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Statistical network analyses have become popular in many scientific disciplines, where

an important task is to test for differences between two networks. We describe an overall

framework for differential network testing procedures that vary regarding (1) the network

estimation method, typically based on specific concepts of association, and (2) the

network characteristic employed to measure the difference. Using permutation-based

tests, our approach is general and applicable to various overall, node-specific or

edge-specific network difference characteristics. The methods are implemented in

our freely available R software package DNT, along with an R Shiny application.

In a study in intensive care medicine, we compare networks based on parameters

representing main organ systems to evaluate the prognosis of critically ill patients in

the intensive care unit (ICU), using data from the surgical ICU of the University Medical

Centre Mannheim, Germany. We specifically consider both cross-sectional comparisons

between a non-survivor and a survivor group and longitudinal comparisons at two

clinically relevant time points during the ICU stay: first, at admission, and second, at

an event stage prior to death in non-survivors or a matching time point in survivors. The

non-survivor and the survivor networks do not significantly differ at the admission stage.

However, the organ system interactions of the survivors then stabilize at the event stage,

revealing significantly more network edges, whereas those of the non-survivors do not. In

particular, the liver appears to play a central role for the observed increased connectivity

in the survivor network at the event stage.

Keywords: correlation, cross-sectional study, intensive care medicine, longitudinal study, network comparison,

permutation test
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INTRODUCTION

Statistical network analyses (Newman, 2018) have become
popular in many scientific disciplines, such as life science
(Mathews et al., 2020; Sinkala et al., 2020), social sciences (Baggio
et al., 2016), psychology (Epskamp et al., 2018a) or political
sciences (Porter et al., 2005). A network or graph (Kolaczyk, 2009;
Hevey, 2018; Newman, 2018) is typically specified by a set of
nodes (vertices) and edges (links), see Figure 1 for an illustration,
and there are multiple possibilities to estimate it. An important
task is to test for differences between two networks (Lichtblau
et al., 2017), specified in terms of various network difference
characteristics, which may refer to overall, node-specific or edge-
specific differences. Testing for differences between two networks
has previously been addressed, among others, in applications
in psychology (Van Borkulo et al., 2017) and in the context
of microbiome data (Peschel et al., 2021), biological interaction
networks (Ali et al., 2014; Kuntal et al., 2016) or gene expression
analysis (Gonzalez-Valbuena and Treviño, 2017).

The aim of our paper is twofold:

1. We first present a general framework for differential network
testing, in which we review and fuse various options for
(1) network estimation and (2) specifying a difference
characteristic according to which a difference is measured. In
particular, we check for significant differences between two
networks using a generally applicable permutation test-based
procedure (Good, 2013). The approaches are implemented in
our R package DNT, referring to Differential Network Testing.

2. We then demonstrate the utility of differential network testing
in a novel application to intensive care medicine, where
network analyses do not have a long tradition.

In this application, we specifically extend a previous study by
Asada et al. (2016) and compare networks based on parameters
representing main organ systems for a non-survivor and a
matched survivor patient group from an intensive care unit
(ICU). While Asada et al. performed a respective cross-sectional
comparison at ICU admission stage only, in our observational
study, we additionally consider a second clinically relevant stage,
namely an event time point prior to death in non-survivors

FIGURE 1 | Illustration of a network.

or a matching time point in survivors. Thus, we also perform
longitudinal comparisons, allowing us to study the dynamics of
organ system interactions in non-survivors and survivors in the
course of ICU treatment (Figure 2).

MATERIALS AND METHODS

Differential Network Testing
A network consisting of N nodes is typically summarized by
a weighted adjacency matrix A : = (aij)

N
i,j=1, where the edge

weights aij between two nodes i and j refer to an associated
value representing the magnitude or strength of an edge. When
comparing two networks, a first step is to estimate each network
(i.e., the edge weights) based on an (S × N) data matrix with
S samples. To this end, different network estimation methods
are available, and in what follows, we explicitly introduce those
options of specifying the edge weights that are later used in
our study.

• Edge weights can be given by the classical Spearman rank
correlation coefficients with values in [−1, 1], covering
negative and positive associations.

• Alternatively, the distance correlation (Székely et al., 2007;
Edelmann et al., 2019, 2021) can be employed to define edge
weights. This association measure, which takes values in [0, 1],
can specify both linear and nonlinear dependence between
two variables, and it is zero if and only if the two variables
are independent.

In order to include only the most relevant edges into the network
and avoid spurious ones, for the above approaches, an edge
weight aij between two nodes i and j is set to zero, aij : =

0, if the p-value referring to the corresponding association is
larger than a specified threshold α (typically, α : = 0.05). Then,
the association between i and j is not considered as significant
and thus, no edge is drawn. In this context, p-values may be
adjusted for multiple testing, e.g., via the established Bonferroni
or Benjamini-Hochberg (BH) procedures.

Commonly, when estimating networks, there is a trade-off
between sensitivity (drawing more edges at the cost of including
spurious ones) and specificity (drawing fewer edges and thus
avoiding spurious ones, at the cost of missing some "true"
edges), and a prioritization may depend on the application
at hand. In this context, drawing edges based on adjusted
instead of unadjusted p-values can be expected to reduce the
number of included edges. For this, the Bonferroni adjustment
procedure is known as being more conservative than the BH
adjustment procedure.

