therapy has become a novel method to treat cancer 
[12] and cardiovascular disease [13]. In addition, some 

studies have revealed that immune regulation can 
effectively delay the progression of ischaemic stroke, 
restore neurological function and improve the prog-
nosis of patients, further emphasizing the importance 
of maintaining immune microenvironment homeosta-
sis for protecting the central nervous system [14, 15]. 
It has been demonstrated that specific inhibitors of 
IL-1β can delay the progression of atherosclerosis by 
inhibiting specific inflammatory pathways associated 
with atherosclerotic plaque formation [16] and effec-
tively reduce the risk of major cardiovascular adverse 
events and cardiovascular death [17]. Meanwhile, IL-1 
receptor antagonists have been found to be effective in 
reducing peripheral inflammation in acute ischaemic 
stroke, thereby improving clinical outcomes in these 
patients [11]. Therefore, in addition to the current con-
ventional treatment methods, immunoregulatory ther-
apy is expected to be a practical alternative treatment 
method that is worthy of further in-depth research. In 
recent years, CIBERSORT, a widely used analysis tool, 
can use RNA-seq data or microarray data to investigate 
the infiltration pattern of immune cells and evaluate the 
proportion of 22 types of immune cells in samples [18]. 
However, few studies investigated the infiltration pat-
tern of immune cells and the identification of immune-
related genes in the peripheral blood of ischaemic 
stroke patients. Therefore, evaluating the infiltration 
pattern of immune cells in the peripheral blood of 
ischaemic stroke patients could help further clarify 
the immune-related molecular mechanism involved in 
ischaemic stroke.

With the continuous promotion of gene chip tech-
nology, weighted gene coexpression network analysis 
(WGCNA), a powerful systematic biological method 
used to analyse network relationships and molecular 
mechanisms, is widely used to analyse massive amounts 
of gene expression profile data [19]. WGCNA is often 
used to identify coexpressed gene modules and fur-
ther explore the relationship between gene modules and 
interesting sample features [20]. More recently, machine 
learning has significantly improved the predictive and 
accuracy value of key genes identified based on micro-
arrays and next-generation sequencing data [21]. The 
least absolute shrinkage and selection operator (LASSO) 
regression and support vector machine-recursive feature 
elimination (SVM-RFE) algorithm are the most widely 
used machine learning methods to identify key genes 
[22]. However, few studies have combined WGCNA, 
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LASSO and SVM-RFE to identify the key genes related to 
ischaemic stroke.

In the current research, the GSE22255 and GSE58294 
datasets were used as the training set, and the GSE16561 
dataset was used as the testing set; all datasets were 
downloaded from the Gene Expression Omnibus 
(GEO). By removing the interbatch differences between 
the GSE22255 and GSE58294 datasets, the 25% genes 
with the highest expression variance were selected for a 
WGCNA. The potential biological functions of the genes 
in several key modules that were significantly associated 
with ischaemic stroke were analysed by Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses. The key genes significantly associ-
ated with ischaemic stroke were identified by a LASSO 
regression combined with SVM-RFE methods. Then, 
we explored the infiltration pattern of immune cells in 
peripheral blood from ischaemic stroke patients and 
further calculated the relationship between several key 
genes and 22 types of immune cells. Meanwhile, the 
expression of key genes and their diagnostic efficiency 
were further validated in the training set, testing set and 
validation samples.

Materials and methods
Ischaemic stroke microarray datasets
The gene expression profiles in the GSE22255 (includ-
ing 20 ischaemic stroke and 20 healthy samples) and 
GSE58294 (including 69 ischaemic stroke and 23 healthy 
samples) datasets were extracted from the public data-
base Gene Expression Omnibus (GEO, http://​www.​ncbi.​
nlm.​nih.​gov/​geo). The integrated gene expression profile 
was defined as a training set after normalization and the 
removal of inter batch differences between GSE22255 
and GSE58294. The gene expression profile of GSE16561 
was also downloaded from the GEO database as a testing 
set. The gene expression profiles were normalized using 
the normalize Between Arrays function in the limma 
package [23]. Probes that detected more than one gene 
were excluded from this study. The expression of genes 
detected by multiple probes was determined as the aver-
age gene expression detected in all probes. Interbatch dif-
ferences between the GSE22255 and GSE58294 datasets, 
including 89 ischaemic stroke and 43 healthy samples, 
were eliminated by the ComBat function in the "sva" R 
package. The specific workflow is shown in Fig. 1.

Construction of the WGCNA and identification of modules 
significantly associated with ischaemic stroke
A critical tool in the study of systems biology is WGCNA, 
which can construct a gene expression data profile-based 
scale-free network [24]. The WGCNA method was used 
to analyse the top 25% of genes with high expression 

variances. The reliability of the constructed scale-free 
network is ensured by removing outlier samples. First, a 
standard-scale free network was used to approximate the 
appropriate soft threshold power (soft power = 14) before 
the power function was used to calculate the adjacency 
values among genes with a variance more significant than 
all variance quartiles. Then, the adjacency values were 
transformed into a topological overlap matrix (TOM), 
and the corresponding dissimilarity (1-TOM) values were 
derived. Finally, the dynamic tree cut method was used 
to identify modules by hierarchically clustering genes 
with 1-TOM as the distance measure, a deep split value 
of 2 and a minimum size cut-off of 100 for the resulting 
dendrogram. The relationships between the modules and 
clinical shapes were evaluated using a Pearson correlation 
analysis to identify modules of biological significance.

