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Abstract: This study reports curcumin as an efficient photolarvicide against Aedes aegypti larvae under
natural light illumination. Larval mortality and pupal formation were monitored daily for 21 days
under simulated field conditions. In a sucrose-containing formulation, a lethal time 50 (LT50) of
3 days was found using curcumin at 4.6 mg L−1. This formulation promoted no larval toxicity in the
absence of illumination, and sucrose alone did not induce larval phototoxicity. The photodegradation
byproducts (intermediates) of curcumin were determined and the photodegradation mechanisms
proposed. Intermediates with m/z 194, 278, and 370 were found and characterized using LC-MS.
The ecotoxicity of the byproducts on non-target organisms (Daphnia, fish, and green algae) indicates
that the intermediates do not exhibit any destructive potential for aquatic organisms. The results
of photodegradation and ecotoxicity suggest that curcumin is environmentally safe for non-target
organisms and, therefore, can be considered for population control of Ae. aegypti.

Keywords: photosensitizer; vector; photodynamic control; photodegradation; non-toxic

1. Introduction

The Aedes aegypti mosquito is an insect vector responsible for transmitting different
viruses that can cause, for instance, Chikungunya, Dengue, Yellow Fever, and Zika [1,2].
Insect vector population control has been tackled by mechanical, chemical, or biological
methods [3–5]. Mechanical control is based, for example, on the elimination of reservoirs
where vectors develop their life cycle. Chemical control is one of the most used strate-
gies in larvae and adult mosquitoes due to its effectiveness and rapid action in arbovirus
endemic or epidemic areas [3,6–8]. According to the World Health Organization (WHO),
the insecticides used globally between 2010 and 2019 belong to various chemical classes
to control the proliferation of the Ae. aegypti [7,9]. Larvicidal control can be performed
using organophosphates, growth regulators, or biopesticides. Adulticides used for residual
and space spraying belong to chemical classes such as carbamates, organophosphates, and
pyrethroids [7,9,10]. Biological control could deal with insecticide-resistant insects, employ-
ing natural predators or pathogens to eradicate or decrease the vector population [3,11].
This type of control can be carried out using aquatic invertebrates (Toxorhynchites or cope-
pods) or fish (Gambusia sp.) that feed on the larvae and pupae [11,12]. The bacterial
pathogen Bacillus thuringiensis israelensis (Bti) has been recommended by the WHO as
an important selective agent for the elimination of larvae [11]. These methods of control-
ling the Ae aegypti vector are strategies that are part of the integrated vector management
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(IVM) of increasing importance, which aims to reduce the emergence and transmission of
new viruses [13,14].

Recent studies have shown photodynamic inactivation as a promising approach
to controlling the Ae. aegypti larval population [15–18]. This photocatalytic method is
based on the interaction between molecular oxygen (O2) and a photocatalyst agent, called
a photosensitizer, activated by light, producing reactive oxygen species (ROS) that can kill
target organisms by oxidizing them. Species such as hydrogen peroxide (H2O2), superoxide
anions (O2

.−), and hydroxyl radicals (·OH) may be produced by the type I photodynamic
reaction (electron transfer mechanism) [19–21]. Singlet oxygen (1O2) production, which
is highly reactive and cytotoxic, also occurs through the type II photodynamic reaction
(energy transfer mechanism) [22].

Natural compounds isolated from plants have raised attention in searching for envi-
ronmentally friendly photocatalysts. Curcumin extracted from Curcuma longa rhizomes
is one of them, showing biological and photodynamic activity against microorganisms
and insect vectors with ovicidal and larvicidal action [23]. Curcumin and its deriva-
tives have shown larvicidal activity in vectors such as Anopheles quadrimaculatus (malaria
vector) [23], Culex quinquefasciatus (bancroftian filariasis) [24], and Cx. pipiens (Japanese
encephalitis) [25].