As an alternative to the above strategies, edge weights
can be derived using the EBICglasso approach (Epskamp and
Fried, 2018; Epskamp et al., 2018b; Hevey, 2018). This method
combines network estimation based on partial correlations with
lasso regularization (Tibshirani, 1996) andmodel selection. Here,
partial correlation (Johnson andWichern, 2002; Baba et al., 2004;
Kim, 2015) quantifies the relationship between two variables
while removing the effect of one or more additional variable(s)
when assessing the correlation between the two variables and thus
is an adjusted version of a classical (here, Spearman) correlation
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FIGURE 2 | The setting of our study in intensive care medicine with cross-sectional (C1 and C2) and longitudinal (C3 and C4) comparisons, compared to that in

Asada et al. (2016) with cross-sectional comparisons only (C1).

coefficient. In EBICglasso, lasso regularization is performed
when estimating a network using partial correlations, where a
collection of possible networks is estimated by varying the lasso
tuning parameter λ. From this collection, a final “best” network
is chosen by selecting a model based on the minimization of
the extended Bayesian information criterion (EBIC) (Chen and
Chen, 2008). In turn, the EBIC depends on a hyperparameter γ ,
typically γ ∈ [0, 0.5], which controls how much the EBIC prefers
simpler models. Higher values of γ (∼0.5) typically lead to a
higher specificity in that more parsimonious models with fewer
edges are preferred. In contrast, smaller values of γ (∼ 0) typically
lead to a higher sensitivity in that more edges are included into
the network, thus being less conservative.

Once weighted adjacency matrices A : = (aij)
N
i,j=1 and B : =

(bij)
N
i,j=1 representing two networks A and B, respectively, with

the same nodes are determined, several network difference
characteristics can be derived to compare A and B (Tantardini
et al., 2019; Wills and Meyer, 2020; You, 2020). These may
be roughly divided into differences in (1) overall network
characteristics, (2) node-specific characteristics, or (3) edge-
specific characteristics. From the large variety of network
difference characteristics, we focus on the following well-
established ten:

• difference in the global strength:G(A,B) : =

∣

∣

∣

∣

N
∑

i,j=1
(|aij|−|bij|)

∣

∣

∣

∣

,

• Frobenius metric: F(A,B) : =

√

N
∑

i,j=1
|aij − bij|2,

• maximum metric:M(A,B) : = max
1≤i,j≤N

{|aij − bij|},

• spectral distance: S(A,B) : =

√

N
∑

i=1
(λAi − λBi )

2, with λAi being

the i-th eigenvalue of A, where λA1 ≥ . . . ≥ λAN ,

• Jaccard distance:

J(A,B) : = 1− # edges that are present in A and B
# edges that are present in A or B

= 1− # edges that are present in A and B
# edges(A)+# edges(B)−# edges that are present in A and B ,

• difference in the number of edges: E(A,B) : = |# edges(A) −
# edges(B)|,

• difference in the number of clusters (communities) obtained
by the Girvan-Newman algorithm (Girvan and Newman,
2002; Newman and Girvan, 2004), which is based on the
concept of edge betweenness (where the betweenness of an
edge e refers to the number of the shortest paths between two
nodes that go through e):
C(A,B) : = |# clusters(A)− # clusters(B)|,

• difference in the number of isolated nodes (i.e., nodes without
any edges):
I(A,B) : = |# isolated nodes(A)− # isolated nodes(B)|,

• difference in the degree of a specific node i:
Di(A,B) : = | degreei(A)− degreei(B)|,
where degree refers to the number of edges linked to i,

• difference in the edge strength between two specific nodes i
and j: Eij(A,B) : = |aij − bij|.

While G, F,M, S, J,E,C and I can be considered as overall
network difference characteristics, Di is node-specific, and
Eij edge-specific. The above network difference characteristics
represent quite basic measures, which are however well-
established and readily interpretable and thus suitable to our
application. In particular, E,C, I,Di and Eij are straightforward
to interpret, directly representing differences of specific network
properties. Further, G compares the respective sums of all
(absolute) edge weights, and thus the global strengths, for two
networks. Moreover, F and M can mathematically be regarded
as overall distance measures induced by p-norms applied to
adjacencymatrices, using p = 2 (F) and p = ∞ (M), respectively.
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In addition, S is nothing but the Euclidean distance between
spectra of adjacency matrices. Finally, J, which can take values
in [0, 1], measures the dissimilarity between two networks by
comparing the size of the intersection and the size of the union of
their edges.

To test the null hypothesis H0 of invariance between two
networks A and B with respect to a specific network difference
characteristic (test statistic) X against the alternative H1 that
there is a difference, we here use the following non-parametric,
permutation-based procedure (Good, 2013; Van Borkulo et al.,
2017):

1. based on the original group assignments of the samples to
either network A or B, derive weighted adjacency matrices
corresponding to A and B, respectively, and the value of the
test statistic x0,

2. randomly permute the group assignments of the samples to
either A or B and recalculate the weighted adjacency matrices
and the value of the test statistic,

3. perform the preceding step M times, where M < Mall

with Mall denoting the number of all possible permutations
(as it is usually computationally infeasible to derive all
possible permutations), and obtain the test statistic values
x1, . . . , xM , and

4. derive an approximate p-value via P = (1/M)
M
∑

m=1
1{xm≥x0},

with 1E denoting the indicator function whose value is 1 if the
event Ematerializes and 0 otherwise.

Then, the null hypothesis H0 can be rejected in favor of H1

if P ≤ α for some threshold α (typically, α = 0.05). The
above strategy has the advantage of being quite general and
generic, as it can be applied to any suitable network characteristic
to compare two networks, including those mentioned above
(G, F,M, S, J,E,C, I,Di and Eij). Note that when permuting the
group assignments, it needs be taken into account whether
the data is paired (e.g., in longitudinal comparisons, where
the measurements for both time points stem from the same
individuals) or unpaired (e.g., in cross-sectional comparisons,
where the measurements for both groups may come from
different individuals). Typically, a large number of permutations
is required to obtain reliable results, e.g., M = 1, 000
orM = 10, 000.