Enrichment analysis of interesting modules
KEGG and GO enrichment analyses of the genes in the 
biologically significant modules were carried out by clus-
terProfler and the DOSE package in R [25]. The threshold 
was determined to be an FDR < 0.05.

Construction of the LASSO model and SVM‑RFE feature 
selection process
LASSO and SVM-RFE algorithms were used to identify 
the key genes with the best prognostic value for ischae-
mic stroke. A LASSO logistic regression analysis [26] was 
performed using the "glmnet" package, with the response 
type set as binomial and alpha set as 1. In addition, SVM-
RFE acts as an effective feature selection technique that 
finds the best variables by deleting the feature vector 
generated by SVM [27], and the thresholds were set as 
follows: halve.above = 100 and k = 5. Based on the SVM 
function in the e1071 package of R, the selected bio-
markers in the diagnosis of ischaemic stroke were clas-
sified and analysed by the SVM classifier. The common 
genes identified by both machine learning methods were 
defined as key genes for the subsequent research.

Evaluation of immune cell subtype distribution
The CIBERSORT.R script downloaded from the CIBER-
SORT website was utilized to explore the immune infil-
tration pattern in ischaemic stroke [18]. After obtaining 
the expression matrix of immune cells according to the 
instructions of the CIBERSORT website, the “ggplot2” 
software package was used to draw histograms, heat-
maps, and boxplot diagrams. The histogram shows the 
proportion of 22 infiltrating immune cells in ischaemic 
stroke patients, and the heatmap and boxplot diagrams 
show the difference in immune cell infiltration between 
the control and ischaemic stroke subjects. The "corrplot" 
software package was used to calculate the Pearson 

http://www.ncbi.nlm.nih.gov/geo
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correlation coefficient between each immune cell and 
display the results in a relevant heatmap.

Correlation between key genes and immune cells 
and validation of key genes
The "corrplot" software package was used to calculate the 
Pearson correlation coefficient between hub genes and 
each immune cell and display the results in a relevant bar 
graph. The expression trends of the key genes identified 
by machine learning in the validation set were evaluated, 

and the diagnostic accuracy of the key genes was also 
tested in the training and testing sets.

Study population
In total, 346 participants, including 166 healthy subjects 
and 180 ischaemic stroke patients, were recruited from 
Hunan Provincial People’s Hospital. All ischaemic stroke 
patients underwent detailed and rigorous neurologi-
cal examinations and brain magnetic resonance imag-
ing (MRI) scans. The diagnostic criteria for ischaemic 
stroke were based on the International Classification of 

Fig. 1  Flow chart of the analysis. GO, Gene Ontology annotation; KEGG, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses; 
LASSO, Least absolute shrinkage and selection operator; SVM-RFE, Support vector machine-recursive feature elimination; WGCNA, Weighted gene 
coexpression network analysis; ADM, Adrenomedullin; ANXA3, Annexin A3; SLC22A4, Solute carrier family 22 member 4; VIM, Vimentin



Page 5 of 17Zheng et al. Journal of Translational Medicine          (2022) 20:361 	

Diseases (9th Revision). Patients with a history of haema-
tologic, type 1 diabetes, autoimmune, thyroid, neoplastic, 
renal or liver diseases were excluded. The study protocols 
were developed based on the Ethics Committee of Hunan 
Provincial People’s Hospital (No: LL-20210615-144) and 
the 2008 revision of the Declaration of Helsinki of 1975 
(http://​www.​wma.​net/​en/​30pub​licat​ions/​10pol​icies/​b3/). 
All subjects provided written and informed consent.

Diagnostic criteria
The participants were divided into different subgroups 
based on their alcohol consumption (0 (non-drinker) 
and ≥ 1  g/day) and smoking status (0 (non-smoker) 
and ≥ 1 cigarette/day). Hypertension was defined as sys-
tolic blood pressure ≥ 140 mmHg and/or diastolic blood 
pressure ≥ 90 mmHg. Fasting blood glucose ≥ 7 mmol/L 
was defined as diabetes mellitus. Hyperlipidaemia was 
defined as TC > 5.17 and/or TG > 1.7 mmol/L.

RT‑qPCR
Fasting venous blood samples of 5  mL were collected 
from each subject. The total RNA was isolated from iso-
lated peripheral blood monocytes (PBMCs) using TRI-
zol reagent according to the manufacturer’s instructions. 
Then, cDNA was reverse-transcribed with a PrimeScript 
RT reagent kit (Takara Bio, Japan). A Taq PCR Master 
Mix Kit (Takara) was used to perform quantitative RT‒
qPCR based on an ABI Prism 7500 sequence-detection 
system (Applied Biosystems, USA). The proprietary 
qPCR primers used in the experiment were designed and 
validated by Songon Biotech (Songon Biotech, Shang-
hai, China). A p value < 0.05 was considered statistically 
significant.

Statistical analyses
SPSS (version 22.0) software was utilized to analyse all 
data collected in the current research. An independ-
ent-samples t-test was used to evaluate whether the 
continuous data (mean ± SD) were normally distrib-
uted between the control subjects and ischaemic stroke 
patients. The TG levels that were not normally distrib-
uted are expressed using the median and quartile ranges 
and were evaluated using a Wilcoxon−Mann‒Whitney 
test. Data, such as the sex ratio, the number of smok-
ers, hyperlipidaemia, drinking status, hypertension, and 
T2DM, were analysed by a chi-square test. The k-fold 
cross-validation [28] based on logistic regression was 
used to evaluated the value of areas under the curves 
(AUCs) in the training set (GSE22255 and GSE58294), 
testing set (GSE16561) and 346 validation samples. In 
the process of analysis, ischaemic stroke was defined as 
the outcome, and each dataset was partitioned randomly 
into five subsets (k = 5), a single subset was retained as 

the testing set, and the remaining 4 (k−1) subsets were 
used as the training set, and repeated 400 times. Then, 
the average value of AUCs of 2000 replicates (5 × 400) 
was taken as the calibration value of the AUC of the key 
genes including ADM, ANXA3, CARD6, CPQ, SLC22A4, 
UBE2S, VIM and ZFP36. The bioinformatics analysis and 
k-fold cross-validation were performed using R software 
(version 4.1.0). All tests were two-sided, and p < 0.05 was 
considered statistically significant.