The photodynamic inactivation action of curcumin has been assessed against Ae. aegypti
larvae [15,16]. High photolarvicidal and photo-ovicidal potential of curcumin were proved
in either sucrose or D-mannitol. When associated with sucrose, photoactivated curcumin
promoted larval mortality with a lethal concentration 50 after 24 h (LC50−24h) in the
0.04–0.05 mg L−1 range. For D-mannitol formulations, a larval mortality was verified
with LC50−24h values between 0.01 and 0.02 mg L−1 and a significant decrease in the
hatching rate of eggs (10% at 100 mg L−1) [16]. Additionally, it has been reported that
these formulations of curcumin with sugars (sucrose or D-mannitol) are non-toxic to the
organisms Daphnia magna and Danio rerio [26].

Although studies have proved the photolarvicidal potential of curcumin to deal with
Ae. aegypti larvae [16,26], points still need to be addressed before its application in the envi-
ronment, including field tests and studies on the possible environmental impact related to
its photodegradation. Curcumin is a well-established non-toxic molecule; however, there is
a lack of information on the toxicity of photoproducts of curcumin. Although there are some
works on the determination of curcumin derivatives [27–29], its photodegradation byprod-
ucts are still being unraveled [30], and the mechanism is still not clear [31]. Furthermore,
most of the previous works evaluated a “non-pure curcumin”, which contains a mixture of
three major curcuminoids (curcumin, demethoxy-curcumin, and bis-demethoxy-curcumin)
obtained during the conventional extraction of curcumin [28]. Consequently, the pho-
todegradation mechanism and byproducts from curcumin are affected by demethoxy-
curcumin and bis-demethoxy-curcumin because of their different physicochemical and
physiological properties [28].

This study synthesized pure curcumin and showed its efficient larvicidal photody-
namic activity to control the Ae. aegypti population under field conditions (natural envi-
ronment). Additionally, the present investigation discusses curcumin’s photodegradation
mechanism, finding the byproducts (intermediates) and predicting their acute toxicity on
non-target organisms (Daphnia, fish, and green algae).

2. Results and Discussion
2.1. Curcumin Localization in Aedes aegypti Tissues

Confocal microscopy shows that the 10 larvae ingested synthetic curcumin formulation
with sucrose (SCS), which led to accumulation in the abdominal segments, including the
anterior, middle, and posterior regions (Figure 1). The results also revealed an adhesion
of curcumin to the surface of the body of the larvae (Figure 1B). This accumulation may
interfere with swimming performance, drastically reducing larval mobility [32]. Although
curcumin was distributed throughout the entire gut, higher fluorescence intensity was



Molecules 2022, 27, 5699 3 of 13

observed in the midgut and the gastric cecum (Figure 1C). As recently reported by our
research group, curcumin located in the larval midgut can cross the peritrophic membrane,
which separates the food bolus from the midgut epithelium, causing irreversible damage
to the intestinal epithelium [16].
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Figure 2. Pupal formation and larval mortality rate in the (A) control group submitted to sucrose 
formulation and (B) experimental group with curcumin/sucrose formulation as a function of the 
number of days in the field. Arrows indicate the y-axis for mortality (black) and pupal formation 
(red). 

Figure 1. Representative confocal microscopy images of Ae. aegypti larvae: (A) non-subjected to
synthetic curcumin with sucrose SCS (control) and exposed to SCS with curcumin, (B) attached to the
larval body surface (arrow), and (C) located in the midgut. Scale bars represent 1 mm.

2.2. Photodynamic Control

The pupal formation and mortality rate of the larvae added to the sucrose (control
group) and SCS formulation (experimental group) as a function of the time are shown in
Figure 2.
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Figure 2. Pupal formation and larval mortality rate in the (A) control group submitted to sucrose
formulation and (B) experimental group with curcumin/sucrose formulation as a function of the
number of days in the field. Arrows indicate the y-axis for mortality (black) and pupal formation (red).