R Package DNT
The methodological framework introduced above is
implemented in our new software package DNT in the R (R
Core Team, 2021) programming language. DNT is publicly and
freely available at https://github.com/RomanSchefzik/DNT,
together with documentation and examples. In the context of
statistical network comparison, it provides an alternative to the
already existing R packages difconet (Gonzalez-Valbuena
and Treviño, 2017), used for gene expression analysis, NCT
(Van Borkulo et al., 2017), originally developed for applications
in psychology, and NetCoMi (Peschel et al., 2021), specifically
tailored to context of microbiome data. In accordance with
what has been outlined above, DNT offers various options for
specifying both the network estimation method and the network

TABLE 1 | Parameters representing the different organ systems in our study.

Organ (system) Parameter Symbol

Liver (hepatic) Bilirubin Bil

Neuroendocrine Sodium Na

Kidney (renal) Creatinine Cre

Immune system (inflammation) C-reactive protein CRP

(glucose) Metabolism Blood glucose Glu

Lung/respiration Horovitz quotient (PF ratio) PF

Hematopoiesis Hemoglobin Hb

Cardiovascular system Mean arterial pressure * MAP

Coagulation/thrombosis Platelet count * Plt

*Parameters chosen differently compared to Asada et al. (2016).

difference characteristics used for comparison. It is generally
usable in any application area, whenever two statistical networks
are to be compared. Along with the DNT package we additionally
provide a user-friendly, interactive R Shiny application for
visual network comparison as a special feature. This tool has the
benefit of being readily employable by users with no (statistical)
programming background.

Application to Intensive Care Medicine
Organ systems mutually interact in the body to maintain
individual vital organ function and physiologic homeostasis
(Godin and Buchman, 1996). If organ systems are not able
to coordinate appropriately, this disruption of inter-organ
relationships is likely to be associated with death. In fact, multiple
organ failure is the main cause of death in patients treated in
intensive care units (ICUs) (Mayr et al., 2006; Orban et al., 2017).
Consistently, life-threatening conditions like sepsis commonly
affect multiple organ systems concurrently (Godin and Buchman,
1996; Bartsch et al., 2015; Asada et al., 2016, 2019). Using
correlation-based network analyses of parameters representing
main organ systems, Asada et al. (Asada et al., 2016) have shown
that groups of critically ill ICU patients differing with respect to
survival also had different network characteristics, focusing on a
cross-sectional comparison of networks between a survivor and
non-survivor group at ICU admission. We extend this work by
including a longitudinal network comparison which, besides ICU
admission, comprises an additional clinically relevant event time
point to capture important network dynamics associated with
survival: the 48–24 h period prior to death in non-survivors or
the corresponding period after equal duration of ICU treatment
in matched survivors (Figure 2). We hypothesize that survivor
and non-survivor networks evolve differently in the course of
ICU treatment.

Study Design, Data and Implementation Details
In our study, we consider the same nine different organ systems
as in Asada et al. (2016), represented by N = 9 specific network
parameters or nodes, respectively (Table 1). Partly in contrast
to Asada et al. (2016), we here consider routine laboratory
parameters and vital sign measurements that are regularly
determined in the course of ICU treatment.
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FIGURE 3 | Overview of the matching procedure to identify appropriate controls (i.e., a survivor group) to the cases (i.e., the group of non-survivors from the ICU

patient data base) in our study, using a combined risk set sampling (Langholz and Goldstein, 1996) and propensity score matching (Rosenbaum and Rubin, 1983)

approach. In line with Figure 2, circles are used for cases and rectangles for controls. Blue color indicates the admission stage and green color the event stage. Each

horizontal line represents an encounter in the ICU from the data base. For the cases, the corresponding death times are indicated by small circles. In a first step, a

matching with respect to the ICU length-of-stay is performed, in that each potential control has to have at least the same length-of-stay than the corresponding case

(dashed lines). In a second step, the admission characteristics of all encounters are determined (blue rectangle). These are then employed in a third step, in which a

propensity score matching with respect to the admission characteristics is performed, to the end that the controls should have similar admission characteristics as the

cases. Using this procedure, we end up with several case-control pairs (here, the pairs 1, 2, 3, and 4). In particular, we employ a nested case-control study design

(Ernster, 1994; Keogh and Cox, 2014), in which an encounter may take the role of both a case and a control (see e.g., the encounter taking the role of a case in

case-control pair 4, but the role of a control in case-control pair 2). Eventually, from the set of case-control pairs, the four different networks considered in our analyses

(Figure 2) are derived.

We analyze consecutive admissions to the surgical ICU of
the University Medical Centre Mannheim (Germany) of patients
18 years or older with a minimum length-of-stay of 72 h
between 07/18/2016 and 11/04/2018. Follow-up of this cohort
starts on ICU admission after beginning of the study period,
and ends on ICU discharge, death or end of the study period,
whichever is earliest. The study outcome is ICU mortality. For
cases experiencing this outcome, we define the 24-h interval
immediately after admission as the admission time window and
the 48–24 h time window prior to the time of death as the event
time window. We only retain cases with at least one recorded
value for each of the network parameters (Table 1) in both
admission and event time window, where values for bilirubin and
the Horovitz quotient may have been imputed using specifically
designed imputation schemes (Supplementary Material 1).

Using risk set sampling (Langholz and Goldstein, 1996) we
select propensity score and length-of-stay-matched controls as
follows (Figure 3): For each case we identify as potential controls
all ICU admissions of the cohort treated in the ICU for at least
as long as the given case, independent of survival, corresponding
to a nested case-control study design (Ernster, 1994; Keogh and
Cox, 2014). This way, each risk set consists of a case and all

admissions with matching on length-of-stay as controls, so that
the sum of all controls by far exceeds the number of admissions.
Each control’s admission time window is determined as the
24-h interval after admission. We subsequently only consider
controls with at least one recorded value for each of the network
parameters in the admission time window. In each risk set, we
calculate the index time for each remaining control as the sum of
admission time and treatment duration of its corresponding case.
We then determine the control’s event time window as the 48–24
h time window prior to their index time. From each case’s risk set,
we then identify eligible controls with at least one recorded value
of each of the network parameters in the event time window.

