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Abstract
Recent research efforts have provided compelling evidence of genome-wide DNAmethylation alterations in pediatrics. It is currently
well established that epigenetic clocks, composed of DNA methylation sites, can estimate the gestational and chronological age of
cells and tissues from different ages. Also, extensive research is aimed at their correlation with early life exposure and pediatric
diseases. This review aimed to systematically summarize the epigenetic clocks in the pediatric population. Publications were
collected from PubMed and Web of Science databases up to Apr 2021. Epigenetic clocks, DNA methylation clocks, epigenetic age
acceleration or deceleration, pediatric and the pediatric population were used as search criteria. Here, we first review the currently
applicative pediatric epigenetic clocks. We then highlight the interpretation for epigenetic age deviations in the pediatric population
and their association with external factors, developmental trajectories, and pediatric diseases. Considering the remaining unknown
of pediatric clocks, research strategies into them are also discussed. In all, pediatric epigenetic clocks may act as potent tools to
understand development, growth and diseases in early life.
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Introduction

DNA methylation (DNAm), the addition of methyl group
to the fifth position of cytosine, is the best-studied andmost
mechanistically understood epigenetic modification, which
plays essential roles in development and growth.[1,2]

In utero, DNAm is involved in multiple vital processes
including cell differentiation,[3-5] X-chromosome inactiva-
tion,[6] and fetal growth.[7] Beyond birth, the role of
DNAm includes maintaining cell-type identity and genome
stability,[8-10] responding to external exposures,[11,12] and
involvement in neural[13] and immune[14] development.

The epigenetic clock also referred to as the DNAm clock is
used to estimate the age of any DNA source (cells, tissues,
or organs) based on a relatively small set of cytosine-
guanine dinucleotide (CpG) sites. The selection of clock-
related CpGs is established on the precise knowledge of
all methylated CpG dinucleotides in the whole genome,
enabled by the incredible advent of DNAm array
technology.[15,16] Since 2011, the year epigenetic clock
was first created,[17] it has been regarded as a promising
marker for studying development, cancer, and aging.[18]

Although comparisons of individual variables can address
straightforward questions, such as which specific loci are
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hyper- or hypo-methylated as a result of external stress
factors like childhood maltreatment, they cannot answer
more functional and generalized questions, such as whether
childhoodmaltreatment affects early life developmental trajec-
tories. To answer such questions, epigenetic clocks arise.

We are only beginning to understand the role of epigenetic
clocks in the pediatric population. Early life and childhood
are two of the major susceptibility windows during which
epigenetic programming is sensitive to external influ-
ence.[19] Epigenetic age is not linear throughout the
lifespan.[20] Evidence from human and mice have demon-
strated that changes in DNAm early in life differ from those
later in life.[21] Since it is influenced by both genetic and
environmental factors,[22,23] DNAm has also emerged as a
key mechanism of interest for understanding the gene-
environmental interplay in normal development and
related diseases. Thereby, the pediatric epigenetic clock
is a thriving topic in unraveling the biological magic behind
development and growth for youth.

In this paper, we first begin by reviewing the most
prominently applied types of epigenetic clocks for neonates
(gestational age [GA]) and children (chronological age).
We then discuss the connotation of the disturbed ticking of
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pediatric epigenetic clocks – that is, when estimated
epigenetic age deviates from our expectation. We also
review the potential accelerators or decelerators for
epigenetic age deviations (EADs). Finally, we turn to the
available methods in uncovering the mechanism of these
clocks and also highlight the future perspectives of this
emerging star.
Epigenetic Clocks for the Pediatric Population

During the development process of epigenetic clocks, early
studies focused on adult-specific or all-age clocks.[18,24]

These clocks sacrificed their precision in predicting
Figure 1: A brief history of pediatric epigenetic clocks. White boxes represent the pediatric-sp
study. Purple boxes represent important events in our understanding of DNAm. Blue boxes ma
DNAm: DNA methylation; PedBE: Pediatric buccal epigenetic.

Table 1: A summary of pediatric epigenetic clocks.

