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Abstract
Understanding how perception and action are coupled in the brain has important implications for training, rehabilitation,
and brain–machine interfaces. Ideomotor theory postulates that willed actions are represented through previously
experienced effects and initiated by the anticipation of those effects. Previous research has accordingly found that sensory
events, if previously associated with action outcomes, can induce activity in motor regions. However, it remains unclear
whether the motor-related activity induced during perception of more naturalistic sequences of actions actually represents
“sequence-specific” information. In the present study, nonmusicians were firstly trained to play two melodies on the piano;
secondly, they performed an fMRI experiment while listening to these melodies as well as novel, untrained melodies;
thirdly, multivariate pattern analysis was used to test if voxel-wise patterns of brain activity could identify trained, but not
novel melodies. The results importantly show that after associative learning, a series of sensory events can trigger
sequence-specific representations in both sensory and motor networks. Interestingly, also novel melodies could be
classified in multiple regions, including default mode regions. A control experiment confirmed these outcomes to be
training-dependent. We discuss how action-perception coupling may enable spontaneous near transfer and action
simulation during action observation.
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Introduction

Understanding how perception and action are coupled in the
brain has important implications for training, rehabilitation, and
designing brain-machine interfaces (Flor and Diers 2009; Aflalo
et al. 2015). According to ideomotor theory, which has gained
influence in recent years, willed actions are learned by trial
and error based on perceived outcomes; therefore, the brain is
organized such that at an abstract level, perception and action
are represented by a common code (Prinz 1990). This means that
observed, imagined, and performed actions all exist in the same
representational domain, essentially making action selection

and prediction of outcomes two sides of the same coin (Herwig
2015). Empirical support for this principle comes from studies of
reciprocal influences between action and perception. If sensory
events occurring during an action match expectations based on
previous experience, both perception and performance may be
boosted; in contrast, if sensory events are incongruent with the
act, interference may occur (reviewed in Novembre and Keller
2014; Herwig 2015). For example, Keller and colleagues showed
in a series of experiments that musicians planned finger move-
ment sequences faster when response keys and auditory feed-
back were congruent with the design of their instruments, and
that this effect got stronger with increased musical expertise
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(Keller and Koch 2008). They also demonstrated that in musi-
cians, the anticipation of auditory sensory events can improve
timing and economy of movements (Keller et al. 2010). Using
transcranial magnetic stimulation, Stephan et al. (2018) showed
that when nonmusicians heard melodies previously practiced
on a keyboard, motor-evoked potentials were enhanced such
that the anticipation of tones cued the corresponding finger-
movements. Neuroimaging has further illustrated how action-
perception coupling may develop through associative learning
(e.g., Haslinger et al. 2005) and found a substantial overlap
between brain regions involved in observing, imagining, and
executing familiar actions (Hardwick et al. 2018). For example,
Lahav et al. (2007) showed that after nonmusicians practiced
playing a musical piece on the piano for 5 days, listening to
the trained musical piece evoked additional brain activity, com-
pared with novel material, in the inferior frontal gyrus (IFG) and
premotor cortex, which was interpreted as training-dependent
activation of motor representations. Herholz et al. (2016) further
demonstrated, after a 6-week piano intervention, an increase in
brain activity in the dorsal premotor area (PMD) and parietal
cortex during both listening and auditory imagery of trained
versus untrained melodies.

However, it remains unclear whether the motor-related
activity induced during passive perception of action sequences
actually represents “sequence-specific” information at a similar
level of complexity. Wiestler and Diedrichsen (2013) have
shown that performed movement sequences can be classified
according to voxel-wise patterns of brain activity in several
motor areas. This observation, together with the basic tenets
of ideomotor theory, suggests that perception of learned action
sequences should trigger sequence-level motor representations.
Apsvalka et al. (2018) found support for this prediction using
visually observed sequences. Still, it is not clear how such
action-perception depends on training and if it extends to
the auditory-motor domain. Here, these issues are addressed
using a group of nonmusicians who were firstly trained to
play two simple melodies differing only in ordinal structure
on the piano; secondly, an fMRI experiment was carried
out where they listened to these melodies as well as novel
(untrained) melodies; and thirdly, multivariate pattern analysis
(MVPA) was used to test if patterns of brain activity could be
used to distinguish between the trained, but not the novel
melodies. The PMD was chosen as region-of-interest (ROI) since
this region has consistently been linked to the perception,
learning, production, and creative generation of ordinal/melodic
sequences (Schubotz and von Cramon 2001; Bengtsson et al.
2004; Bischoff-Grethe et al. 2004; Bengtsson and Ullén 2006;
de Manzano and Ullén 2012). The posterior superior temporal
gyrus (pSTG) was chosen as a secondary ROI to replicate that
melodic gestalt is represented in the auditory cortex (Schindler
et al. 2013). Lastly, a moving-ROI/searchlight analysis was per-
formed to explore auditory-motor coupling in additional brain
regions.

Materials and Methods
The study comprises two experiments that were carried out in a
consecutive fashion as the second experiment served to follow
up on an unexpected finding in the first experiment (Interim
discussion). The respective participant samples are henceforth
referred to as the experimental group (Experiment 1) and the
control group (Experiment 2).