A propensity score (Rosenbaum and Rubin, 1983) for
mortality risk based on data recorded closest to the admission
time point during the admission time window is then determined
for cases and controls. It is based on the admission simplified
acute physiology score (SAPS) II (Le Gall et al., 1993) minus the
points for age, systolic blood pressure, Horovitz quotient, sodium
and bilirubin, the admission 10-item therapeutic intervention
scoring system (TISS) (Beier et al., 2019), age, sex, the network
parameters, Charlson comorbidity index (Charlson et al., 1987)
and catecholamine therapy started up to 8 h after admission. In
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FIGURE 4 | Flowchart for the matching procedure.

each risk set, we match the control with the smallest Mahalanobis
distance calculated from the logarithm of the propensity score
and the network parameters to each case. In the course of this,
we account for the goodness of the propensity score matching by
excluding matches with a propensity score outside the common
support for the case (non-survivor) and control (survivor) groups
(i.e., the largest interval containing propensity scores for subjects
in both groups).

The above procedure yields matched case-control pairs for
which the selected controls may stem from the same encounters.
This may lead to potential bias resulting from underestimation
of variability of the control admission network by including
the same encounters as controls multiple times. We therefore
compute the absolute differences 1 : = |pscase − pscontrol|
in propensity scores pscase and pscontrol for all concerned
case-control pairs, respectively, and only keep the pair with the
smallest value of 1 in our study, while excluding the other pairs.

At this point, we explicitly recall that the matching based
on the admission characteristics in order to select the controls
is an essential part of our procedure and of crucial importance
for validity of the results, which may differ when using other
matching strategies (Discussion).

For the so-obtained S = 123 (Results; Figure 4) case-control
pairs, we separately extract the values of the corresponding
N = 9 network parameters for each of the four instances from
Figure 2, i.e., (i) the non-survivors’ admission, (ii) the survivors’
admission, (iii) the non-survivors’ event and (iv) the survivors’
event network. Hence, for each of the four networks, we have an
(S× N) data matrix as an input for network estimation.

Each of the network estimation approaches described before,
in which edges are drawn based on different correlation concepts,
is employed to derive the four networks. However, following
Asada et al. (2016), our main focus is on networks estimated
based on pairwise Spearman correlations between the nine
parameters representing the organ systems. Here, an edge weight
between two nodes is set to zero if the corresponding Bonferroni-
or BH-adjusted p-value is > 0.05.

In our analyses, we consider the following four network
comparisons (Figure 2):

(C1) non-survivors at admission vs. survivors at admission,
(C2) non-survivors at event vs. survivors at event,
(C3) survivors at admission vs. survivors at event, and
(C4) non-survivors at admission vs. non-survivors at event.

The cross-sectional comparisons between non-survivors and
survivors (C1 and C2) are based on unpaired samples (as then,
for both networks the data may come from different encounters),
whereas the longitudinal comparisons between admission and
event stage (C3 and C4) are based on paired samples (as then,
for both networks the data comes from the same encounters).

For the analyses, we consider the network difference
characteristics as stated before, where G,E and C have already
been employed in Asada et al. (2016), while the others
are additionally considered here, and use M = 10, 000
permutations to derive p-values. We declare a difference
between two networks with respect to a fixed network
difference characteristic to be significant if the corresponding
p-value is ≤ 0.05.
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RESULTS

By applying the matching procedure described before to our ICU
patients, we end up with S = 123 matched case-control pairs
(Figure 4) and thus a considerably larger sample size than the
40 pairs in Asada et al. (2016). Details about the characteristics
of the considered patient groups can be found in Table 2 and
Supplementary Table 1.

Average age and proportion of male patients in non-survivors
and matched survivors are generally compatible with ICU
patients. A relatively large proportion of patients is mechanically
ventilated or receives catecholamines, slightly less in the survivor
group at the event stage. In line with the aim of our case-
control matching procedure, at the ICU admission stage, there
are no significant differences (at a 5% level) between the non-
survivor and the survivor group with respect to practically all
considered quantities. One exception is the sequential organ
failure assessment (SOFA) score (P = 0.0361, Table 2), which
was not included in the propensity score as its components are
largely represented in the network parameters and other disease
severity scores. The observed statistically significant difference in
average SOFA scores on admission can be considered as being of
marginal clinical significance.

At the event stage, meaningful differences between non-
survivors and survivors in our study can be observed, in that the
clinical scores (SAPS II, TISS-10, SOFA) are significantly higher
for non-survivors compared to survivors, and the values of the
nine considered network parameters indicate comparably worse
clinical states for non-survivors.

Overall, the Spearman correlations between the network
parameters for the four networks in our setting are
basically rather weak. Significant (absolute) correlations are
typically stronger at event stage than at admission stage
(Supplementary Material 2.2, Supplementary Figures 1–4).

The specific outcomes for our cross-sectional and
longitudinal comparisons depend on the considered
network estimation method, as well as on the considered
network difference characteristic. As previously mentioned,
we mainly limit our discussion to estimated networks
based on Spearman correlations together with Bonferroni
(Figure 5A and Table 3) or BH (Figure 5B and Table 4)
adjustment in what follows, while the major observations
also remain valid when considering alternative network
estimation approaches based on distance correlation
(Supplementary Material 2.3, Supplementary Figure 5,
Supplementary Tables 2, 3) and EBICglasso
(Supplementary Material 2.4, Supplementary Figures 6, 7,
Supplementary Table 4), respectively.