Epigenetic clocks Tissue
Age group of
training sets

S
trai

GA prediction
Knight 2016[28] Cord blood Neonates
Bohlin 2016[29] Cord blood Neonates
Falick Michaeli
2019[30]

Cord blood Neonates

Chronological age
prediction
Horvath 2013[18] Pan-tissue Children and adults

(0-centenarians)
Skin and Blood
2018[31]

Multi tissue: Blood,
buccal, fibroblast,
skin, epithelium

Children and adults
(0–85 years)

Wu 2019[32] Blood Children (1–18 years)
PedBE 2020[33] Buccal Children (0–20 years)

Different correlation coefficients were presented during the application of the s
of skin and blood clock in fibroblast. † Its performance in blood samples. –:
PedBE: Pediatric buccal epigenetic.
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pediatric chronological age so that these DNAm age
estimators can be applied to a wider population. To better
understand the age-related DNAm changes in pediatrics,
clocks for neonates and children are being introduced
[Figure 1]. The past 5 years have seen the progress of
several pediatric estimators that use different sets of CpGs
originating from different age spectra and tissue [Table 1].
For neonates, both preterm and term infants are covered;
for children, those who are younger than 20 years are also
included in the construction of pediatric epigenetic clocks.

Similar to those DNAm estimators for aging, pediatric
clocks are built by regressing gestational or chronological
ecific and -related epigenetic clocks, during which Horvath clock in 2013 was a landmark
rk the development of methylation array technologies. CpG: Cytosineguanine dinucleotide;

ize of
ning sets

CpG
sites

Correlation
in training

Training
error

Correlation
in testing

Test
error

207 148 0.99 0.35 weeks 0.91 1.24 weeks
1068 96 0.81 0.40 months – –

41 743 0.77 – – –

3931 353 0.97 2.9 years 0.96 3.6 years

896 391 – – 0.91
∗
,

0.98†
2.6 years

∗
,

2.5 years†

716 111 0.98 5.9 months 0.98 6.7 months
1032 94 0.99 0.47 years 0.98 0.35 years

kin and blood clock to different tissues.
∗
The corresponding performance

Not reported; CpG: Cytosineguanine dinucleotide; GA: Gestational age;

http://www.cmj.org


Chinese Medical Journal 2021;134(24) www.cmj.org
age on tens to hundreds of CpGs using a supervised
machine learning method, predominantly ElasticNet
regression.[25,26] The weight of each selected CpG is also
decided by the penalized regression model. Therefore, both
the CpGs and the corresponding mathematical algorithm
are automatically yielded by the supervised machine
learning analysis to transform DNAm levels into an
estimated epigenetic age. The calculated age is not only a
reflection of intended gestational and chronological age
but also of the biological age of the DNA source. Since
pediatric epigenetic clocks are mainly built on healthy
cohorts, the deviation of predicted age from the chrono-
logical age can provide information on the individuals’
psychological function.[27]

Epigenetic clocks for GA estimation

Even before the development of the epigenetic GA clock,
GA itself has been proven to be associated with
methylation changes at various CpG sites.[34-37] Back in
2011, Schroeder et al[37] studied the association between
neonatal methylation pattern and GA, suggesting that
neonatal DNA methylated states vary with GA. Though
the training database of Horvath’s clock (2013) included
DNA samples from cord blood, the age of all these subjects
was set to 0.[18] Because of this, Horvath and other adult-
specific epigenetic clocks,[17,18,24] as initially operational-
ized, are inappropriate for GA prediction. That is why in
2016 two epigenetic GA clocks, Knight and Bohlin, filled
the gap for GA prediction, providing putative sight into
predicting DNAm age in neonates both preterm and term.