Experiment 1
Participants

In total, 15 individuals were recruited to the study via open
advertisements. A corresponding sample size has been found
sufficient in similar studies using MVPA (Schindler et al. 2013;
Wiestler and Diedrichsen 2013; Apsvalka et al. 2018; Yokoi
et al. 2018), which leverages primarily on collecting a substantial
amount of data within person. The inclusion criteria were that
participants should be adult (>18 years old), be right handed,
have less than two years of musical training in childhood, have
no musical training as adults, have no musical training on the
piano, have no history of neurological or psychological disease,
and be able to participate in MRI in accordance with general
safety regulations. Three participants were excluded from the
study post MRI; one participant was scanned as a pilot to test
the experimental procedure and evaluate efficacy of the design
for MVPA and was discarded due to changes in participant
instructions and optimizations of the experimental procedure;
data from one participant were corrupted due to a technical
failure of the MRI scanner, and one participant was excluded
after the routine neurological screening, which was performed
by a neuroradiologist. Hence, data from 12 participants (age
M = 28 ± 5.5 years; 4 female) were included in the final analyses.
The experimental procedures were undertaken with written
informed consent of each participant, conformed to The Code
of the World Medical Association (Declaration of Helsinki) and
ethically approved by the Regional Ethical Review Board (Dnr:
2017/2304-32). Participants were reimbursed with 1000 SEK.

Auditory Stimuli

Four original melodies were composed for the experiment using
the software Logic Pro X and the included Bösendorfer Grand
Piano sound samples (by one of the authors, KS). All melodies
were composed to be played with one hand and fixed finger-
ing and were thus based on the 5 first notes of the C major
scale (C4, D4, E4, F4, G4), and had the same meter (4/4 time),
rhythm (4 quarter notes followed by 5 half notes and a half
rest), and tempo (115 bpm) (see Fig. 1, panels A and B). The
final rest had a duration of 350 ms, giving each melody a total
duration of 8 s. To ensure a sufficient melodic dissimilarity
between melodies, any three-note combination only appeared
once across all melodies. Furthermore, no particular note tran-
sition (e.g., C4 → D4) appeared at a given position in more than
one melody.

Piano Training

The participants of the experimental group were invited to a
piano training session one day before their respective MRI exper-
iment. During this training session, each of the participants
learned to play two (out of the four) melodies on a MIDI keyboard.
The keyboard was connected to a laptop with the Logic Pro X
(Apple, Inc.) recording studio software installed and ready to
deliver Bösendorfer Grand Piano sound samples through the
laptop speakers. The assignment of melodies as trained and
novel was counterbalanced across participants. The training
sessions would begin by letting the participant listen to one of
the selected melodies played from the laptop, after which an
instructor would demonstrate how to play the corresponding
melody on the keyboard. The participant was then told to place
the fingers of the right hand on the correct keys (C4-G4) and try
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Figure 1. Methods illustrations. Panel A: The relevant piano keys and fingering. Panel B: The four melodies. Panel C: The two ROIs (red—PMD; blue—pSTG). Panel D:
Illustration of the MVPA classification process. The upper section illustrates how patterns of brain activity from a ROI is given to the classifier as training material
(SVM—support vector machine), in order to derive a decision boundary between the two melodies in multivariate feature space. The lower section illustrates how
additional patterns are used to test the accuracy of the classifier after it has been trained.

to mimic the instructor, who would play the melody repeatedly
at a slow tempo an octave lower on the keyboard. When the
participant had learned to play the melodic sequence indepen-
dently and reliably, the participant was asked to play the melody
for 20 min (about 145 repetitions) in tempo with a metronome
(115 bpm). This procedure was subsequently repeated for the
second melody. After the two melodies had been practiced, the
participant was asked to play the two melodies in an alternating
fashion for another 20 min. As a final test, the participant was
asked to play each melody three consecutive times correctly. All
participants passed this test. The training dose was assumed
to be sufficient based on TMS studies showing robust training-
specific action-perception coupling after piano-keyboard prac-
tice as brief as 30—40 min (D’Ausilio et al. 2006; Stephan et al.
2018).

Data Collection/MRI Experiment
Prescan Preparations

All MRI sessions were performed at the MR Research Center
of the Karolinska Hospital. Upon arrival, the participants first

underwent a second training session. They were placed in a
quiet room where they practiced their assigned melodies in
tempo with a metronome (115 bpm) for 30 min, using the same
instrumental setup as in the first session.

Experimental Procedure

Participants were scanned in a supine position. Earplugs and
headphones were used in combination to reduce the noise of the
scanner, while allowing auditory feedback and communication
with the experimenters in the control room between sessions.
The fMRI procedure included the main listening paradigm and a
finger tapping paradigm for the localization of functional ROIs.
Detailed instructions of each paradigm (as described below)
were given to the participants before scanning.