As expected, for the Spearman correlation networks based on
the more conservative Bonferroni adjustment (Figure 5A), fewer
edges can be observed as for those based on the more progressive
BH adjustment (Figure 5B).

When comparing the networks for non-survivors and
survivors at ICU admission (C1), no significant differences can
be observed for all considered network difference characteristics,
with the networks showing a similar structure. This is to be
expected, as the matching procedure we employed for defining

the non-survivor and survivor group followed the principle of
making admission characteristics as similar as possible.

In contrast, when comparing the networks for non-survivors
and survivors at the event stage (C2), C-reactive protein (CRP)
shows a significantly different degree. Specifically, CRP has no
or one edge, respectively, in the non-survivor event network,
but is highly connected with many edges and a high degree in
the survivor event network (p-values: P = 0.0054, Table 3, and
P = 0.0217, Table 4). Further, the positive association between
bilirubin and CRP (P = 0.0001, Tables 3, 4) is significantly
different, in that it is present in the survivor group, but not
in the non-survivor group. Conversely, the negative association
between bilirubin and sodium is present in the non-survivor
group, but absent in the survivor group (P = 0.0078, Tables 3,
4). A similar pattern (as for bilirubin) in the interplay with
CRP and sodium can be observed for platelet count: A negative
association between platelet count and CRP is present in the
survivor group and absent in the non-survivor group (P =

0.0194, Tables 3, 4), while the converse holds for the positive
association between platelet count and sodium (P = 0.0108,
Tables 3, 4). Significant differences also exist with respect to
several overall network difference characteristics (Tables 3, 4). In
particular, in case of the Bonferroni adjustment, there are many
edges and few clusters in the survivor event network (P = 0.0169
for differences in the number of clusters, Table 3) and many
isolated parameters with no edges in the non-survivor event
network (P = 0.0365 for differences in the number of isolated
nodes, Table 3). However, for the BH adjustment, there are in
contrast no significant differences with respect to the number of
clusters and isolated nodes for comparison (C2) (Table 4). This
is due to the higher connectivity of the event networks in case of
the BH adjustment, compared to that obtained using the more
conservative Bonferroni adjustment (Figure 5).

Regarding the longitudinal comparison between admission
and event stage for the survivor group (C3), sodium (P = 0.0176,
Table 3, and P = 0.0017,Table 4) and platelet count (P = 0.0369,
Table 3, and P = 0.0007, Table 4) show a significantly different
degree for both adjustment methods. Moreover, for instance, the
positive association between bilirubin and CRP (P < 0.0001,
Tables 3, 4), the negative association between CRP and platelet
count (P < 0.0001, Tables 3, 4) and the positive association
between sodium and creatinine (P = 0.0019, Tables 3, 4) are
present at the event stage only and not at admission. Significant
differences for survivors between admission and event stage can
also be observed with respect to several overall network difference
characteristics (Tables 3, 4).

Finally, the comparison between admission and event stage
for the non-survivors (C4) reveals no significant differences
for all overall network difference characteristics. platelet count
have significantly more edges at event stage than at admission
(P = 0.0355, Table 3, and P = 0.0078, Table 4), and the
positive association between sodium and platelet count, being
only present at the event stage, is significantly different between
the two networks (P = 0.0086, Tables 3, 4).

Overall, based on the above results for the comparisons (C1)
to (C4), we observe diverging dynamics between survivors and
non-survivors in the course of the ICU stay.
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TABLE 2 | Basic characteristics of the non-survivor and survivor patient groups at ICU admission and event stage, consisting of S = 123 patients each, considered in our

study.

ADMISSION STAGE EVENT STAGE

NON-SURVIVORS SURVIVORS NON-SURVIVORS SURVIVORS

(S = 123) (S = 123) (S = 123) (S = 123)

mean (SD) mean (SD) p-value mean (SD) mean (SD) p-value

or s (% of S) or s (% of S) or s (% of S) or s (% of S)

DEMOGRAPHICS

Men, s(%) 80 78 0.7902

(65.0%) (63.4%)

Age, yr 67.9 68.6 0.6999

(14.1) (12.9)

ICU length of stay, d 12.6 22.4 <0.0001

(12.8) (17.9)

PRE-EXISTING CONDITIONS

Charlson comorbidity index 3.5 3.6 0.8193

(2.8) (2.8)

CLINICAL INTERVENTIONS

Catecholamines, s(%) 94 94 1.0000 99 87 0.0748

(76.4%) (76.4%) (80.5%) (70.7%)

Mechanical ventilation, s(%) 119 117 0.5185 118 97 <0.0001

(96.7%) (95.1%) (95.9%) (78.9%)

Dialysis, s(%) 12 9 0.4936 30 26 0.5430

(9.8%) (7.3%) (24.4%) (21.1%)

CLINICAL SCORES

SAPS II 20.4 19.6 0.5553 23.1a 17.0 <0.0001

(9.5) (9.6) (9.2) (8.3)

TISS-10 21.4 21.0 0.7181 20.0a 16.5 <0.0001

(7.0) (7.8) (6.9) (6.3)

SOFA 10.9b 9.3d 0.0361 11.0c 7.4d <0.0001

(3.2) (3.8) (4.0) (3.7)

NETWORK PARAMETERS

Bilirubin, mg/dl 1.01 0.85 0.2432 1.80 1.03 0.0372

(1.22) (0.95) (3.47) (2.18)

Sodium, mmol/l 130.0 139.3 0.7252 145.3 142.8 0.0427

(6.2) (5.0) (10.9) (8.4)

Creatinine, mg/dl 1.64 1.42 0.1428 1.80 1.15 <0.0001

(1.28) (1.03) (1.37) (0.76)

CRP, mg/l 126.0 118.6 0.6140 163.5 123.6 0.0017

(109.3) (118.1) (106.0) (90.2)