The epigenetic clock designed by Knight et al[28] for GA
was based on cord blood and blood spot samples from
1434 neonates. This clock was derived by regressing early
obstetric ultrasound or last menstrual period (LMP)
on DNAm levels using a penalized regression model.
Interestingly, the final selected 148 CpGs were uniformly
distributed across the genome, without enrichment in any
specific biological pathways. As a result of the relatively
small training set (207 individuals) in Knight clock,
overfitting may occur while being applied to other
cohorts.[38,39] In the same year, Bohlin et al[29] developed
another statistical model for GA prediction with DNA
extracted only from cord blood, using data from 1753
newborns in the Norwegian Mother and Child Birth
Cohort Study. The 96 CpG sites in the Bohlin prediction
model and their associated genes were substantially
different from the corresponding CpGs and genes in
Horvath clock, partially supporting the idea that epige-
netic clocks for GA and aging are based on different
molecular mechanisms. With a five-time bigger training
group than Knight clock, the clock by Bohlin performed
much better in other cohorts.[38] In both GA clocks,
ultrasound-based regression models notably outperform
LMP-based models in terms of model fit and standard
error measured as days within a 95% prediction interval.
Falick Michaeli et al[30] performed reduced representation
bisulfite sequencing (RRBS) to create another epigenetic
GA model based on 41 cord blood and matching placenta
samples from their own hospital in Israel. Their clock
combined 332 differentially methylated regions (DMRs)
that underwent demethylation and 411 DMRs that
underwent de novo methylation in late GA. Since this
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clock was developed on DNA extracted by RRBS, it might
meet difficulties in the application process to other array-
established cohorts. In research, a neonate epigenetic clock
is a potent tool in exploring in utero gene-environment
interplay; in the clinic, these clocks can be a substitute
measurement of GA for those without full access to
ultrasound in early pregnancy or precise reporting of LMP.
Epigenetic clocks for pediatric chronological age

Back in 2013, Horvath developed the first pan-tissue
epigenetic clock, using 8000 samples from 82 Illumina
(SanDiego, CA, USA) DNAm array datasets, encompass-
ing 51 healthy tissues and cell types.[18] As a landmark age
estimator, Horvath clock calculated DNAm age on the
basis of 353 CpGs in almost all human cell types and
tissues, excluding sperm. It was Horvath clock that opened
a new era for DNAm age prediction and deepened our
learning of the DNAm’s relationship in aging, cancer, and
development. Till today, Horvath clock is still the most
accepted in estimating epigenetic ages for all ages,
including the pediatric population.

Another wide-spectra DNAm age estimator available in
the pediatric population is the skin and blood clock.[31]

Despite the numerous successful predictions made by
Horvath clock, it performs suboptimally in fibroblast lines
derived from the skin of patients with Hutchinson Gilford
Progeria Syndrome (HGPS). Trying to develop an
epigenetic clock that can capture the aging acceleration
in HGPS, Horvath et al[31] introduced another multi-tissue
DNAm age prediction model for fibroblasts, keratinocytes,
skin cells, endothelial cells, saliva samples, and blood. All
cells used in this clock can be isolated from skin, except for
blood, allowing DNA samples to be easily acquired from
individuals. Another advantage of this clock is that it is
valuable in studying the dynamics of DNAm in ex vivo
experiments, helping to unravel the molecular process in
pediatric DNAm variation.

Though correlations between pediatric chronological age
and Horvath-measured DNAm age have been reported, a
high degree of variability from chronological age has also
been observed.[40] Recent research reported poor perfor-
mance of Horvath clock by tracking the developmental
trajectories from birth to late adolescence.[41] This is
probably because of the dynamics of DNAm in early life
and childhood. The two clocks mentioned above sacrifice
their accuracy in the pediatric population to serve all ages.
Therefore, clocks specific to pediatrics were required. It
was not until 2019 and 2020 thatWu et al[32] andMcEwen
et al[33] designed two children-specific epigenetic clocks.