The L3 larvae in the control group reached the fourth instar (L4) between the third
and fourth days in the field (data not shown). On the fifth day, 97% of the larvae evolved
to pupal condition (Figure 2A). All larvae achieved the pupal stage on the seventh day.
According to the literature, the larval life cycle of Ae. aegypti is about 7 days in a microbiota
favorable for its development [33,34]. The pupation time occurred 13 days after the egg
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hatched in our experiments. The larvae took longer to reach the pupal stage, possibly be-
cause of the environmental conditions (Table S1, Supplementary Materials) [35]. Reinskind
and Janairo reported that pupation could occur within 28 days because of a lack of nutrients
and temperature conditions ranging from 26 (night) to 30 ◦C (day) [36]. Another study
reported that temperature variations could influence larval development and pupation
time [37].

Figure 2B shows the mortality and pupae formation in the experimental group with
SCS formulation at a concentration of 4.6 mg L−1. Mortality increased over the days,
reaching about 80% on the fifth day, and after 11 days, about 94% of the larvae died
because of the photolarvicidal activity of curcumin under sunlight. The LT50 at 3 days
was calculated for the SCS formulation (4.6 mg L−1 of curcumin). Additionally, 6% of the
larvae evolved to the pupal stage on the twenty-first day, so curcumin also impacted the
pupation of the larvae that remained alive, considering that all L3 larvae in the control
group evolved to the pupal stage from the seventh day of monitoring. Hence, curcumin
delayed pupation even when it did not induce larval death. Mezzacappo et al. also found
that curcumin affects the development of Ae. aegypti from larvae to adults, postponing the
start of the pupation phase [38]. SCS formulation and sucrose did not show significant
toxicity in the dark, as determined in the laboratory trial. Moreover, no significant larval
mortality in unlighted groups containing curcumin and sucrose has been reported (data
not shown) [16].

The larvicidal activity of curcuminoids has been investigated in various insect vectors.
Curcumin, in its natural form, exhibited a LC50 of 19.07 and 32.5 mg L−1 in Cx. pipiens and
An. quadrimaculatus larvae, respectively [23,25]. Furthermore, the researchers informed
the LC50−24h of natural curcumin (49.3 mg L−1) and its essential oil (115.6 mg L−1) for the
Ae. aegypti vector [23,39].

The phototoxic effects of curcumin on Ae. aegypti larvae were demonstrated in labo-
ratory tests using natural turmeric (NT), synthetic curcumin (SC), and SCS with concen-
trations between 5 and 25 mg L−1 and solar irradiance from 30 to 60 mW cm−2. NT, SC,
and SCS curcuminoids showed high photolarvicidal activity with LC50−3h of 20.0, 11.6, and
2.2 mg L−1, respectively. In the absence of irradiation, no larval mortality was observed at
concentrations below 25 mg L−1 [15].

In another study, Souza et al. investigated the photolarvicidal capacity of the SCS
formulation (0.005–0.45 mg L−1) on Ae. aegypti larvae directly irradiated [16]. After 8 h of
exposure to SCS and solar radiation, the container was kept in the dark for 16 h to assess
the larvae mortality with 24 h. A photolarvicidal effect with an LC50−24h of 0.04 mg L−1

was found. In the absence of radiation, the nonilluminated group did not show significant
larval mortality. It is relevant to point out that the experimental conditions adopted for that
laboratory study differed from those employed in this investigation, such as exposure time
to sunlight, the SCS concentration, container, and environment. Here, the photolarvicidal
potential of SCS for Ae. aegypti was demonstrated in its habitat under natural conditions
with a lethal time (LT50) of 3 days using 4.6 mg L−1 of SC in the SCS formulation.

2.3. Curcumin Photodegradation Byproducts

The chromatogram peaks corresponding to the protonated molecules [M+H]+
allowed the investigation of the intermediates collected from the samples at 0, 90,
and 180 min of photodynamic treatment, produced by direct photolysis of the SC
(Figure S1, Supplementary Materials). Thus, as a reference, the photodegradation byprod-
ucts were evaluated using the sample at the beginning of the treatment (0 min). Table 1
summarizes the proposed molecular structures and formulas related to the mass/charge
(m/z) ratio of the protonated molecules and the respective retention times. In the pho-
todegradation experiments, SC was diluted in an aqueous solution as well as anhydrous
ethanol to evaluate the effect of hydroxyl on the curcumin photodegradation mechanism.
The mass spectra exhibited the same m/z peaks regardless of the medium; hence, the water
medium does not contribute significantly to the photodegradation.
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Table 1. Proposed structures of the produced byproducts obtained from direct photolysis of curcumin,
molecular formulas with the respective m/z, and retention time.