The listening experiment was carried out in 10 sessions, each
composed of 32 trials. A trial would consist of the presentation of
one melody (8 s) followed by two seconds of silence. The auditory
stimuli were identical to those composed for the first practice
session (see Auditory stimuli). Four trials with the four different
melodies formed one set of trials. The 32 trials of a session thus
consisted of eight such sets of four trials each (320 s in total).
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To minimize expectancies on transitions between melodies, the
trial order was permuted such that the same melody was never
played two times in a row, and the distribution of transitions
between different melodies during a session was made to be
as uniform as possible. Five permutations of set orders were
created, each used twice across the 10 sessions (53 min 20 s
in total). The short interval between melodies and the brief
rest was an intentional tradeoff that compromised the efficacy
of the design for traditional voxel-wise univariate testing (e.g.,
contrasting average brain activity between trained and novel
melodies as the BOLD response induced by one melody overlaps
initially with the next melody), in favor of collecting more sam-
ples for machine learning and classification (see Data analysis).
A preliminary analysis of the obtained pilot data suggested that
the design would nonetheless be effective for MVPA analyses
(i.e., melodies could be classified despite the presumed over-
lapping BOLD-responses). The instructions given to participants
were to pay attention to the currently played melody and to
evaluate whether it was trained or novel. This task was simply
devised to keep participants focused on the melodic structure of
the presented stimuli throughout the experiment. No behavioral
response was obtained in order not to confound motor rep-
resentations evoked by passive listening. All participants were
additionally instructed to keep their eyes open and fixate on
a black crosshair presented centered on a white background
(back-projected on a screen behind the scanner and viewed
by the participants though a periscope mirror attached to the
head coil) and to remain still throughout the experiment and
particularly not to move their fingers. An adhesive tape was also
placed around the fingers of the right hand. The participants
were further instructed not to try to figure out how to play the
novel melodies while these were presented.

The finger tapping paradigm was carried out in a single
session after the listening experiment. The session was com-
posed of 30 s rest, 2 min of finger tapping, and another 30 s of
rest (3 min in total). Before this session, the adhesive tape was
removed from the right hand. Visually presented words (black
font, centered on a white background) would indicate the con-
ditions (Rest/Move). During the Rest condition, the participants
were to remain still, keep their eyes open and fixate on the
presented word. During the Move condition, participants were
also to keep their eyes open and fixate on the word, but also to
tap the fingers of their right hand on the gurney in tempo with
a metronome (115 bpm), and try to produce a “random” tapping
sequence.

MRI Scanning Parameters

Imaging was performed using a 3-T scanner (Discovery MR750w
3.0T, GE Healthcare, Chicago, Illinois, USA) with a 32-channel
head coil. Functional imaging data were collected using a gradi-
ent echo, echo-planar (EPI) T2∗-weighted sequence with blood
oxygenation level-dependent (BOLD) contrasts. The following
parameters were used: repetition time (TR) = 2.08 s; echo time
(TE) = 30 ms; field of view (FOV) = 23 cm; matrix size = 76 × 76;
voxel size = 3 × 3 × 3 mm3; slice thickness = 3 mm; slice spac-
ing = 0.2 mm; flip angle = 80◦. Whole brain image volumes were
constructed from 43 contiguous axial slices in an interleaved
slice order. Ten “dummy” image volumes were acquired at the
beginning of each session, to allow for T1 equilibration effects,
but not saved. A high-resolution, three-dimensional spoiled
gradient echo T1-weighted anatomical image was acquired in
axial slice orientation: TR = 5.45 ms; TE = 2.36 ms; inversion time

(TI) = 450 ms; FOV = 24 cm; matrix size = 240 × 240; voxel size
1 × 1 × 1 mm3; flip angle = 12◦. A T2-weighted 3D fast spin echo
fluid-attenuated inversion recovery image was also acquired:
TR = 8000 ms, TE = 115 ms, TI = 2258 ms, FOV = 27 cm; matrix
size = 224 × 224, voxel size = 1.2 × 1.2 × 1.2 mm3, variable flip
angle.

Data Analysis
Preprocessing of MRI Data

FMRI data were preprocessed using the SPM12 software pack-
age (Wellcome Department of Imaging Neuroscience, London,
UK) implemented in MATLAB R2017b (MathWorks, Inc.). For
each participant, all fMRI image volumes were slice time cor-
rected, realigned to the first image of the first session (Fris-
ton et al. 1995) and unwarpped to remove residual variance
caused by movement (Andersson et al. 2001). Thereafter, the
unwarpped images and the T2-weighted image were coregis-
tered to the T1-weighted image (Ashburner and Friston 1997).
To estimate the deformation field for the normalization of func-
tional images and the anatomical images, the T1-weighted and
the T2-weighted images were jointly segmented (Ashburner
and Friston 2005). The normalized images were subsequently
smoothed using a Gaussian kernel with a full-width-at-half-
maximum (FWHM) of 8 mm.

Univariate Analyses of fMRI Data

In order to calculate the beta estimates that were used as input
in the MVPAs, a first/subject-level univariate analysis of the
fMRI data from the listening paradigm was performed. The
fMRI data were modeled using a general linear model (GLM)
and the standard hemodynamic response function. The first-
level GLM included four regressors of interest for each session,
representing the onsets and durations of the four melodies. The
high-pass filter was set to 140 s (i.e., the Nyquist rate, or 2 × the
maximum period between an experimental condition and its
repeat). This analysis resulted in one beta image per melody per
session, which was later used as input in the MVPAs.

In the analysis of the finger tapping paradigm, normalized
and smoothed fMRI data were used. The first-level GLM anal-
ysis modeled the single Move condition and used the default
high-pass filter of 128 s. A second-level (group) analysis was
performed on the contrast between Move and implicit baseline
(including Rest) using a one sample t-test and an uncorrected
statistical threshold of P < 0.001.