Wu et al[32] first established a methylation-based age
prediction model for children using data from 716 blood
samples from children between 9 and 212 months. The
elastic net model consists of 111 CpG sites, mostly located
in genes associated with development and aging. Interest-
ingly, researchers used 67 pairs of monozygotic twins to
validate Wu’s model, whose genetic background and
environmental exposure are purposed to be extremely
similar. The predicted DNAm ages of twins 1 and twins 2
did not differ significantly while using Wu clock, while
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differences did occur while using Horvath clock. To this
degree, Wu clock outperformed Horvath clock in
estimating children’s DNAm ages by blood samples.
Pediatric buccal epigenetic (PedBE) clock is another
pediatric-specific clock.[33] This non-invasive clock,
known as PedBE, is based on 1721 genome-wide DNAm
profiles of typically developing individuals aged 0 to
20 years old. Elastic net penalized regression was used to
select 94 CpGs from a training dataset of 1032 subjects. A
simple swab of buccal epithelial cells (BECs) enables the
construction of a highly accurate biological tool to
estimate DNAm age-specific to the pediatric population.
Non-invasiveness is the one of starring points of the
PedBE clock, widening the potential usage in the clinic.
Furthermore, the collection of BECs induces less cellular
heterogeneity when compared with other accessible
tissues, such as blood, and has a high degree of DNAm
stability.[42-44] Though not pan-tissue, the PedBE clock
succeeded in achieving the highest accuracy in estimating
DNAm age ever based on BECs with a 0.35-year median
absolute error in the test cohort.[45]

According to a comparative study,[45] all epigenetic
clocks for children are tested together in different types of
pediatric tissues. Because they were trained on different
types of tissue, their performances varied. The correlation
to chronological age in blood samples using skin and
blood clock was significantly better (Padj< 0.05) than all
of the other clocks, including those trained predominant-
ly in adults. The PedBE clock is the best in buccal cell
samples, totally surpassing Horvath’s, due to its focus on
a more homogeneous tissue, which reduces confounders
when building clocks. This highlights the difference in
methylation dynamics in children vs. adults and the
importance of using methylation clocks trained on
pediatric samples.
EAD in the Pediatric Population

The application of epigenetic clocks has been turning the
blurred picture of methylated states pattern into a specific
number. As would be expected, the application of
epigenetic clocks to the general population invariably
reveals outliners: individuals whose chronological and
epigenetic ages are divergent. Two kinds of deviations are
commonly used: the first one, known as raw deviation, is
calculated by subtracting the chronological (gestational)
age from the DNAm age; the second one, residual, is
extracted from a linear regression of DNAm age on
chronological (gestational) age.[38] In simple operational
terms, those with epigenetic age that is older than expected
(the gestational/chronological age) are described as
positive epigenetic age acceleration (PEAA), whereas the
reverse situation would be described as negative epigenetic
age acceleration (NEAA).[25]

Investigating how the estimated epigenetic age differs
across a group of subjects of the same chronological age
could help determine the dynamic DNAm patterns in
different life stages. For epigenetic aging clocks, positive
deviation of DNAm age suggests that the underlying tissue
ages faster than expected, whereas negative deviation
suggests the tissue ages slower than expected. Several
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studies concerning epigenetic aging clocks have reported
the connections between epigenetic age acceleration (EAA)
and premature aging disorders (such as Down syn-
drome[46] and Werner syndrome[47]), neuropathology in
elderly individuals,[48-50] all-cause mortality[51-53] and the
risk of developing certain types of cancers.[54-56] Earlier
studies of pediatric EAD tended to follow the model of
epigenetic aging clocks, which focused more on EAA and
interpreted it as an early sign of aging. DNAm age
deviation in pediatrics, however, may not entirely follow
the same pattern presented in later life. Epigenetic age in
the early 20 years enjoys a more dynamic paradigm. In the
paper Knight clock first published,[28] researchers tried to
explain the acceleration in the estimated GA. According to
Knight theory, an accelerated GAmay reflect differences in
the physiological development of the newborn so that
neonates with a higher DNAm GA are more developmen-
tally mature than their chronological age suggested,
reflecting the developmental trajectories of individuals.
Another possibility is that the differences between DNAm
GA and chronological GA reflect epigenetic programming
by early life environmental exposure, such as maternal
prenatal and perinatal stress or pregnancy disorders, which
may affect neonatal outcomes and development. The
clinical observations of patients with DNMT3A over-
growth syndrome support their hypothesis indirectly.[57]

Germline mutations in DNMT3A (a gene encoding a
pivotal enzyme in DNAm) lead to widespread hypo-
methylation at specific genome sites enriched at locations
annotated as genes involved in morphogenesis, develop-
ment, and differentiation. At the same time, patients may
present highly accelerated DNAm aging with faster
growth than normal. Patients are also characterized by
intellectual disability and subtle facial anomalies.[57,58]