Compound Accurate Mass [M+H]+ Retention Time (min) Molecular Formula Proposed Structure

172 m/z 173.0103 1 C7H8O5
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In photodegradation processes, hydroxylations of the organic compound can be
promoted by the superoxide (O2

.−) radicals (Equations (1) and (2)) [40].

R+ hν→ R* (1)

R* + O2 → R + + O2
.− (2)

The hydroxylation of arylated organic compounds caused by O2
.− radicals contributes

to the formation of phenols, alcohols, aldehydes, and carboxylic acids [41–44]. Twelve
intermediates with m/z 172, 194, 200, 212, 226, 242, 278, 290, 370, 402, 418, and 434 during the
curcumin photodegradation were identified. Figure 3 displays the proposed photodegrada-
tion byproducts based on these intermediates.

Molecules 2022, 27, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 3. Proposal for formation of curcumin photodegradation byproducts. 

From the curcumin 1 m/z 368, the intermediate 2 m/z 194 (ferulic acid) was obtained 
due to the action of the O2.− radical [45]. Next, attacks by O2.− led to highly hydroxylated 
byproducts with m/z 172, 200, 212, 226, and 242, such as di- and trihydroxylated aromatic 
compounds [42,46,47]. Photodegradation of 2 yielded 3 m/z 226, followed by 4 m/z 242, a 
trihydroxylated compound. C–C cleavage of the aromatic ring of 4 by the radicals O2.− and 
hydroperoxyl (HO2·) produced the byproduct 5 m/z 290, raising the carboxylic acid 
functional group [42,47–49]. 

The formation of 6 with m/z 212 could be attributed to the C–O bond cleavage of the 
methoxy group linked to the aromatic ring because of the reaction between O2.− and the 
byproduct 3 (m/z 226). O2.− radicals could also lead to the intermediate 7 (m/z 200) with a 
lower carbon chain. By losing carbon, this byproduct 7 allowed the formation of 8 with 
the lowest molecular weight (m/z 172). 

During photodegradation, O2.− also could capture hydrogen, giving rise to 9 m/z 370 
(demethoxybicyclopentadione) [29]. Subsequently, O2.− hydroxylates the aromatic rings, 
forming di- and monohydroxylates 10, 11, and 12 with m/z 402, 218, and 434, respectively. 
The reaction of the O2.− with 9 (m/z 370) enabled the C–O bond cleavage of the aromatic 
ether group and the appearance of the byproducts 13 (m/z 278) and 8 (m/z 172). Therefore, 
the stages of the photodegradation process of curcumin are based on the O2.− generation 
that promotes the formation of highly hydroxylated compounds [42,50,51]. 

2.4. Prediction of Ecotoxicity of Intermediates from Curcumin Photodegradation 
As hydroxylated intermediates present low acute toxicity (Table 2) due to the 

reduced tendency to be liposoluble, only three leading intermediates, 2, 13, and 9 (m/z 194, 

Figure 3. Proposal for formation of curcumin photodegradation byproducts.

From the curcumin 1 m/z 368, the intermediate 2 m/z 194 (ferulic acid) was obtained
due to the action of the O2

.− radical [45]. Next, attacks by O2
.− led to highly hydroxylated

byproducts with m/z 172, 200, 212, 226, and 242, such as di- and trihydroxylated aromatic
compounds [42,46,47]. Photodegradation of 2 yielded 3 m/z 226, followed by 4 m/z 242,
a trihydroxylated compound. C–C cleavage of the aromatic ring of 4 by the radicals O2

.−

and hydroperoxyl (HO2·) produced the byproduct 5 m/z 290, raising the carboxylic acid
functional group [42,47–49].