Blood glucose, mg/dl 130 134 0.7413 137.9 137.3 0.9143

(63.2) (45.3) (39.5) (34.9)

Horovitz quotient, mmHg 351.4 336.0 0.5210 283.2 324.2 0.0066

(199.0) (176.3) (113.6) (120.9)

Hemoglobin, g/dl 10.6 10.4 0.4062 9.1 9.2 0.6986

(2.2) (2.1) (1.6) (1.4)

MAP, mmHg 82.1 81.3 0.6953 78.6 85.0 0.0039

(15.2) (14.7) (17.2) (17.4)

platelet count, 109/l 222.6 220.2 0.8805 211.0 270.2 0.0036

(132.7) (116.0) (157.0) (158.4)

Results are represented in the form mean (standard deviation, SD) for non-binary variables and s (% of S) for binary variables, with s ≤ S being a number of patients. P-values are

derived from t-tests (continuous variables) or χ2-tests (categorical variables). SAPS II, simplified acute physiology score II; TISS-10, 10-item therapeutic intervention scoring system;

SOFA, sequential organ failure assessment; CRP, C-reactive protein; MAP, mean arterial pressure. In case of missing data: abased on S = 121 patients; bS = 55; cS = 53; dS = 44.

Further details are given in Supplementary Table 1.
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FIGURE 5 | Networks estimated based on Spearman correlations together with (A) Bonferroni and (B) BH adjustment, respectively. Positive associations are indicated

in blue, and negative associations in red. The thickness of the edges refers to the absolute magnitude of the correlation (the higher the correlation the thicker the edge).

Interestingly, the negative association between bilirubin and
platelet count forms the only edge that is present in all networks
(Figures 5A,B).

To investigate the effect of medical intervention on the
results, we exemplarily consider renal replacement therapy
(RRT; dialysis) as one of the most frequent therapies and
additionally re-perform our analyses for the subgroup of
encounters that did not receive RRT at admission or event stage
(Supplementary Material 3, Supplementary Figures 8–12,
Supplementary Tables 5, 6). In terms of the overall network
difference characteristics, the results of the analyses basically
continue to hold for this subgroup of encounters, thus
showing that the intervention by an RRT has only a minor
influence on the analyses of overall network structures, if
any. However, partly different results are obtained with
respect to the edge-specific difference in edge strength: On
the one hand, the results are still similar for the comparisons
(C1) and (C3). On the other hand, for the comparisons
(C2) and (C4), all edges that are found to be significantly
different for the overall patient group are not significantly
different anymore for the subgroup of encounters not receiving
RRT. Most prominently, for the overall patient group, a
positive association between sodium and platelet count is
only present in the non-survivor event network, yielding
significant differences with respect to edge strength for
the comparisons (C2) (P = 0.0108, Tables 3, 4) and (C4)
(P = 0.0086, Tables 3, 4). In the subgroup of patients not
receiving RRT, the sodium-platelet count association vanishes,
and so do the respective significant differences for (C2) and (C4)
(Supplementary Material 3).

DISCUSSION

We have presented an overall framework for differential network
comparison, with several options for both the network estimation
and the network characteristic according to which a difference
is measured, and implemented it in the R package DNT. To test
for differences between two networks, we use a permutation-
based procedure, which is generally applicable, but typically
comes with increased computational running time compared to
specifically tailored tests based on asymptotic theory. To reduce
computing time in our R package, the (repeated) calculations
related to a permutation test may in the future be outsourced
to computationally faster C++ implementations, as for instance
performed similarly in Schefzik et al. (2021).

Besides the established network estimationmethods presented
here, one could in a future work also consider other, more recent
options, e.g., based on the distance precision matrix that can
take account of non-linear relationships (Ghanbari et al., 2019)
or the new coefficient of correlation introduced in Chatterjee
(2020). Similarly, alternative, more complex network difference
characteristics than those considered here may be based, e.g.,
on centrality measures in general (Oldham et al., 2019) or
community-based measures (Chen et al., 2013; Labatut, 2015;
Gupta et al., 2016; Ghalmane et al., 2019), or may be specifically
tailored to the comparison of networks consisting of different
nodes (Tantardini et al., 2019).

In our application, we have demonstrated that network
comparisons reveal insights into the dynamics of organ system
interactions in intensive care patients. Particularly, while the
corresponding networks for a survivor and a non-survivor
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TABLE 3 | P-values corresponding to the cross-sectional and longitudinal comparisons between networks estimated using Spearman correlations together with

Bonferroni adjustment (Figure 5A) for different network difference characteristics: global strength, Frobenius metric, maximum metric, spectral distance, Jaccard

distance, number of edges, number of clusters, number of isolated nodes, degree of a specific node i (only nodes corresponding to a P ≤ 0.05 are shown), edge strength

between two specific nodes i and j (only edges corresponding to a P ≤ 0.05 are shown).

Cross-sectional Longitudinal

(C1) (C2) (C3) (C4)

Non-survivors admission Non-survivors event Survivors admission Non-survivors admission

vs. vs. vs. vs.