Other common phenotypes include overweight in late
childhood and features of autism spectrum disorder
(ASD) with impaired communication and socialization
skills.[59]

Therefore, the interpretation of pediatric EAD should not
entirely copy that for the elderly. Both PEAA and NEAA
deserve attention while interpreting deviations. EADs at
this stage caused by changes in methylated states are highly
likely to be associated with developmental trajectories,
developmental diseases, and certain environmental con-
ditions that may accelerate or decelerate biological
development in early life and childhood.
Biomarkers of developmental trajectories

In girls, pubertal timing is a milestone in development and
growth. According to the calculation of Horvath clock, a
5-year PEAA on average was related to a significant
decrease in time to menarche.[60] Besides pubertal timing,
measures of EAD are also appreciated by the fact that they
are associated with a great number of developmental
characteristics, including weight, body mass index (BMI),
height, fat mass, bone density, subscapular skinfold, and
upper-arm circumference. For instance, in a longitudinal
analysis measuring DNAm by Horvath clock in 1018
children from the Avon Longitudinal Study of Parents and
Children (ALSPC), researchers present evidence that
children with higher age acceleration (AA) at birth had
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faster growth in weight and BMI during childhood and
adolescence (age 7 and age 17), while NEAA was
associated with an increase in height and fat mass. Bright
et al[62] also analyzed ALSPC, used Bohlin clock to verify
the connection between gestational age acceleration (GAA)
and developmental characteristics. Slightly different from
the result by Simpkin et al,[61] they found that the
association between GAA and increased birth weight and
length only persisted to age 9 months. From age 5 years
onward, the association of GAA and weight reversed such
that by age 10 years, greater GAA was associated with
lower childhood weight. Though confusing, one reason-
able explanation for the variation is that different clocks
may produce different results. Both the chosen clock and
the chosen cohort are vital in understanding the role played
by EAA in developmental trajectories. A minimal mistake
can end up with completely unconvincing results.
Deviations under environmental exposure

There is a large body of research covering the effect of
environmental exposure on the DNAm aging of children.
Animal studies have confirmed DNAm is programmed by
early life experience. The epigenetic response associated
with early life stress has a broad footprint in DNAm
in blood.[63] These environmental factors can be divided
into physical environmental effects and social ones. The
association between external exposure and EAD is detailed
in Table 2.
Table 2: Epigenetic age acceleration and deceleration under external e

Deviation Conditions Sourc

Acceleration Preterm[28] Cord b

Maternal low socioeconomic status[28] Cord b
Maternal smoking[40] Cord b
Maternal age >40 years[64] Cord b
Preeclampsia and fetal demise in a
previous pregnancy[64]

Cord b

Prenatal exposure to air pollution[65] Cord b
Exposure to lead in boys[32,66] Periph
Exposure to neighborhood violence[67] Saliva

Threat-related early life adversity[68] Saliva
Cumulative ACE exposure in girls[69] Periph
Childhood maltreatment (ICD–10-CM
Code T74)[70]

Buccal

Deceleration Insulin-treated GDM[64,71] Cord b
Periph

Sjögren syndrome[64] Cord b
Maternal antenatal depression[72] Cord b
Decreased CRP in the third trimester of
pregnancy[73]

Cord b

Vitamin D3 supplementation in African
American mothers[74]

Cord b

ACE: Adverse childhood experience; ALSPAC: Avon Longitudinal Study o
CHILD: Canadian Healthy Infant Longitudinal Development; CRP: Cerebr
buccal epigenetic; PRDEO: Prediction and prevention of preeclampsia and i
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The exposures of the social and physical environment can
be subdivided into exposures in prenatal periods and those
that occur in childhood. The first kinds of exposures
mainly affect newborns by maternal-fetal communica-
tions. The physical environment is the primary focus of the
majority of in utero studies, examining measures such as
air pollution, maternal alcohol assumption, maternal and
neonatal nutrition, and other toxicant exposure. The
majority of extant studies are based on retrospective data,
despite the Tianjin GDM cohort.