The formation of 6 with m/z 212 could be attributed to the C–O bond cleavage of the
methoxy group linked to the aromatic ring because of the reaction between O2

.− and the
byproduct 3 (m/z 226). O2

.− radicals could also lead to the intermediate 7 (m/z 200) with
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a lower carbon chain. By losing carbon, this byproduct 7 allowed the formation of 8 with
the lowest molecular weight (m/z 172).

During photodegradation, O2
.− also could capture hydrogen, giving rise to 9 m/z

370 (demethoxybicyclopentadione) [29]. Subsequently, O2
.− hydroxylates the aromatic

rings, forming di- and monohydroxylates 10, 11, and 12 with m/z 402, 218, and 434, respec-
tively. The reaction of the O2

.− with 9 (m/z 370) enabled the C–O bond cleavage of the
aromatic ether group and the appearance of the byproducts 13 (m/z 278) and 8 (m/z 172).
Therefore, the stages of the photodegradation process of curcumin are based on the O2

.−

generation that promotes the formation of highly hydroxylated compounds [42,50,51].

2.4. Prediction of Ecotoxicity of Intermediates from Curcumin Photodegradation

As hydroxylated intermediates present low acute toxicity (Table 2) due to the reduced
tendency to be liposoluble, only three leading intermediates, 2, 13, and 9 (m/z 194, 278, and
370, respectively), were selected for the ecotoxicity assessment [42,50,51]. The partition
coefficients (log KO/w) are also shown, which were used to evaluate the solubility of
compounds in water, their tendency to interact with structures, and their permeability in
cell membranes [51,52].

Table 2. Predicted acute toxicity to Daphnia, fish, and green algae for some intermediates of cur-
cumin photodegradation: LC50, EC50, log KO/w, water-solubility, acute toxic unit (TU), and toxicity
classification.

Compound 2 (194 m/z) 13 (278 m/z) 9 (370 m/z)

Organism Structure
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and cosmetic industries [54]. Clinical studies have shown that curcumin is safe for humans 
even when a 12 g dose is administered orally every day for 3 months [55–57]. The results 
reported here show that the byproducts obtained in the photobleaching of curcumin do 
not have any toxic potential for the aquatic organisms Daphnia, fish, and green algae. 

3. Materials and Methods 
3.1. Photosensitizer 

Curcumin (≥98%) was synthesized using continuous flow technologies at the Federal 
University of São Carlos. The organic synthesis team developed this assisted machine pro-
tocol from the Center of Optics and Photonics (CePOF) [58]. Sucrose (≥99%, Sigma-Al-
drich, St. Louis, MO, USA) was mixed with curcumin to increase water solubility and 
palatability, acting as a phagostimulant [16,59,60]. The mixture was formulated in the pro-
portion of 1% of SC and 99% of sucrose (m/m) [16]. The formulation of SCS was solubilized 
in an aqueous medium at a concentration of curcumin and sucrose of 4.6 and 445.4 mg 
L−1, respectively (curcumin-containing group). A control group was also tested, which 
contained only sucrose at 445.4 mg L−1 in an aqueous solution. 

3.2. Photodynamic Control Bioassays 
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drich, St. Louis, MO, USA) was mixed with curcumin to increase water solubility and 
palatability, acting as a phagostimulant [16,59,60]. The mixture was formulated in the pro-
portion of 1% of SC and 99% of sucrose (m/m) [16]. The formulation of SCS was solubilized 
in an aqueous medium at a concentration of curcumin and sucrose of 4.6 and 445.4 mg 
L−1, respectively (curcumin-containing group). A control group was also tested, which 
contained only sucrose at 445.4 mg L−1 in an aqueous solution. 

3.2. Photodynamic Control Bioassays 

Daphnia LC50 (mg L−1) 287.5 2.3 × 104 988.16
TU 3.5 × 10−3 4.3 × 10−5 1.2 × 10−3

Fish
LC50 (mg L−1) 534.4 7.3 × 103 1.9 × 103

TU 1.9 × 10−3 1.4 × 10−4 5.3 × 10−4

Green algae EC50 (mg L−1) 171.3 1.8 × 104 525.5
TU 5.8 × 10−3 5.4 × 10−5 1.9 × 10−3

Toxicity Non-toxic Non-toxic Non-toxic
log KO/w 1.42 −1.93 1.12

Compounds with log KO/w greater than 3 are considered highly liposoluble and,
therefore, reveal a greater tendency to be adsorbed in the organic phase of living organ-
isms [42,52]. The values are less than 3 for the intermediates evaluated, suggesting their
low liposolubility and affinity for living organisms and, thus, their permanence in water
until photodegradation.