Definition of Functional ROIs and Gray Matter Masks

The functional ROIs and MNI space gray matter mask were
recalculated after Experiment 2 with data from all participants
not to bias the analyses towards a specific sample. All results
presented in this article are based on those final masks. To locate
the coordinates of peak activity for the left PMD in the statistical
parametric map resulting from the second-level analysis of the
finger tapping data, preliminary coordinates were first obtained
from the meta-analysis by Mayka et al. (2006). The nearest
local maxima from each of these preliminary coordinates were
assumed to be the sample-specific coordinates for the left PMD
(x = −30, y = −6, z = 64) in the present dataset. With regard to the
left pSTG, the ROI center coordinate was defined as the local
maximum within the pSTG with highest peak activity (x = −42,
y = −34, z = 18). This matches well with where Schindler et al.
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(2013) found neural representations of melodic gestalt. While
MVPA is increasingly becoming more mainstream, there is still
no unanimous opinion on how to specify some variables for
the analysis. This includes ROI size, particularly when the ROI
is not identified as a specific anatomical region but as in the
present case, as an area of certain functional significance. A
number of factors such as spatial smoothing and individual
differences in for instance task engagement and BOLD response
play a role, which makes it difficult to determine optimal ROI
size a priori. Furthermore, it has been found and replicated
that classification accuracy tends to increase with the number
of voxels involved in an ROI and then saturate for larger ROI
sizes (Ku et al. 2008; Misaki et al. 2010). Intuitively, classification
should improve as long as informative voxels are added to
the analysis. Consequently, it can be recommended to assess
how sensitive the outcomes are to the number of voxels that
are included when using fixed ROIs. A searchlight analysis is
less affected by this since the moving ROI will ultimately have
included all informative voxels in the analysis mask (although
not necessarily all at once). Thus, three spherical binary ROI
masks with radii of 4, 6, and 8 mm, containing 33, 123, and 256
voxels respectively, were created at each of the peak coordinates
using the MarsBaR toolbox for SPM12 (Brett et al. 2002). That
is, the analyses would be repeated with different ROI radii to
assess the influence of ROI size on classification accuracy. The
ROIs did not exceed the spatial distribution of the functional
outcomes of the finger tapping paradigm. The left hemisphere
8 mm ROIs are illustrated in Figure 1 (panel C). ROIs for the
right PMD and right pSTG were created by flipping the left
hemisphere ROIs to the right hemisphere. Next, the group level
ROIs were transformed to the native space of each participant
by using the inverse of the deformation field obtained from
segmentation (see Preprocessing of MRI data). A conjunction
of each native space ROI and gray matter mask produced the
final ROI masks. The native space gray matter mask for each
participant was created by thresholding the segmented gray
matter tissue probability image at 0.5, smoothing the image
by 6 mm FWHM, thresholding this image at 0.2, reslicing it to
match the fMRI data using the mask image created by SPM12
during the first-level analysis as a target and then performing a
conjunction of the resliced image and the just mentioned target
image. The above parameters were found optimal for producing
a fairly inclusive gray matter mask that nonetheless excluded
spurious/irrelevant voxels. An MNI space gray matter mask was
created by transforming the native space gray matter masks to
MNI space and then performing a conjunction of all transformed
images.

ROI-Based MVPA

All MVPAs were performed using the CoSMoMVPA toolbox
(Oosterhof et al. 2016). The main purpose of the MVPAs was to
test whether different trained melodies, as opposed to different
novel melodies, could be differentiated from one another using
a machine learning-based classifier, trained and tested on
data from the PMD. In addition, it was expected that both
trained and novel melodies could be identified based on the
classification of activity in the pSTG. The MVPAs were based
on the beta images obtained from the first-level analysis of
the listening paradigm and performed for each category of
samples (trained and novel) and each ROI. The data were
first demeaned to ensure that classification would not simply
be driven by mean differences in activity between samples

(i.e., melodies). A linear support vector machine (Chang and Lin
2011) was then used in conjunction with a leave-two-out cross-
validation scheme for classification, i.e., eight and two sessions
were selected for training and testing, respectively, in each
iteration of the validation process. The method is illustrated
in Figure 1 (panel D). The mean accuracy of classification across
iterations was used as outcome. The within-participant chance-
level performance of classification was estimated using first-
level permutation testing and 10 000 permutations. The mean
of the permutation distribution was used to define the chance
level. Second-level analyses were performed using one-tailed
one-sample t-tests (since only above-chance outcomes could be
expected), based on within-subject paired differences between
true scores and chance scores. FDR-correction (0.05) for multiple
comparisons (Benjamini and Hochberg 1995) was performed
based on the number of ROIs, i.e., 2 categories (trained and
novel melodies) × 4 brain regions (bilateral PMD and pSTG) × 3
ROI sizes (4, 6, 8 mm). Given the dependency and spatial overlap
between the ROIs, correcting for all comparisons could be
regarded as conservative. The effect of ROI size on outcomes
was evaluated with a repeated measures mixed model (subject
and ROI as random factors) implemented in R (package lmertest)
and a two-tailed statistical threshold of α = 0.05.

Searchlight MVPA

In addition to the ROI-based MVPAs, searchlight-based MVPAs
were performed to explore representations of melodic structure
outside the predefined ROIs. The same classifier and cross-
validation scheme was used as in the ROI-based MVPAs, together
with a 4 mm searchlight. This searchlight size has been shown
to give consistent and good performance (Kriegeskorte et al.
2006). The search space was limited to the native space gray
matter masks. The resulting whole-brain classification accuracy
maps were subsequently transformed to MNI-space. Within-
group second-level analyses were performed using one-sample
t-tests (expecting above chance outcomes). The results were cor-
rected for multiple comparisons using Threshold-Free Cluster
Enhancement (TFCE; Smith and Nichols 2009) through Monte
Carlo simulations (Oosterhof et al. 2016) and a one-tailed sta-
tistical threshold of α = 0.05.