For children, the association between external factors and
EAD is mainly restricted to the social environment, such as
violence, sexual abuse, low socioeconomic status, and
cumulative exposure to sexual abuse, physical abuse, or
neglect.[67-70,75] Animal studies have identified the devel-
opmental programming of the hypothalamic-pituitary-
adrenal stress axis as a target in epigenetics to pediatric
health research. These studies should not be regarded as
conclusive since they were mainly analyzed by Horvath
clock, except for the recent publication by Nishitani
et al[70] using the PedBE clock. While findings generally
support an association between childhood adversity and
DNAm deviations, factors such as the lack of longitudinal
data, low comparability across studies, and potential
genetic and pre-environmental confounding currently
limit the conclusions that can be drawn. The established
associations between external factors and EAA only
confirm the statistical significance, not endorsing the
xposure.

e of DNA Studied population/cohort Clock

lood Individual samples from neonatal
care intensive unit

Knight

lood CANDLE Knight
lood ALSPAC Horvath
lood PRDEO Knight
lood PRDEO Knight

lood CHILD (n= 145) Bohlin
eral blood GES60598 (24 boys and 18 girls) Wu
samples 101 African American children

(aged 6–13)
Horvath

samples 262 children (aged 8–16) Horvath
eral blood ALSPAC Horvath
cell 25 cases with childhood

maltreatment and 31 control
PedBE

lood
eral blood

PRDEO
Tianjin GDM Observational
Study (pairs= 548)

Knight
Horvath

lood PRDEO Knight
lood PRDEO Knight
lood 32 monochorionic pregnancies

from Spain
Knight

lood Ninety-two pregnant women
(21% African Americans, 28%
Hispanics)

Knight and
Bohlin

f Parents and Children; CANDLE: A socioeconomically diverse cohort;
oplacental ratio; GDM: Gestational diabetes mellitus; PedBE: Pediatric
ntrauterine growth restriction.
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biological association between ACE and EAA. A recent
systematic review shed doubt on the association between
childhood maltreatment and DNAm changes in the
blood.[76] The study analyzed found inconsistent associ-
ations of DNAm in blood with childhood maltreatment in
several well-studied candidate genes (eg, NR3C1 and
FKBP5). This study compels us to replicate and revisit the
clinical importance of EAA in pediatric populations.
Indicators for developmental diseases

Some work has been done in exploring the association
between developmental diseases and EADs. While identi-
fying genes linked to CpGs with DNAm trajectories, genes
annotated to CpGs with overall decreasing DNAm levels
were enriched in immune development, whereas those
annotated to CpGs with increasing levels were enriched
in neurodevelopmental functions.[41] Several 1-year-old
infants with a 1-day deviation in epigenetic GA were 8%
more likely to be sensitized to allergens and thus develop
an allergy.[65] At mid-childhood, a 1-year increase in EAA
is cross-sectionally associated with greater levels of total
serum immunoglobulin E, as well as greater odds of
asthma and atopic sensitization.[77] AA in ASD, a typical
neurodevelopmental spectrum disorder, has been studied
by both Wu and PedBE clocks.[32,33] Two independent
cohorts (GSE27044 in Wu and GSE50795 in PedBE) were
studied, respectively. Again, similar to the results of the
association between EAD and weight, the correlation
between deviation and autism conducted by two clocks
was not the same. Individuals with ASD had increased
PedBE age deviation compared with controls, consistent
with their altered developmentally related phenotypes,
such as increased body growth, head growth, and body
weight, as well as accelerated postnatal cortical develop-
ment.[78] In Wu clock, however, no significance was found
in the deviation between an individual with autism and
their siblings. Therefore, it is still too early to conclude that
AAs are predictors for developmental diseases in pediat-
rics. Only with more studies in different cohorts and clocks
canwe confirmed the connection between epigenetic clocks
and risks of pediatric diseases.