The high LC50 and EC50 associated with the hydroxylation of these intermediates
resulted in TU less than 0.4—between 5.8 × 10−3 and 4.3 × 10−5; hence, these compounds
are non-toxic to Daphnia, fish, and green algae [53].

Curcumin and its derivatives have been widely used in the food, pharmacological,
and cosmetic industries [54]. Clinical studies have shown that curcumin is safe for humans
even when a 12 g dose is administered orally every day for 3 months [55–57]. The results
reported here show that the byproducts obtained in the photobleaching of curcumin do not
have any toxic potential for the aquatic organisms Daphnia, fish, and green algae.
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3. Materials and Methods
3.1. Photosensitizer

Curcumin (≥98%) was synthesized using continuous flow technologies at the Federal
University of São Carlos. The organic synthesis team developed this assisted machine
protocol from the Center of Optics and Photonics (CePOF) [58]. Sucrose (≥99%, Sigma-
Aldrich, St. Louis, MO, USA) was mixed with curcumin to increase water solubility and
palatability, acting as a phagostimulant [16,59,60]. The mixture was formulated in the
proportion of 1% of SC and 99% of sucrose (m/m) [16]. The formulation of SCS was
solubilized in an aqueous medium at a concentration of curcumin and sucrose of 4.6 and
445.4 mg L−1, respectively (curcumin-containing group). A control group was also tested,
which contained only sucrose at 445.4 mg L−1 in an aqueous solution.

3.2. Photodynamic Control Bioassays

Larvae were obtained from eggs of Ae. aegypti (Rockefeller lineage). Bioassays followed
the recommendations of the WHO with modifications [61]. Eggs were deposited on filter
paper and placed on plastic trays with approximately 2 L of tap water until hatching. After,
the larvae were fed with macerated fish feed (Alcon®, Santa Catarina„ Brazil) dissolved in
water. The trays were kept at 25 ◦C in a biological oxygen demand oven with humidity
(60 ± 5)% and a photoperiod of 10:14 h dark:light. Third instar larvae (L3) were used to
evaluate the photoinactivation potential of SCS in field experiments.

The localization of curcumin in the Ae. aegypti was assessed using a Zeiss inverted
fluorescence confocal microscope (LSM780, Jena, Germany) in the so-called channel mode
with a 20× objective. The fluorescence images were obtained by collecting emission from
curcumin in the 520–550 nm range under 405-nm excitation. Then the L3 Ae. aegypti larvae
were added to a solution with 25 mg L−1 of curcumin. After 12 h in the dark, the larvae
were washed three times in distilled water, transferred to microscopic slides, and covered
with coverslips. The experiment was conducted in triplicate, and about 10 larvae were
examined per experiment.

The field experiments of photodynamic inactivation using solar radiation were per-
formed on the meteorological station at a 534 m altitude, latitude 20◦50′51′ ′ W, and lon-
gitude 54◦61′73′ ′ NW (Campo Grande, MS, Brazil) following Vilarinhos et al. 2003 with
modifications [61,62]. Two 500 L water tanks were adapted to store the control and experi-
mental groups (Figure 4). The covers were cut, and the trapezoidal openings were covered
with transparent polyethylene acrylic to allow sunlight into the tanks (Figure 4). Although
each container had a capacity of 500 L, only 250 L solutions were used, which resulted in
a depth of water of 38 cm.
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The sucrose and SCS (4.6 mg L−1 curcumin) formulation were diluted directly in
250 L of tap water in the tanks of the control and experimental groups, respectively. The
concentration of 4.6 mg L−1 was adopted based on preliminary tests in the laboratory
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employing five concentrations (1.8; 4.6; 5.4; 7.2; 14.4 mg L−1) under 450 nm illumination.
All tested concentrations induced photolarvicidal effect; nevertheless, an intermediate con-
centration was preferred based on the preliminary results. The efficiency of photodynamic
inactivation of Ae. aegypti larvae using SCS formulation and solar radiation was evaluated
in a simulated habitat. On reaching the third instar (L3, 6 days after hatching), a total of
50 larvae of Ae. aegypti were placed in water tanks to start the monitoring. The larvae were
fed with 2.5 mg of macerated fish feed Alcon® on alternate days according to the number of
larvae in each tank. The literature indicates 10 mg L−1 of food at intervals of up to 2 days
for 25–100 larvae [61].