Survivors admission Survivors event Survivors event Non-survivors event

Global strength 0.5183 0.0414 0.0002 0.5590

Frobenius metric 0.8541 0.0186 0.0225 0.4175

Maximum metric 0.7097 0.0428 0.0534 0.4576

Spectral distance 0.7417 0.0851 0.0010 0.4273

Jaccard distance 0.9281 0.0087 0.1790 0.5068

O
ve
ra
ll

Number of edges 0.7439 0.0661 0.0009 0.7870

Number of clusters 0.6943 0.0169 0.0516 1.0000

Number of isolated nodes 0.7840 0.0365 0.2913 0.8230

Degree of node i None CRP: 0.0054 Cre: 0.0116 Plt: 0.0355

Na: 0.0176

MAP: 0.0363

N
o
d
e
s

Bil: 0.0363

Plt: 0.0369

Edge strength between nodes i and j None Bil-CRP: 0.0001 Bil-CRP: <0.0001 Na-Plt: 0.0086

Bil-Na: 0.0078 CRP-Plt: <0.0001

Na-Plt: 0.0108 Na-Cre: 0.0019

E
d
g
e
s

CRP-Plt: 0.0194 MAP-CRP: 0.0130

Bil-Plt: 0.0383

P ≤ 0.05 are indicated in bold font.

patient group are not significantly different at ICU admission,
they evolve differently in the course of the ICU stay, in that
significantly more network edges (organ system interactions) at
the event stage can be observed for the survivors, but not for
the non-survivors. A possible interpretation for typically few
organ system interactions on ICU admissionmay be similar acute
medical conditions in both patient groups (comparison C1).
During the ICU stay, significant stabilization in survivors may
lead to more organ system interactions for this group at the event
stage compared to the admission stage (C3). In contrast, non-
survivors fail to significantly stabilize at the event stage (prior to
death) compared to the admission stage (C4), potentially due to
the inability to regain coordination between organs during the
ICU stay or unsuccessful therapy. Hence, significantly different
network structures at the event stage can be observed between
the survivor and the non-survivor group (C2).

Besides the overall network dynamics discussed above, our
analyses also reveal insights into the role of and the correlations
between specific parameters.

For instance, we observe a comparably strong positive
association between bilirubin and CRP in the survivors’ event
network only, but not in the non-survivors’ event and the
survivors’ admission networks, leading to clearly significant

differences in comparisons (C2) and (C3), respectively. CRP
is primarily synthesized in the liver (Sproston and Ashworth,
2018), and bilirubin represents the hepatic system in our
network. Their common organ source may play a role for
the observed association. Throughout, CRP values in our ICU
patients are above the reference range for healthy individuals.
In the non-survivors’ event network, we observe a U-shaped
relationship between bilirubin and CRP: On the one hand,
lower CRP values of up to around 100 mg/l are typically linked
to higher bilirubin values (negative correlation). This agrees
with frequently impaired CRP production in liver failure with
increased bilirubin values (Sproston and Ashworth, 2018). On
the other hand, there is a positive correlation between higher
CRP values (above around 100 mg/l) and bilirubin. In summary,
these opposite correlations largely cancel each other out, leading
to an overall Spearman correlation of 0.01 (i.e., virtually zero;
Supplementary Figure 3). In contrast, for the survivors’ event
network, bilirubin and CRP overall show a stronger positive
Spearman correlation of 0.47 (Supplementary Figure 4). At the
event stage, both bilirubin and CRP values alike are significantly
lower for the survivors than for the non-survivors, while at the
admission stage, there is no significant cross-sectional difference
(Table 2). The latter, however, may at least partly be attributable
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TABLE 4 | P-values corresponding to the cross-sectional and longitudinal comparisons between networks estimated using Spearman correlations together with BH

adjustment (Figure 5B) for different network difference characteristics: global strength, Frobenius metric, maximum metric, spectral distance, Jaccard distance, number

of edges, number of clusters, number of isolated nodes, degree of a specific node i (only nodes corresponding to a P ≤ 0.05 are shown), edge strength between two

specific nodes i and j (only edges corresponding to a P ≤ 0.05 are shown).

Cross-sectional Longitudinal

(C1) (C2) (C3) (C4)

Non-survivors admission Non-survivors event Survivors admission Non-survivors admission

vs. vs. vs. vs.

Survivors admission Survivors event Survivors event Non-survivors event

Global strength 0.2757 0.0474 0.0042 0.2994

Frobenius metric 0.6707 0.0140 0.0023 0.5166

Maximum metric 0.6185 0.0434 0.0237 0.9003

Spectral distance 0.4971 0.0886 0.0046 0.3318

Jaccard distance 0.6502 0.0287 0.0670 0.6485

O
ve
ra
ll

Number of edges 0.3349 0.1107 0.0340 0.3260

Number of clusters 0.5102 0.3605 0.3849 0.5487

Number of isolated nodes 0.5962 0.8208 0.3194 0.4246

Degree of node i None CRP: 0.0217 Plt: 0.0007 Plt: 0.0078

N
o
d
e
s

Na: 0.0017 MAP: 0.0455

Edge strength between nodes i and j None Bil-CRP: 0.0001 Bil-CRP: <0.0001 Na-Plt: 0.0086

Bil-Na: 0.0078 CRP-Plt: <0.0001 MAP-Plt: 0.0099

Na-Plt: 0.0108 Na-Cre: 0.0019

CRP-Plt: 0.0194 Glu-Na: 0.0074

MAP-CRP: 0.0130

E
d
g
e
s

Cre-Plt: 0.0214

MAP-Plt: 0.0232

Bil-Plt: 0.0383

Na-PF: 0.0426

P ≤ 0.05 are indicated in bold font.

to our matching strategy. All in all, our findings support the
statement in Lippi and Targher (2012) that there may be “the
possibility of a more complex biological interaction between
degree of the inflammatory state and bilirubin metabolism that
merits further investigation” (Lippi and Targher, 2012, p. 2230).

Moreover, the negative association between bilirubin and
platelet count forms the only edge that is present in all networks.
Indeed, it reveals the second strongest (absolute) correlation
in the survivors’ admission network and the strongest in all
other considered networks (Supplementary Figures 1–4).
This is not unexpected, as thrombocytopenia is common in
acute liver failure without being accounted for by hemorrhagic
complications, and as its progression is positively correlated
with the degree of hepatic encephalopathy, vasopressor
requirement and RRT, and is associated with death or liver
transplantation (Scharf, 2021). A reduction of hepatic synthesis
of thrombopoietin, and thus thrombocytopoiesis, may account
for the negative association between bilirubin and platelet count
(Scharf, 2021).