Studies described above are mainly cross-sectional;
however, longitudinal studies are also required. Because
of the dynamics of pediatric methylated patterns, longi-
tudinal following of children can look deeper into the long-
term effects of external exposure on pediatric DNAm.
Although the methylated states significantly change for
environmental exposures and developmental diseases,
these changes may not last for a long time and eventually
resolve during development and growth. This phenome-
non is partially due to the uneven aging pace in the
pediatric population. Knowledge of longitudinal methyl-
ation dynamics helps us identify not only whom to
interfere with but also when to take action.

Epigenetic clocks serve as mediators between physical and
social factors and pediatric phenotypes,[65,77] such as
developmental trajectories and developmental diseases. In
other words, epigenetic clocks are pivotal tools in
connecting external factors and internal developmental
programming, creating a novel study method in this area.
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By testing additional pediatric datasets, as they become
available, EAD will become important for evaluating
the environmental and contextual factors shaping child
development, chiefly through the DNA methylome, and
how this in turn associates with health and disease.

Understanding the Mechanism Behind Pediatric Epigenetic
Clocks

The use of machine learning methods to analyze large sets
of methylated CpGs has generated various powerful
epigenetic clocks. However, this data-driven approach
has proposed challenges over understanding the underly-
ing mechanism.[25] When epigenetic early life clocks were
first developed, the limited overlap between clocks for
pediatrics and that for adults was interpreted as the
difference in biological processes between development
and aging. For example, only six CpG sites included in
the DNAm GA predictor overlap with CpG sites in the
predictor by Horvath, the chronological clocks for all
ages.[18,29] However, while comparing clocks trained on a
similar age group with DNA derived from the same tissues
(eg, Knight clock and Bohlin clock), the overlap between
these two clocks is still limited.[28] Though confusing at
first glance, the desolation of overlap was due to the
algorithm behind it. Machine learning selects only a
relatively small number of CpGs to construct clocks,
leaving numerous potential chronological-like CpGs
behind, widely distributed across the genome. In the
original publication by Bohlin et al,[29] two entirely
different epigenetic GA clocks were designed on the basis
of the same training test. Therefore, it is inappropriate to
take the minute overlap between aging clocks and pediatric
clocks as evidence that the mechanism between these two
sets of clocks is different, despite the fact that they do differ.
Based on these considerations, we propose that the process
of selecting specific CpGs for clocks is a combination of
machine learning algorithms and biological programming.

Therefore, in the process of understanding this fresh idea,
clock CpGs are usually analyzed in two ways: single by
single or in clusters [Figure 2]. In vivo studies help to
unravel the function of every single CpG and related gene.
For instance, hypomethylation of insulin-like growth
factor 2, one of the clock sites in Bohlin clock, was
observed in preterm during the first year of life.[79] Another
way to understand the role of clock CpGs is to locate their
positions in the genome. Clock CpGs (and/or other clock-
like CpGs whose methylation changes in the pediatric
population) were labeled by gene-associated regions, CpG
island-associated regions, as well as enhancer elements.
Clock-like CpGs located in gene bodies are more likely to
get decreasing DNAm tended to have higher levels of
DNAm; CpGs with increasing levels of DNAm are more
often located in promoter regions and at enhancers to have
low levels of DNAm.[80,81]

Besides looking into the vital locus, cluster analyses can
also be conducted to uncover the mechanism behind the
ticking of epigenetic clocks. Analyses of gene ontology
enrichment and Kyoto Encyclopedia of Genes and
Genomes pathways of the clock or clock-like CpGs
suggest that apparent links exist between epigenetic clocks
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Figure 2: Approaches to understanding the mechanism underlying pediatric epigenetic clocks. (A) Focusing on the overlap of CpGs by different clocks and reveal the functions of their
related gene. (B) In GO enrichment and KEGG pathways analysis, neurologic- and immune-related pathways are commonly enriched. (C) Other chromatin changes also affect the dynamics of
epigenetic clocks. Ac: Acetylation; CpG: Cytosineguanine dinucleotide; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene ontology.
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and cell and tissue development. In diverse clocks, genes
linked to clock CpGs are mostly enriched in development,
differentiation, cell aging, and cellular senescence. For
instance, CpG sites associated with GAs were located in
genes implicated in labor and delivery (eg, AVP, OXT,
CRHBP, and ESR1) or that may influence the risk for
adverse health outcomes later in life (eg, DUOX2,
TMEM176A, and CASP8).[37] The 353 methylation sites
used to compute Horvath clock shows significant enrich-
ment for immune cell trafficking, hematologic system
development and function, organismal development,
embryonic development, and tissue development, all of
which are important life process in developmental
trajectories. The obvious connections between the DNAm
clock and development raise the possibility that the
epigenetic clock reflects a programmed process.