Results
Data preprocessing
First, the normalized gene expression profiles of the 
GSE22255, GSE58294 and GSE16561 datasets were 
obtained after standardizing the data format, add-
ing missing values and removing outliers. Then, after 
data merging and eliminating the interbatch differ-
ences between the GSE22255 and GSE58294 datasets, 
the combined expression matrix, including 21730 gene 
symbols, was obtained from the 89 ischaemic stroke and 
43 healthy samples in the training set. After removing 4 
outlier samples (Additional file  1: Fig. S1), the top 25% 
of genes with high expression variance in the remaining 
128 samples were selected for the subsequent WGCNA 
and are presented in Additional file 2: Table S1. The gene 
expression profile of GSE16561 was used as a validation 
set and is presented in Additional file 3: Table S2. In addi-
tion, the disease grouping information of 128 samples is 
presented in Additional file 4: Table S3.

Weighted gene coexpression networks
After the calculation, we revealed that a correlation coef-
ficient greater than 0.8 (the soft threshold β is 14) was 
highly correlated and suitable for constructing several 
gene modules (Fig.  2A). A topological overlap matrix 
(TOM) was constructed by calculating the gene expres-
sion profiles’ correlation and adjacency matrices. The 
gene cluster tree is depicted in Fig. 2B. Then, we sought 
to identify the gene modules of each gene network using 
the hierarchical average linkage clustering method com-
bined with TOM. Figure  2C depicts the heatmap. The 
dynamic tree cut algorithm revealed twelve gene mod-
ules (Fig. 2D).

Identification of the modules of interest
Modules closely related to clinical features are often 
found to carry important and specific biological sig-
nificance. As shown in Fig.  3A, the pink (r 2 = 0.50, 
p = 3E−09), brown (r2 = 0.54, p = 3E−11) and cyan 
(r2 = − 0.65, p = 9E−17) modules appeared to be highly 
correlated with ischaemic stroke. An in-depth calculation 
was performed to determine the association between 
the colour of the module and gene significance (GS). 

http://www.wma.net/en/30publications/10policies/b3/
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The association between the pink module and gene sig-
nificance was 0.46 (p = 2.5E−08) (Fig.  3B), the associa-
tion between the brown module and gene significance 
was 0.58 (p = 3.3E−33) (Fig.  3C), and the association 
between the cyan module and gene significance was 0.81 
(p = 3.1E−20) (Fig.  3D). All gene symbols in the pink, 
brown and cyan modules, their GS values and corre-
sponding p values are described in detail in Additional 
file 5: Table S4.

Enrichment analysis of the genes in the pink, brown 
and cyan modules
KEGG pathway and GO enrichment analyses of 519 
genes in the pink, brown and cyan modules were car-
ried out to dissect their physiological purposes. Fig-
ure  4A shows the top 10 KEGG signalling pathways as 
follows: hsa05323, rheumatoid arthritis; hsa04064, NF-
kappa B signalling pathway; hsa04668, TNF signalling 

pathway; hsa04620, Toll-like receptor signalling path-
way; hsa04621, NOD-like receptor signalling pathway; 
hsa05134, Legionellosis; hsa04380, osteoclast differentia-
tion; hsa04657, IL-17 signalling pathway; hsa05417, lipid 
and atherosclerosis; and hsa04061, viral protein interac-
tion with cytokine and cytokine receptor. Figure 4B shows 
the top 10 biological process as follows: GO:0,002,446, 
neutrophil-mediated immunity; GO:0,042,119, neu-
trophil activation; GO:0,001,819, positive regulation of 
cytokine production; GO:0,043,312, neutrophil degranu-
lation; GO:0,002,283, neutrophil activation involved in 
immune response; GO:0,002,237, response to molecule 
of bacterial origin; GO:0,031,349, positive regulation of 
defence response; GO:0,032,496, response to lipopoly-
saccharide; GO:0,071,219, cellular response to molecule 
of bacterial origin; and GO:0,032,677; regulation of inter-
leukin-8 production. These signalling pathways and bio-
logical processes are mainly related to inflammation and 

Fig. 2  Weighted gene coexpression network analysis. A Analysis of the network topology for various soft-thresholding powers. B Heatmap of the 
topological overlap in the gene network. C Relationship among all modules. D Clustering dendrogram of genes. Gene clustering tree (dendrogram) 
obtained by the hierarchical clustering of adjacency-based dissimilarity
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the immune response. In addition, the cytological com-
ponents and molecular functions are shown in Fig.  4C, 
D. The details of these analyses is also provided in Addi-
tional file 6: Table S5.