Results
ROI-Based MVPA

Confirming our hypothesis, the trained melodies could be clas-
sified with above chance accuracy based on activity in the PMD
and pSTG (see Table 1). Contrary to our expectations, however,
also the novel melodies could be classified with above chance
accuracy in the left PMD and to some extent in the pSTG. As can
be deduced from Table 1, there was an influence of ROI size on
classification accuracy, though it was not found to be systematic
in the repeated measures analysis.

Searchlight MVPA

The results of the searchlight MVPAs are illustrated in Figure 2.
These results extend the ROI-based analyses by showing
that both trained and novel melodies (Fig. 2, panels A and
B, respectively) could be classified with above chance level
accuracy within an extensive set of brain regions involved in
the perception and performance of melodic content. The largest
overlap of significant searchlights, i.e., where the sequence
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Table 1 ROI-based classification results in Experiment 1 based on trained melodies and on novel melodies, derived from difference scores of
classification accuracy (true scores − chance scores)

LPMD RPMD LpSTG RpSTG

r (mm) � (%) P d � (%) P d � (%) P d � (%) P d

Trained vs. 4 7.2 0.026 0.86 7.0 0.041 0.65 4.7 0.041 0.64 5.0 0.030 0.79
Trained 6 10.0 0.007 1.38 7.9 0.041 0.66 2.8 0.127 0.40 3.8 0.047 0.61

8 8.7 0.026 0.83 8.6 0.038 0.69 4.8 0.026 0.88 4.6 0.035 0.72
Novel vs. 4 7.2 0.011 1.17 3.3 0.127 0.39 0.3 0.437 0.05 1.2 0.185 0.31
Novel 6 7.0 0.026 0.83 1.1 0.308 0.16 4.1 0.066 0.53 1.6 0.209 0.26

8 5.1 0.032 0.75 1.6 0.185 0.30 3.8 0.051 0.58 3.5 0.026 0.94

The table displays FDR-corrected P-values. r = ROI radius, � = difference score (true − chance accuracy), d = effect size (Cohen’s d), LPMD = left dorsal premotor area,
RPMD = right dorsal premotor area, LpSTG = left posterior superior temporal gyrus, RpSTG = right posterior superior temporal gyrus

Figure 2. Searchlight classification results based on trained melodies and on novel melodies. Panel A: Significant classification accuracy (z-scores) of trained melodies.
Panel B: Significant classification accuracy (z-scores) of novel melodies. Panel C: In yellow, areas where trained melodies could be classified above chance level; in
blue, areas where novel melodies could be classified above chance level; in green, areas where both trained and novel melodies could be classified above chance level.
R = right hemisphere, L = left hemisphere.

structure of both trained and novel melodies was represented,
was found in the right hemisphere, in areas corresponding
to the lateral and inferior frontal cortices, dorsal and ventral
premotor cortices (PMD and PMV), STG, temporal-parietal and
temporal-occipital junctions, and angular gyrus (see Fig. 2, panel
C). Additional overlap was found in the middle cingulate cortex
(MCC) bilaterally, the left premotor cortex, left pSTG, and a
larger cluster extending across the left parietal lobules. Unique
representations of trained melodic sequences was found more
broadly in the right hemisphere, in areas including the lateral
and inferior frontal gyri, insula, premotor cortex, inferior and
superior parietal lobules, inferior temporal-occipital junction
(including a small portion of the posterior fusiform gyrus), and

subcortically in the putamen. There were also unique bilateral
representations in the medial frontal gyrus, supplementary/pre-
supplementary motor areas, and MCC, as well as in the left
hemisphere, mostly on the border between PMD/PMV, in the
inferior parietal lobule and cuneus. Classification accuracy
was highest in searchlights centered in the right putamen
and in an area including the right IFG/anterior insula. In
contrast, novel melodies were represented more bilaterally, with
a larger extent of unique representations in areas of the left
hemisphere, including the prefrontal and premotor cortices,
insula, putamen, STG, the temporal-parietal and temporal-
occipital junctions, and the superior parietal lobule. In addition,
novel sequences were uniquely represented in midline regions
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of the default mode network, including the medial prefrontal
cortex, posterior cingulate cortex, and precuneus. The highest
classification accuracy was found in the left superior temporal
and supramarginal gyri.

Overall Differences in the Representation of Trained
and Novel Melodies

Finally, we explored an additional question which was immedi-
ately suggested by the previous findings, i.e., whether the two
melodic categories (trained and novel) were indeed processed
as separate concepts in the experimental group. To provide
an answer, additional ROI-based and searchlight MVPAs were
carried out in the experimental group, to understand whether
trained and novel melodies could be identified as such using
similar methods as described previously, i.e., by relabeling
the four melodies according to these two categories. The
results from the additional ROI-based analysis can be found in
Supplementary Table S1 in the Supplementary Material, which
shows that the two melodic categories could be identified
in the PMD and in the left pSTG, while classification in the
right pSTG did not quite reach significance after correction
for multiple comparisons. The additional searchlight analysis
demonstrated that information distinguishing the two stimulus
categories was vastly distributed and found across the superior
and middle temporal cortices, the parietal cortex, the superior,
lateral, and inferior frontal cortices, and cerebellum (see
Supplementary Fig. S1 in the Supplementary Material).