The tickingof the epigenetic clocksappears to reflect ageneral
progression of high- and low-methylated CpGs to an
intermediate level near 50%.[26] This suggests a smoothening
with the development of the epigenetic landscape and a
chronological clockdrivenbyan increase in entropy.Entropy
at one locusmight be inconspicuous; the consequences for the
functionality of the whole genome are substantial. Accord-
ingly, both subtle changes at wide-range CpGs across the
clock and intensive alterations at single key sites are
responsible for the ticking of the epigenetic clock.

DNAm captured by epigenetic clocks may also be
secondary to other chromatin modifications.[82] Histone
2907
modification affects DNAm. For example, DNAm is
excluded from gene promoters by H3K4me3 (histone H3,
lysine 4 trimethylation) but recruited to gene bodies and
heterochromatin by H3K36me3 (histone H3, lysine 36
trimethylation) and H3K9me3 (histone H3, lysine 9
trimethylation), respectively.[83] Conversely, DNA hypo-
methylation causes a redistribution of polycomb and
H3K27me3 (histone H3, lysine 27 trimethylation).[84] By
this view, the DNAm clock can be depicted as an
“epigenetic network clock,” and the epigenetic clock
reviewed here may be secondary to other parts of the wider
epigenetic networks,[85] consisting of other epigenetic
changes.

We are only at the primary stage of understanding the
mechanism behind epigenetic clocks. To conclude, the
ticking of pediatric epigenetic clocks is a blend of related
mathematic algorithms and the biological process of
development and growth. Our genomes have continued to
undergo a programmed variation of methylation since the
day we were born, serving as a memory device that could
affect development and aging.[86] Pediatric epigenetic
clocks specifically reflect the entropic increase of the
methylation landscape in the pediatric population linked
to biochemical activity.
Concluding Remarks and Future Perspectives

Since the 1990s, researchers have documented age- and
development-associated changes to DNAm. In the past
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decade, identified collections of individual CpG sites whose
aggregate methylation status provides an accurate measure
of gestational and pediatric chronological age have been
conducted through computational analysis. Ticking of this
clock in pediatric, different from that in aging, most likely
reflect the development-dependent entropic increase of
the DNAm landscape. Although the epigenetic clock has
initially been used as a molecular biomarker for
chronological age and aging prediction, evidence suggests
that DNAmmay also be a valuable tool for a biomarker in
the pediatric population. It can be used for evaluating the
maturity of the preterm, assessing the impact of early
exposure, and predicting developmental trajectories and
diseases.

Future studies are recommended to be focused on the
following areas. First, epigenetic clocks to date have been
generated using methylation data from accessible cells and
tissues. However, for those vital but inaccessible tissues,
such as the brain and heart, the reliability of the pan-tissue
clock or peripheral-tissue clock still requires testing. Only
with a precise tissue-specific clock can we better under-
stand the development and aging process in humans.
Second, although animal epigenetic clocks have been
established in various models, these clocks are mainly
intended for aging models.[51,87-89] To further uncover
critical issues in the pediatric population, pediatric animal
models are in need, especially in mice. Third, the molecular
mechanisms underlying epigenetic clocks are still far from
understood. Of special interest is the exact distinction
between pediatric and aging clocks at the molecular level.
Fourth, the consequences of epigenetic clocks are still
uncertain. Controversy remains whether the pediatric
epigenetic clock is a result of the pediatric phenotypes or a
driving force of specific phenotypes. A deeper understand-
ing of the molecular mechanism behind the clocks can help
to solve these previous questions and find out the potential
therapeutic targets for epigenetic modifications.
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