Identification of hub genes
To identify reliable serum biomarkers significantly 
associated with ischaemic stroke, a LASSO regression 
and the SVM-RFE algorithm were used to evaluate the 

Fig. 3  Module-feature associations and associations between gene significance and module membership. A Each row corresponds to a 
modulEigengene, and the column corresponds to the clinical phenotype. Each cell contains the corresponding correlation in the first line and the p 
value in the second line. The table is colour-coded by correlation according to the colour legend. Scatterplot shows a highly significant correlation 
between gene significance (GS) versus module membership (MM) with ischaemic stroke in the pink (B), brown (C) and cyan (D) modules

Fig. 4  KEGG pathway and GO functional enrichment analyses of genes in the pinkB  term is coloured according to the legend. A KEGG pathway. B 
Biological process. C Cytological components. D Molecular function
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characteristic genes in ischaemic stroke based on the 
gene expression profile of genes in the key modules. The 
LASSO regression results showed that 21 genes were 
identified as characteristic genes (Fig. 5A). Meanwhile, in 
total, 40 genes were identified as key genes by the SVM-
RFE algorithm (Fig.  5B). Then, in total, 8 overlapping 
genes (ADM, ANXA3, CARD6, CPQ, SLC22A4, UBE2S, 
VIM and ZFP36) were selected as the core genes for sub-
sequent research (Fig.  5C). In addition, the other genes 
identified by the LASSO regression and SVM-RFE algo-
rithm are shown in Additional file 7: Table S6.

Profile of the immune cell subtype distribution pattern
The CIBERSORT algorithm was utilized to evaluate the 
differential expression of immune fractions between the 
control and ischaemic stroke samples. The cumulative 
histogram visually shows the relative proportion of vari-
ous immune cell subtypes (Additional file 1: Fig. S2). As 
shown in Fig.  6A, the heatmap showed that there were 
significant differences in the proportion of immune cells 
between the control and ischaemic stroke samples. Using 
a correlation matrix, we found that neutrophils were neg-
atively correlated with CD8 T cells and eosinophils cells 
and positively correlated with M0 macrophages (Fig. 6B). 
Compared with the normal subjects, the ischaemic 
stroke samples generally contained a decreased infiltra-
tion of naive CD4 T cells, CD8 T cells, resting mast cells 
and eosinophils and an increased infiltration of activated 
memory CD4 T cells, neutrophils and M0 macrophages 
(Fig.  6C) (p < 0.05–0.01, respectively). In addition, the 
immune cell infiltration pattern in ischaemic stroke is 
shown in Additional file 8: Table S7.

As shown in Fig. 7, the ADM gene was positively cor-
related with M0 macrophages, neutrophils and activated 
mast cells and negatively correlated with resting mast 
cells, eosinophils and CD8 T cells; the ANXA3 gene 
was positively correlated with M0 macrophages and 

neutrophils and negatively associated with naive B cells, 
CD8 T cells and activated NK cells; the SLC22A4 gene 
was positively correlated with neutrophils, monocytes 
and M0 macrophages and negatively associated with 
eosinophils and CD8 T cells; the VIM gene was positively 
associated with neutrophils and M0 macrophages and 
negatively associated with resting mast cells, naive CD4 T 
cells, eosinophils and CD8 T cells; the CARD6 gene was 
positively associated with neutrophils, monocytes and 
M0 macrophages and negatively associated with naive 
B cells, activated NK cells, eosinophils and CD8 T cells; 
the CPQ gene was positively associated with neutrophils, 
monocytes and M0 macrophages and negatively associ-
ated with naive CD4 T cells, eosinophils and CD8 T cells; 
and the ZFP36 gene was positively associated with neu-
trophils and M0 macrophages and negatively associated 
with eosinophils, resting mast cells and naive CD4 T cells 
(p < 0.05–0.01, respectively).

Validation of the key genes in the testing set and ischaemic 
stroke patients
As shown in Fig.  8, the expression levels of the ADM, 
ANXA3, CARD6, CPQ, SLC22A4 and VIM genes were 
significantly increased in the ischaemic stroke patients 
compared with those in the healthy subjects (p < 0.05–
0.01). However, the expression levels of the UBE2S and 
ZFP36 genes did not significantly differ between the 
ischaemic stroke patients and normal subjects in the 
testing set. When no cross-validation is performed, the 
AUC values of ADM, ANXA3, CARD6, CPQ, SLC22A4, 
UBE2S, VIM and ZFP36 were 0.80 (95% confidence 
interval (CI) 0.71–0.89), 0.87 (95% CI 0.80–0.93), 0.84 
(95% CI 0.76–0.91), 0.89 (95% CI 0.82–0.94), 0.91 (95% 
CI 0.86–0.96), 0.89 (95% CI 0.83–0.94), 0.88 (95% CI 
0.81–0.93) and 0.84 (95% CI 0.77–0.91) in the training 
set and 0.84 (95% CI 0.73–0.94), 0.77 (95% CI 0.63–
0.88), 0.67 (95% CI 0.53–0.81), 0.81 (95% CI 0.70–0.91), 

Fig. 5  Identification of key genes in ischaemic stroke by machine learning. A In total, 25 key genes in ischaemic stroke were identified by a LASSO 
regression. B In total, 40 key genes in ischaemic stroke were identified by the SVM-RFE algorithm. C Venn diagram of the genes extracted from the 
LASSO and SVM-RFE methods. LASSO, least absolute shrinkage and selection operator; SVM, support vector machine-recursive feature elimination
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0.86 (95% CI 0.75–0.95), 0.52 (95% CI 0.37–0.67), 0.72 
(95% CI 0.60–0.85) and 0.54 (95% CI 0.39–0.68) in the 
testing set, respectively (Fig. 9). When conducting 400 
times of fivefold cross-validation, the mean and stand-
ard deviation of AUC of ADM, ANXA3, CARD6, CPQ, 
SLC22A4, UBE2S, VIM and ZFP36 was 0.80 ± 0.09, 
0.87 ± 0.07, 0.84 ± 0.08, 0.89 ± 0.07, 0.91 ± 0.06, 
0.89 ± 0.06, 0.88 ± 0.07 and 0.84 ± 0.08 in the training 
set and 0.85 ± 0.11, 0.77 ± 0.13, 0.68 ± 0.13, 0.81 ± 0.12, 
0.86 ± 0.11, 0.62 ± 0.11, 0.72 ± 0.13 and 0.61 ± 0.11 in 
the testing set, respectively.