Interim Discussion
The surprising ability of the classifier to differentiate between
novel melodies in Experiment 1 suggested two possibilities. A
first explanation could be that this finding reflected transfer
effects of training. That is, practicing one set of melodies
may have resulted in an improved capacity to represent
melodic structures that generalize also to similar but untrained
melodies. A second explanation could be that there is a
training-independent common neural substrate in auditory
and premotor areas for perception and performance of ordinal
structures. To distinguish between these explanations, a second
experiment was performed where it was tested whether a
classifier could differentiate between novel melodies also in
a control group, i.e., in a group of participants who had not
previously learned to associate tones with specific movements
(see Experiment 2). Clearly, this would be predicted under the
second, but not the first explanation.

Experiment 2
Experiment 2 was performed to test whether novel melodies
could be identified in (pre-)motor regions in a control group
with similar demographics but who had not previously learned
to associate tones with specific finger movements (see Interim
discussion).

Participants

In total, 13 individuals were recruited to the study via open
advertisements. The inclusion criteria were identical to Experi-
ment 1. One participant was excluded from the study post MRI;
this participant was scanned as a pilot to test the experimental
procedure and evaluate efficacy of the design for MVPA and
was discarded due to changes in participant instructions and

optimizations of the experimental procedure. Hence, data from
12 participants (age M = 25 ± 3.7 years; 7 female) were included
in the final analyses. The experimental procedures were
undertaken with written informed consent of each participant,
conformed to The Code of the World Medical Association
(Declaration of Helsinki) and ethically approved by the Regional
Ethical Review Board (Dnr: 2017/2304–32). Participants were
reimbursed with 700 SEK.

Auditory Stimuli
The same four melodies were used in Experiment 2 as in Exper-
iment 1.

Data Collection/MRI Experiment
Prescan Preparations

As in Experiment 1, each of the participants of the control group
was assigned two melodies. Before scanning, the participants
were seated in a quiet room and equipped with headphones.
First, each of the assigned melodies was played 10 times. Second,
the participants were tested on whether they could correctly
identify the melodies (as the first or second presented) when
played in a random order. All participants performed perfectly at
this task. Lastly, each melody was presented again three times.
The purpose of this procedure was to enable the control group
to perform a similar decision task in the scanner as the previous
experimental group. As in the experimental group, the assign-
ment of melodies was counterbalanced across participants.

Experimental Procedure

Experiment 2 was carried out in a similar fashion to Experiment
1, apart from a slight adjustment to the instructions in the
listening paradigm. Instead of being asked to pay attention to
the currently played melody and to evaluate whether it was
a trained melody or a novel melody, the control participants
were asked to evaluate whether the currently played melody
was a “prelistened” melody or a novel melody. Again, this task
was simply devised to keep participants focused on the melodic
structure of the presented stimuli throughout the experiment.
Presumably, given the extent of exposure throughout scanning,
prelistened and novel melodies would be equally familiar by the
end of the experiment and not differ in other respects.

MRI Scanning Parameters

The same scanning protocols as in Experiment 1 were used in
Experiment 2.

Data Analysis
The analyses in Experiment 2 were analog to those of Exper-
iment 1, using the terms “prelistened” and “novel” melodies,
instead of “trained” and “novel” melodies. As indicated above,
it was not expected that information processing would differ
between the two melodic categories in the control group, but the
two categories were still analyzed separately to match the data
analysis of Experiment 1.

Results
ROI-Based MVPA

Neither the prelistened nor the novel melodies could be clas-
sified above chance level in any ROI (see Table 2). Furthermore,
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Table 2 ROI-based classification results in Experiment 2, derived from difference scores of classification accuracy (true scores − chance scores)

LPMD RPMD LpSTG RpSTG

r (mm) � (%) P d � (%) P d � (%) P d � (%) P d

Prelistened vs. 4 −0.1 0.499 −0.01 −0.4 0.490 −0.07 0.5 0.474 0.14 0.8 0.474 0.11
Prelistened 6 −0.7 0.474 −0.13 −0.6 0.474 −0.12 1.7 0.447 0.32 1.0 0.456 0.20

8 −1.8 0.447 −0.37 −1.7 0.456 −0.25 −0.3 0.474 −0.12 0.7 0.456 0.23
Novel vs. 4 −0.4 0.490 −0.07 3.4 0.447 0.32 2.9 0.447 0.37 7.7 0.111 0.91
Novel 6 −1.8 0.456 −0.21 0.1 0.499 0.01 0.4 0.490 0.05 4.4 0.293 0.57

8 −1.9 0.447 −0.34 2.0 0.456 0.21 0.0 0.499 0.00 6.4 0.147 0.75

The table displays FDR-corrected P-values. r = ROI radius, � = difference score (true − chance accuracy), d = effect size (Cohen’s d), LPMD = left dorsal premotor area,
RPMD = right dorsal premotor area, LpSTG = left posterior superior temporal gyrus, RpSTG = right posterior superior temporal gyrus

the two melodic categories (prelistened and novel) could not be
identified with significant classification accuracy in any of the
ROIs (see Supplementary Table S2 in the Supplementary Mate-
rial). It can be noted that with statistical thresholds uncorrected
for multiple comparisons, the categories could be identified in
both the left and right pSTG using 8 mm ROIs.