Notably, we observe significantly more associations for CRP
than for other parameters in the survivors’ event network

compared to the non-survivors’ event network. CRP is a
rather unspecific marker of inflammation and is likely to be
associated with most of our considered network parameters
(such as creatinine, bilirubin, mean arterial pressure and the
Horovitz quotient; as seen for the survivors’ event network)
and respective organ systems (Table 1). We hypothesize that the
low connectivity of CRP in non-survivors is overall reflective of
failing organ system coordination prior to death.

Despite our observed network dynamics, the correlations
underlying our analyses are arguably rather weak
(Supplementary Material 2.2, Supplementary Figures 1–4).
This may be due to our specific setting of critically ill patients,
for which organ system interactions may be limited anyway.
More specifically, for this patient group, an absence of variability,
which is characteristic for disease states (Godin and Buchman,
1996), can be expected, and can explain the weak correlations.

The deceased critically ill patients and the matched survivors
with very similar characteristics on admission can be considered
as a typical sample of patients from a tertiary referral
center’s surgical ICU exemplified by a large proportion of
neurosurgical admissions and patients admitted with sepsis
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(Supplementary Table 1). Their disease severity, however, is
relatively high compared to patients usually treated in this setting.
Moreover, due to our study design our study population is
restricted to patients with a minimum ICU length-of-stay of 72
h, thus excluding non-survivors with short ICU stays.

In our analyses, specific results depend on the considered
network estimation method and the network difference
characteristic. We think it is therefore advisable to consider
several methods concomitantly and to draw general conclusions
based on this.

Moreover, the chosen matching procedure for control
selection in the study may also critically affect the results of the
analyses. We here perform a matching based on the admission
characteristics, while removing possible duplicate controls
according to an optimality criterion based on propensity scores.
We choose this approach, as starting with cases and controls
that are as similar as possible at admission stage appears to
be most suitable to investigate our key question, i.e., whether
non-survivors and survivors show different correlation network
dynamics during the ICU stay. Indeed, the matching based on
admission characteristics works quite well, witnessed by the
fact that there are widely non-significant differences between
non-survivors and survivors at ICU admission with respect to
the considered quantities (Table 2 and Supplementary Table 1).
However, other matching strategies may be possible and
reasonable as well and might lead to an alternative selection of
controls. Therefore, we additionally compare our findings to
those obtained using a repeated random selection of controls
(Supplementary Material 4, Supplementary Figures 13–19).
We thereby both illustrate our specific, propensity score-
based control selection method and confirm the validity of
our approach.

Further, we recall that in our case-control matching procedure
(Figure 3), cases may serve as controls prior to becoming a
case. Duplicates occurring this way are retained in our analysis,
which may potentially bias the results of the comparison of
the admission networks between the survivor and the non-
survivor group (C1) to the null. In our analysis, 18 out of the
123 cases (14.6%) indeed also serve as a control. However, this
does not actually compromise our results for comparison (C1)
here. Specifically, when removing the corresponding 18 case-
control pairs and re-performing the analysis for (C1), there are
no significant differences with respect to all considered network
difference characteristics (results not shown).

As the event time point in our study, we consider the
48–24 h period prior to death for the non-survivors, and a
corresponding matching time point accounting for the ICU
length-of-stay for the survivors, respectively. This appears to
be reasonable because in intensive care, therapy withdrawal
usually only occurs shortly before death. Therefore, it is rather
unlikely that for the non-survivors, essential life-sustaining
medical interventions are stopped during the time frame of 48–
24 h prior to death. Consequently, the probability of receiving
interventions affecting their network parameters likely remains
comparable to those of survivors. In contrast, decease-related
changes in network structure might already be evident at this
time stage.

We emphasize again that in our study, the term "admission"
refers to a time frame that is equal during the ICU stay for
all included patients, namely the 0–24 h interval after ICU
admission. In contrast, this does not hold for the term "event,"
as the time from ICU admission to the event time point of 48–
24 h prior to death (or the corresponding matching time point
for survivors) can vary from patient to patient. Consequently, we
currently do not consider fixed treatment lengths and thus do not
distinguish between a comparably early or late decease. Future
adaptations of our study may deal with adequately incorporating
a respective time dependency.

In the future, additional organ systems could be included
in the study. Alternatively, instead of specific organ systems,
numerous clinical or laboratory parameters could be considered
concurrently but detached from the concept of organ systems.

In the presented study, the outcome is ICU mortality.
However, other clinically relevant outcomes such as development
of sepsis could also be investigated.

Currently, our results provide pathophysiological and
pathomechanistic insights on a global patient group basis.
In particular, the liver appears to play a central role in our
analyses, in that those network parameters that are involved
in the most prominent observations as discussed before
(bilirubin, CRP, platelet count) are directly related to the liver
(function). Hence, we hypothesize that an intensive monitoring
of the liver during ICU stay is crucial and that considering
additional liver parameters (Kasarala and Tillmann, 2016) may
be beneficial.

However, at this point, it appears to be challenging to transfer
our group-based results to an individual patient level. For
instance, it is not clear whether or to which extent our results
can be used for a prediction of the course of an ICU stay
for a specific patient already at ICU admission stage. Future
research into this direction (Haslbeck and Waldorp, 2018) is
strongly encouraged.

CONCLUSION

We have introduced a framework for testing for differential
networks, implemented in our R package DNT and comprising
various options for network estimation and network difference
characteristics. In an application to patient data from an ICU,
cross-sectional and longitudinal network comparisons reveal
diverging dynamics of organ system interactions between a
survivor and non-survivor group of critically ill patients in the
course of ICU treatment. The liver appears to play a central role
for the observed increased connectivity in the survivor network
at the event stage.
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