Further verifying the expression levels of these key 
genes in ischaemic stroke patients, we noticed that 
the expression levels of ADM, ANXA3, SLC22A4 and 
VIM were significantly increased in the ischaemic 

stroke patients compared with those in the normal sub-
jects (p < 0.01). However, the expression levels of the 
CARD6, CPQ, UBE2S and ZFP36 genes did not sig-
nificantly differ between the ischaemic stroke patients 
and normal subjects (Fig. 10A). When no cross-valida-
tion is performed, the AUC values of ADM, ANXA3, 
CARD6, CPQ, SLC22A4, UBE2S, VIM and ZFP36 were 
0.87 (95% CI 0.83–0.90), 0.83 (95% CI 0.78–0.87), 0.54 
(95% CI 0.47–0.60), 0.55 (95% CI 0.49–0.61), 0.88 (95% 
CI 0.85–0.92), 0.53 (95% CI 0.47–0.59), 0.91 (95% CI 
0.88–0.94) and 0.52 (95% CI 0.46–0.58) in validation 
samples, respectively (Fig. 10B). When conducting 400 
times of fivefold cross-validation, the mean and stand-
ard deviation of AUC of ADM, ANXA3, CARD6, CPQ, 
SLC22A4, UBE2S, VIM and ZFP36 was 0.87 ± 0.04, 

Fig. 6  Infiltration pattern of immune cell subtypes in the training set. A Heatmap of the 22 immune cell proportions in each sample. B Correlation 
heatmap of all 22 immune cells. C Violin plot of all 22 immune cell differentially infiltrated fractions
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0.83 ± 0.04, 0.55 ± 0.05, 0.56 ± 0.06, 0.88 ± 0.04, 
0.55 ± 0.05, 0.91 ± 0.03 and 0.54 ± 0.05 in validation 
samples, respectively.

Demographic and biochemical characteristics
The patients with ischaemic stroke and those in the 
control group did not significantly differ in age, dias-
tolic blood pressure, glucose, weight, body mass index 
(BMI), height, sex ratio, levels of total cholesterol (TC), 

apolipoprotein (Apo) B, proportion of smokers, hyper-
lipidaemia, Type 2 diabetes mellitus (T2DM) and alco-
hol consumption (Table  1). However, the ischaemic 
stroke patients had higher pulse pressure, systolic blood 
pressures, levels of serum low-density lipoprotein cho-
lesterol (LDL-C), triglycerides (TGs) and proportions 
of hypertension than the healthy participants. In addi-
tion, the subjects in the control group had a markedly 
increased ApoA1/ApoB ratio, ApoA1, and serum high-
density lipoprotein cholesterol (HDL-C) levels.

Fig. 7  Correlation between ADM (A), ANXA3 (B), CARD6 (C), CPQ (D), SLC22A4 (E), UBE2S (F), VIM (G), and ZFP36 (H) and infiltrating immune cells. The 
size of the dots represents the strength of the correlation between the genes and immune cells; the larger the dots, the stronger the correlation. 
The colour of the dots represents the p value; the greener the colour, the lower the p value. p < 0.05 was considered statistically significant

Fig. 8  External validation of the key genes. The expression levels of ADM (A), ANXA3 (B), CARD6 (C), CPQ (D), SLC22A4 (E), UBE2S (F), VIM (G) and 
ZFP36 (H) in the GSE16561 testing set
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Discussion
In the current research, GSE22255 combined with 
GSE58294 as training datasets were downloaded from 
the GEO database and analysed using a WGCNA. Then, 
three modules (pink, brown and cyan) were identified to 
be significantly associated with ischaemic stroke. Eight 
hub genes (ADM, ANXA3, CARD6, CPQ, SLC22A4, 
UBE2S, VIM and ZFP36) were revealed to be signifi-
cantly correlated with ischaemic stroke by a LASSO 
logistic regression and SVM-RFE machine learning 
methods. The CIBERSORT results revealed decreased 
infiltration of naive CD4 T cells, CD8 T cells, resting 
mast cells and eosinophils and increased infiltration of 

neutrophils, activated memory CD4 T cells and M0 mac-
rophages in the ischaemic stroke patients. The external 
validation combined with the RT‒qPCR analysis revealed 
that the expression levels of ADM, ANXA3, SLC22A4 
and VIM were significantly increased in the patients with 
ischaemic stroke and that these key genes were positively 
correlated with M0 macrophages and neutrophils and 
negatively correlated with CD8 T cells. The ROC analyses 
based on the training set, validation set, and our clinical 
samples showed that the ADM, ANXA3, SLC22A4 and 
VIM genes remained highly effective in distinguishing 
the ischaemic stroke patients from the normal subjects. 
These results suggest that the ADM, ANXA3, SLC22A4 

Fig. 9  ROC curve analysis. ROC curve analysis of ADM (A), ANXA3 (B), CARD6 (C), CPQ (D), SLC22A4 (E), UBE2S (F), VIM (G) and ZFP36 (H) in the training 
set GSE22255 combined with GSE58294 (green line) and the testing set GSE16561 (red line)

Fig. 10  Validation of the key genes in ischaemic stroke samples. The relative expression levels of ADM, ANXA3, CARD6, CPQ, SLC22A4, UBE2S, VIM 
and ZFP36 in ischaemic stroke patients (A). ROC curve analysis of ADM, ANXA3, CARD6, CPQ, SLC22A4, UBE2S, VIM and ZFP36 based on the expression 
levels in ischaemic stroke patients (B)
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and VIM genes play a key role in the pathological process 
of ischaemic stroke.