Searchlight MVPA

Neither the prelistened nor the novel melodies could be classi-
fied significantly above chance level in any searchlight portion
of the brain. Using a “trend-level” statistical threshold of P = 0.1,
there were informative searchlights in the right superior tempo-
ral sulcus extending into Brodmann area 42.

Discussion
Sequence-Level Action-Perception Coupling

In this study, MVPA was used to test if listening to melodies pre-
viously practiced on the piano induces spatial patterns of brain
activity that represent sequence-specific information in the
premotor cortex, specifically in the PMD. The ROI-based MVPA
confirmed this hypothesis, showing that two trained melodies
could be classified consistently above chance in the bilateral
PMD of the experimental group. This is novel and direct evidence
that associative learning of sensorimotor sequences involves de
novo formation of action-perception coupling at the sequence
level. Notably, this also means that perceptual and motor chunk-
ing, i.e., the grouping of input and output into familiar units
(Miller 1956), can be intrinsically related. Anecdotally, this might
explain for instance why many individuals tend to remember for
instance door codes as “movement sequences” that are easily
retrieved given appropriate sensory stimulation (looking at a
number pad), but difficult to recall otherwise. In any case, the
findings clearly demonstrate that after associative sensorimotor
learning, ordinal structures of sensory information can activate
sequence-specific patterns of brain activity in the motor system.

A secondary hypothesis was that both trained and novel
melodies would be represented in the pSTG. As briefly men-
tioned in the Introduction, Schindler et al. (2013) previously
found that melodic gestalt is represented in the auditory cor-
tex. Using MVPA, the authors were able to distinguish between
short melodic sequences based on patterns of brain activity in
Heschl’s gyrus and the pSTG. There was consequently a clear
expectation on replicating these findings in both experiments.
The ROI-based MVPAs provided partial support for this hypoth-
esis. The trained melodies could be classified in the bilateral

pSTG, but accuracy was generally lower for the novel melodies
and in both cases influenced by ROI radius. Individual melodies
could however not be identified in the control group. There
was some support for that the two general categories (prelis-
tened and novel) could be classified, which is worth noting
since the sensitivity analysis (including ROIs of different sizes)
introduced variability in outcomes and inflated multiple com-
parisons. That is, these weaker results might indicate a form
of melodic gestalt, which could potentially have been revealed
with a larger sample size of the control group. Alternatively,
these findings could represent the confounding effect of making
and representing a decision about whether the melodies were
prelistened or novel. Nevertheless, it seems that the represen-
tation of sequence structure in auditory areas, in the absence
of downstream processing and feedback signals associated with
action-perception coupling, was more difficult to identify. It
does not appear likely however, that increasing the sample size
could have helped confirm representations of melodies in the
PMD in the control group. Firstly, as described in the introduc-
tion, previous studies strongly support that action-perception
coupling and “resonance” in motor areas is contingent on the
perceived action being part of the observer’s/listener’s motor
repertoire (Rizzolatti and Craighero 2004). Secondly, the mean
classification accuracies in the left and right PMD across ROIs
and across participants in the control group were −0.008 and
−0.009%, with effect sizes of −0.16 and −0.20 (see Table 2), which
means that there was not even a hint of an effect that could be
statistically amplified by adding participants. Thus, we main-
tain that Experiment 1 provides direct evidence for “training-
dependent” formation of sequence-specific action-perception
coupling.

Transfer of Sequence-Independent Features to Novel
Melodies

While the initial hypothesis was that the melodies would be
perceived in a holistic fashion, and therefore only be associated
with a motor representation if practiced previously on the
piano, the ROI-based MVPA in the experimental group clearly
demonstrated that the left PMD represented sequence-specific
information also during listening to the novel melodies. This
effect was not replicated in Experiment 2, where participants
listened to the same melodies without previous piano practice.
That is, the results from Experiment 1 could be interpreted
as training-dependent implicit positive transfer of sequence-
independent features that allowed for chunking of ordinal
structures and auditory-motor coupling when the experimental
group were presented with novel melodies (Thomas and Nelson
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2001; Robertson 2007). Since this was an unexpected finding
and the experiment was not designed to analyze transfer
mechanisms, further studies will be required to determine
whether the observed transfer resulted from similarities in
acoustic or other structural features. Nevertheless, the effect
was presumably facilitated by having a set of tone-finger asso-
ciations that was identical in both conditions. The substantial
amount of repeated exposure was likely also a contributing
factor. A tentative explanation for the positive transfer, based on
ideomotor theory, would be that the previously formed coupling
between individual tones and finger movements caused the
auditory-motor system to essentially play by ear and bind
the items into sequences, even though the participants were
specifically told not to imagine playing the novel melodies and
reportedly did not do so. Thus, what was arguably generalized
was the implicit ability to bind tones and their corresponding
finger movements into chunks—a skill developed during piano
practice.