Previous research has proven that the expression lev-
els of adrenomedullin (ADM) are significantly increased 
in ischaemic cortical neurons induced by ischaemic 
injury in patients with ischaemic cerebrovascular dis-
ease [29]. Ischaemic cerebrovascular disease involves 
not only ischaemic brain cell injury but also arterial 
injury. Shinomiya et al. found that even in patients with 
fewer risk factors, the severity of atherosclerosis was 
significantly associated with elevated levels of mature 
ADM [30]. Ishikawa et  al. proved that the expression 
levels of ADM were significantly increased in patients 
with unstable coronary artery disease compared with 
those in patients suffering from stable coronary artery 
disease, and ADM may participate in the instability of 
atherosclerotic plaque in the form of autocrine or par-
acrine [31]. Matthew et al. proved that ADM acts as an 
independent predictor of major adverse cardiovascular 
events (MACEs) in patients suffering from heart failure 
and acute myocardial infarction (AMI), and the quan-
tification of the ADM levels may help improve the risk 

stratification of heart failure and myocardial infarction 
[32]. In addition, a compelling study showed that ele-
vated ADM levels were significantly associated with the 
severity of neurological damage, higher mortality, and 
poorer outcomes in patients with ischaemic stroke [33].

Through a comprehensive search of the NCBI GENE 
database, we revealed that Annexin A3 (ANXA3, also 
known as ANX3; HGNC: 541, gene ID: 306, OMIM: 
106,490) is located on chromosome 4q21.21 (exon 
count: 14), acts as a member of the annexin family, and 
plays a crucial role in regulating multiple biological 
processes, such as inflammatory responses, cell prolif-
eration, apoptosis and tumorigenesis [34]. Junker et al. 
[35] and Kessler et  al. [36] reported that the expres-
sion levels of ANXA3 were significantly upregulated 
in the infarcted area after cerebral ischaemia injury in 
rats. Hua et al. proved that silencing the ANXA3 gene 
can promote the repair and healing of ischaemic myo-
cardium by activating the PI3K/Akt signalling pathway 
in rats with AMI [37]. Moreover, Min et al. found that 
miR-18b can protect cerebral ischaemia‒reperfusion 
injury by activating the PI3K/Akt signalling pathway by 
inhibiting the expression of ANXA3 [38].

Table 1  Comparison of demographic, lifestyle characteristics and serum lipid levels of the participants

SBP Systolic blood pressure; DBP Diastolic blood pressure; PP Pulse pressure; Glu Glucose; HDL-C high-density lipoprotein cholesterol; LDL-C low-density lipoprotein 
cholesterol; Apo Apolipoprotein; TC Total cholesterol; TG Triglyceride; T2DM Type 2 diabetes mellitus
a  Continuous data were presented as means ± SD and determined by two side t-test
b  Nonnormally distributed data were expressed using median and quartile ranges and were evaluated using the Wilcoxon-Mann–Whitney test
c  A chi-square analysis was used to evaluate the difference of the rate between the groups

Characteristic Control (n = 166) Ischaemic stroke (n = 180) Test‑statistic p

Male/female c 94/72 95/85 0.516 0.473

Age (years) a 62.01 ± 9.40 63.25 ± 9.19 0.037 0.216

Height (cm) a 160.45 ± 7.44 161.00 ± 7.47 0.832 0.495

Weight (kg) a 56.94 ± 7.96 57.46 ± 8.88 3.245 0.569

BMI (kg/m2) a 22.10 ± 2.61 22.16 ± 3.08 2.777 0.851

Smoking [n (%)] c 66 (39.8) 75 (41.7) 0.130 0.718

Alcohol [n (%)] c 43 (25.9) 50 (27.8) 0.154 0.694

SBP (mmHg) a 128.70 ± 15.57 137.56 ± 19.09 28.524  < 0.001

DBP (mmHg) a 74.63 ± 7.38 75.54 ± 10.38 13.634 0.351

PP (mmHg) a 54.07 ± 15.31 62.01 ± 16.55 22.320  < 0.001

Glu (mmol/L) a 6.02 ± 1.10 6.17 ± 1.30 0.662 0.247

TC (mmol/L) a 4.28 ± 0.78 4.39 ± 0.79 0.026 0.198

TG (mmol/L) b 0.93 (0.62) 1.16 (0.69) -4.732  < 0.001

HDL-C (mmol/L) a 1.86 ± 0.38 1.29 ± 0.36 1.316  < 0.001

LDL-C (mmol/L) a 2.33 ± 0.72 2.71 ± 0.67 1.775  < 0.001

ApoA1 (g/L) a 1.33 ± 0.22 1.03 ± 0.22 1.001  < 0.001

ApoB (g/L) a 0.81 ± 0.18 0.81 ± 0.17 0.118 0.745

ApoA1/ApoB a 1.73 ± 0.49 1.32 ± 0.39 8.560  < 0.001

Hyperlipidemia[n (%)]c 38 (22.9) 45 (25) 0.211 0.646

T2DM[n (%)]c 34 (20.5) 43 (22.9) 0.579 0.447

Hypertension[n (%)]c 40 (24.1) 82 (45.5) 14.873  < 0.001



Page 13 of 17Zheng et al. Journal of Translational Medicine          (2022) 20:361 	

Solute carrier family 22 member 4 (SLC22A4, also 
known as OCTN1; DFNB60, gene ID: 5583, HGNC: 
10,968, OMIM: 604,190) is located on chromosome 
5q31.1 (exon count: 11) and encodes an organic cation 
transporter across the plasma membrane of epithe-
lial cells. Previous research showed that the SLC22A4 
variant, as an inflammation-related gene polymorphism 
involved in the innate immune response, is significantly 
correlated with an increased susceptibility to inflam-
matory bowel disease (IBD), Crohn’s disease (CD) and 
ulcerative colitis (UC) by changing the transcription and 
function of organic cation transporters [39–41]. Mean-
while, the genetic polymorphisms SLC22A4 rs2073838 
and rs3792876 were reported to be significantly asso-
ciated with rheumatoid arthritis (RA) in the Japanese 
population [42] and Chinese population [43]. Tokuhiro 
et al. also suggested that SLC22A4 was significantly over-
expressed in the inflammatory joints of mice with col-
lagen-induced arthritis, and runt-related transcription 
factor 1 (RUNX1) can affect the susceptibility to RA by 
regulating the expression of SLC22A4 [44]. McCann et al. 
observed that inappropriate triggering of the inflamma-
tory response can be effectively reduced by reducing the 
abnormal transport function of the SLC22A4 503F vari-
ant [45]. In addition, Yamase et al. proved that the genetic 
polymorphisms of SLC22A4 rs273909 were significantly 
associated with ischaemic stroke in the Japanese popula-
tion [46].

Vimentin (VIM, gene ID: 100,507,347, HGNC: 44,879, 
OMIM: 193,060) acts as a cytoskeletal intermediate silk 
protein, plays a crucial role in neuritogenesis and choles-
terol transport, and functions as an organizer of several 
key proteins involved in subsequent biological processes, 
such as signal transduction, adhesion, migration, apopto-
sis, and differentiation [47]. Kim et al. found that oxidized 
low density lipoprotein (ox-LDL) can induce the synthesis 
and secretion of VIM in macrophages, while extracellular 
VIM can induce macrophages to release inflammatory 
cytokines, such as tumour necrosis factor-α (TNF-α) and 
interleukin 6 (IL-6), which subsequently lead to athero-
sclerotic inflammation [48]. He et al. proved that silenc-
ing the expression of miR-144 can significantly promote 
the expression of VIM and the formation of atheroscle-
rotic plaques [49]. Yao et al. suggested that inhibiting the 
expression and rearrangement of VIM can effectively 
reduce the migration of vascular smooth muscle cells 
induced by TNF-α, thereby alleviating the progression 
of atherosclerotic lesions [50]. Gong et al. found that the 
serum VIM levels were higher in patients with coronary 
artery disease (CAD), and the VIM levels were positively 
correlated with the severity of CAD. In addition, these 
authors found that VIM can accelerate the occurrence 
and development of atherosclerotic lesions by inducing 

macrophages to secrete proinflammatory cytokines and 
adhesion molecules [51]. Furthermore, Xiao et al. found 
that VIM can increase the instability of plaques, and an 
elevated level of VIM can significantly increase the risk 
of ischaemic stroke in patients with carotid plaques [52].

Adverse innate immune responses are associated with 
several disease processes. Fernandez et  al. provided the 
first systematic description of the morphology of immune 
cells during atherosclerosis, provided insight into which 
immune cells reside in plaques and described their dif-
ferent activation states, which opened the door to the 
study of atherosclerosis caused by the immune response 
[53]. Monocyte subsets play a crucial role in the athero-
genesis and inflammatory cascade of cardiovascular 
disease. Upregulated counts and monocyte activity are 
significantly related to clinical indices of chronic kidney 
disease (CKD) and atherosclerosis [54]. T lymphocytes, 
which act as the most important type of immune cells, 
can be divided into CD4 and CD8 cell subsets accord-
ing to their surface markers and functions. CD8 T cells 
play a dual role in atherosclerosis. Previous studies have 
suggested that CD8 T cells can secrete various inflam-
matory cytokines, which can aggravate the inflammatory 
response and increase the instability of atherosclerotic 
plaques [55]. However, cytotoxic activity targeting anti-
gen presenting cells and regulatory CD8 T cells could 
effectively inhibit the progression of atherosclerosis by 
alleviating the immune reaction [55]. Other immune cell 
types, including neutrophils [56] and master cells [57], 
also play a key role in the occurrence and development of 
cardiovascular disease. Furthermore, Li et al. found that 
the proportion of M1 macrophages, gamma delta (γδ) 
T cells and neutrophils was significantly higher and that 
the proportion of eosinophils and resting dendritic cells 
was significantly lower in ischaemic stroke patients com-
pared to those in healthy subjects. However, the immune 
infiltration pattern of ischaemic stroke has not been fully 
elucidated. Clarifying immune infiltration in ischaemic 
stroke and identifying the key genes related to immune 
cells could provide a new perspective for the prevention 
and treatment of ischaemic stroke.