Distributed Representations of Sequence-Specific
Information

The searchlight MVPA of trained melodies provided further
support for training-dependent sequence-specific action-
perception coupling. Informative voxels were revealed in
searchlights across many regions of the large-scale auditory-
motor network active during melodic/spatial pitch processing
and piano playing (Bengtsson and Ullén 2006). This wide
distribution of informative activity patterns was beyond the
specific a priori hypothesis tested here but not completely
unexpected. Firstly, there are previous studies that have shown
representational patterns of performed finger motor sequences
to be distributed across primarily the premotor and posterior
parietal cortices, but also to exist in other temporal, occipital,
and frontal areas (Kornysheva and Diedrichsen 2014; Yokoi
et al. 2018; Pinsard et al. 2019). Secondly, several of the regions
illustrated in the present findings, including the inferior
parietal lobe, premotor areas, and inferior frontal cortices,
are spontaneously engaged also when passively observing or
listening to the actions of others, provided that the observer
has some knowledge of how to perform the action (Hardwick
et al. 2018). Ricciardi and colleagues have demonstrated that this
action-observation network develops even in the congenitally
blind and can thus learn to represent movements based purely
on auditory cues (Ricciardi et al. 2009). The same laboratory
has additionally shown, using MVPA, that observed actions are
represented supramodally across both the auditory and visual
modalities (Ricciardi et al. 2013). Thus, sensory information of
different modalities appears to converge on a common abstract
form of representation that is used for information processing
throughout this network. In line with this, Herholz et al. (2016)
demonstrated a causal influence of piano practice on the
neural correlates of auditory imagery. As mentioned previously,
the notion of a common coding system for perception and
action is a core assumption of ideomotor theory (Prinz 1990).
The putative neural substrates of this system are the mirror-
neurons. “Mirror-neurons” refer to neurons that fire both when
an action is performed and when it is merely observed (Rizzolatti
et al. 2001). Importantly, mirror-neuron activity during action-
observation is dependent on the observer’s previous experience
performing the action, which aligns well with ideomotor theory.
Key areas of the putative mirror-neuron system in humans
are the inferior and superior parietal lobes, superior temporal

sulcus, PMD, PMV, and IFG (Rizzolatti and Craighero 2004). All
these regions were in the searchlight analysis found to contain
informative voxels concerning the ordinal structure of trained
auditory(−motor) sequences. Thus, an interpretation of the
outcomes with regard to trained melodies is that they were
firstly perceived and processed as spatial pitch sequences
along the dorsal visual stream (Bengtsson and Ullén 2006)
and then, given previous auditory-motor associative learning,
transformed to an abstract feature code that was distributed
across a network of brain regions involved in planning,
simulating, and organizing sequential finger movements
(Pinho et al. 2016).

Effects of Practice and the Role of the Default Mode
Network for Transfer

Despite the transfer effect in the experimental group, trained
and novel melodies could still be distinguished from one
another using MVPA. There was a notable overlap, but also
interesting differences between the searchlight maps resulting
from classification of trained melodies on the one hand and
classification of novel melodies of the other. The most striking
difference was that representations of trained melodies were
more abundant in the right hemisphere, while representations
of novel melodies were found bilaterally and included additional
midline regions of the default mode network. A straightforward
explanation of these findings is that listening to the trained
melodies induced more specific motor-related representations
of action, while listening to the novel melodies engaged a wider
portion of the action-observation network, as well as default
mode regions involved in process and outcome simulations
(Gerlach et al. 2014), to solve for the missing sequence-specific
information. In support of the first of these two propositions,
Wiestler and Diedrichsen (2013) found that sequence-specific
motor representations develop and become more distinct with
practice. However, since the lateralization here was rightward,
the effect of practice was not likely tied to the trained effector.
Instead, the observed effect could be viewed in relation to
studies suggesting a differential lateralization of spectral/pitch
and temporal/rhythmic processing (Patterson et al. 2002; Zatorre
et al. 2002; Coffey et al. 2016). Recently, Flinker et al. (2019)
proposed that this difference reflects how spectrotemporal
modulations are processed—the right and left hemispheres
being preferentially sensitive to changes in spectral and
temporal features, respectively. As a melody is essentially a
series of pitch modulations, it seems natural that processing
would tend to become more right-lateralized when for instance
piano training tunes perception to melodic content. Further,
trained melodies could be classified in the supplementary motor
area and putamen, which indicates specificity of processing and
that representations included (effector-independent) movement
features at the sequence level (Bengtsson et al. 2005; Bednark
et al. 2015). The novel melodies were instead more broadly
represented across the brain. Interestingly, the searchlight
map for novel melodies, which included the IFG, insula, STG,
MCC, and default mode regions, matches quite well with the
network of regions we have previously found engaged during
spontaneous forms of piano improvisation (Pinho et al. 2016).
It is conceivable that similar processes used for generating
novel melodies in real-time were spontaneously triggered by
the novel melodic stimuli in this experiment to simulate action
sequences. This introduces an interesting and novel role of
default mode regions in motor transfer, which is nonetheless
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very much in line with their previously described functionality
(Gerlach et al. 2014).

Conclusion
The results in this study collectively provide strong and
direct evidence for training-induced sequence-specific action-
perception coupling by showing that a series of sensory events,
which during skill learning have been perceived as a sequence of
action outcomes, can trigger sequence-specific representations
in the motor system. The finding that novel melodies could
also be classified in multiple brain regions, including default
mode regions, is very interesting. As the control experiment
confirmed these outcomes to be training-dependent, we suggest
that action-perception coupling, by way of the common coding
principle, is potentially an important mechanism also for near
transfer, as well as for spontaneous action simulation during
action observation (Kilteni et al. 2018).

Supplementary Material
Supplementary material is available at Cerebral Cortex online.
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