To further evaluate the proportion and type of immune 
cell infiltration in ischaemic stroke, the CIBERSORT 
package in R was utilized to carry out a comprehensive 
assessment of 22 types of immune cell infiltration in 
ischaemic stroke patients. We noticed that there was a 
decreased infiltration of naive CD4 T cells, CD8 T cells, 
resting mast cells and eosinophils and an increased infil-
tration of neutrophils, M0 macrophages and activated 
memory CD4 T cells in ischaemic stroke patients. As 
previously mentioned, the inflammatory characteristics 
of circulating neutrophils were increased in the acute 
stage of ischaemic stroke, and activated neutrophils may 
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promote the progression of ischaemic stroke by promot-
ing systemic inflammation and destroying the blood‒
brain barrier [58]. Compared with the normal samples, 
the proportion of neutrophils in the ischaemic stroke 
samples was generally higher; neutrophils are involved 
in ischaemic injury after stroke and may be a promising 
target for ischaemic stroke therapies [59]. In addition, 
CD8 T cells play a dual role in atherosclerosis, and our 
study showed that the proportion of neutrophils was 
higher while the proportion of CD8 T cells was lower in 
the ischaemic stroke patients compared with those in the 
control subjects. This finding implies that neutrophils 
can accelerate but CD8 T cells can inhibit the occurrence 
and progression of ischaemic stroke. However, whether 
the number of CD8 T cells and neutrophils in periph-
eral blood samples could reflect their infiltration pat-
tern in the vascular wall remains unclear. In addition, the 
current research revealed the interaction of 22 types of 
infiltrated immune cells in ischaemic stroke. Neutrophils 
were negatively associated with CD8 T cells and eosino-
phils and positively associated with M0 macrophages. 
Moreover, these key genes including ADM, ANXA3, 
SLC22A4 and VIM were positively correlated with M0 
macrophages and neutrophils and negatively correlated 
with CD8 T cells. However, a large number of studies 
have shown that immune checkpoint inhibitors targeting 
programmed cell death 1 (PD1), programmed cell death 
ligand 1 (PDL1) and cytotoxic T-lymphocyte associated 
protein 4 (CTLA4) can effectively improve the prognosis 
of many cancer patients, but it may lead to some vascu-
lar and cardiac toxicity such as atherosclerosis, ischaemic 
stroke or myocardial infarction and other adverse reac-
tions [7, 60, 61]. Therefore, further studies are needed to 
explore whether therapies targeting these genes such as 
ADM, ANXA3, SLC22A4 and VIM will bring some simi-
lar risks to patients with ischaemic stroke.

On the other hand, the gene enrichment analysis 
indicated that these key genes were mainly involved in 
inflammatory or immune-related signalling pathways, 
such as the NF-kappa B (NF-κB) signalling pathway, 
TNF signalling pathway, Toll-like receptor signalling 
pathway, NOD-like receptor signalling pathway and 
IL-17 signalling pathway. Previous studies have shown 
that the transcription factor NF-κB is a main regula-
tor of genes involved in the inflammatory response [60, 
62], and NF-κB has been shown to play an important 
role in ADM-induced inflammation [62]. The overex-
pression of NF-κB can participate in the rheumatoid 
arthritis-related inflammatory response by activating the 
SLC22A4 promoter [63]. The inhibition of NF-κB can 
reduce the expression of VIM and affect the epithelial 
mesenchymal transformation and nerve infiltration in 
pancreatic cancer [64]. In addition, Liu et  al. suggested 

that the NF-κB signalling pathway plays a key role in 
the biological processes of cell proliferation, migration 
and apoptosis mediated by ANXA3 [34]. These findings 
are consistent with our bioinformatics analysis and sug-
gest that the NF-κB signalling pathway plays an impor-
tant role in the biological processes mediated by these 
key genes, including ADM, ANXA3, SLC22A4 and VIM. 
However, the regulatory relationship among these key 
genes, the NF-κB signalling pathway and the mechanism 
of action in ischaemic stroke still need further experi-
mental verification.

This research had several limitations. First, the RT‒
qPCR analysis found that there was no significant dif-
ference in the expression levels of CARD6, CPQ, UBE2S 
and ZFP36 between our ischaemic stroke patients and 
normal subjects. The validation samples included in the 
current research were recruited from only a single centre 
with small sample sizes. Whether the expression levels 
of the above genes differ among individuals in differ-
ent regions or races is unclear. Therefore, the results of 
this study need to be further tested in multicentre stud-
ies with larger samples. Second, whether the number of 
CD8 T cells and neutrophils in peripheral blood samples 
could reflect their infiltration in the vascular wall remains 
unclear. Third, more in  vivo and in  vitro studies are 
needed to clarify the underlying mechanism of these cor-
relations among ADM, ANXA3, SLC22A4 and VIM and 
infiltrated immune cells in ischaemic stroke.

Conclusions
In summary, we determined that ADM, ANXA3, 
SLC22A4 and VIM are diagnostic markers of ischaemic 
stroke. We noticed that neutrophils, activated memory 
CD4 T cells and M0 macrophages may be related to the 
initiation and progression of ischaemic stroke; however, 
naive CD4 T cells, resting mast cells, CD8 T cells and 
eosinophils play a protective role in ischaemic stroke. 
This paper also indicates that ADM, ANXA3, SLC22A4 
and VIM are positively correlated with neutrophils and 
M0 macrophages and negatively correlated with CD8 
T cells. The mechanism underlying the relationship 
between ADM, ANXA3, SLC22A4 and VIM and immune 
cells may be of great significance for the pathogenesis and 
progression of ischaemic stroke, and related research of 
these genes could provide new therapeutic insight for 
ischaemic stroke.
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