Larval mortality and pupal formation were checked daily at 10 AM for 21 days during
the summer. The solutions were slightly agitated; larvae that emerged motionless were
considered dead and collected by a Pasteur pipette. Dead larvae and pupae formed were
counted and removed. During larval mortality monitoring, the luminous intensity reaching
the water tank was also measured daily. The luminosity at 10 AM varied from 240 to
136,800 lx during the 21-day experiments (Table S1, Supplementary Materials). The water
temperature was monitored in the tank, varying between (25.0 ± 0.5) and (29.0 ± 0.5) ◦C
throughout the experiment, while the ambient temperature ranged from (24.0 ± 0.5) to
(33.0 ± 0.5) ◦C (Table S1, Supplementary Materials).

The average larval mortality data were submitted to probit analysis to obtain the
lethal to one-half time (LT50) with a corresponding 95% confidence interval using Origin
v.2022 software.

3.3. Photodegradation

The study of photodegradation byproducts was carried out based on two solutions con-
taining SC diluted in distilled water and anhydrous ethanol. Both solutions were obtained
by solubilizing curcumin in ethanol (HPLC 99.9%, Sigma Aldrich, St. Louis, MI, USA) at
a concentration of 900 µg mL−1. Distilled water (100 mL) and 1.6 mL of the stock solution
resulted in an aqueous solution of curcumin with a concentration of 14.4 µg mL−1. Another
solution was prepared from 1.6 mL of the stock solution by adding ethanol to obtain
a solution with the same concentration of curcumin.

Photodegradation experiments were performed in a solar box (Abet Technology
10500) with a Xenon lamp (300 W) and an AM1.5G filter. A 45 mL solution of curcumin
(14.4 µg mL−1) was subjected to an irradiance of 100 mW cm−2 (132,000 lx) for 3 h. Aliquots
were taken at 0, 90, and 180 min to monitor the photodegradation byproducts using liquid
chromatography with a mass spectrometer (LC-MS) [63,64].

3.4. Liquid Chromatography with Mass Spectrometer (LC-MS)

The solutions, prepared in the proportion of 5 mL of sample to 5 mL of methanol
(CL-MS grade, Panreac), were injected (1 µL) in a liquid chromatograph/mass spectrome-
ter (UFLC Shimadzu LC-20AD—IES Detector-Q-QTOF microTOFIII (Bruker Daltonics))
equipped with a Phenomenex onyx monolithic C-18 column (100 × 3.0 mm). The operating
parameters were set up following the method reported by Da Silva et al., 2018, and Da
Rosa et al., 2019 [65,66]. The system operated in positive electrospray ionization mode
with a spray voltage of 0.8–1.2 V and a capillary voltage of 3500 V (200 ◦C). Mass spectra
were obtained within the m/z range 120–1300. Gradient elution with water (phase A) and
acetonitrile (phase B), both with 0.1% formic acid, was performed with a flow rate of
0.3 mL min−1. The gradient ramps were: 0–2 min, 0% to 3% B; 2–25 min, 3% to 25% B;
25–40 min from 25% to 80% B; and 40–48 min, from 80% to 3% B.

3.5. Prediction of Acute Toxicity of Intermediates for Aquatic Organisms

Acute toxicity unit (TU), lethal concentration 50 (LC50), and half-maximal effective
concentration (EC50) of the primary hydroxylated intermediates (m/z 194, 278, and 370)
formed by the photodegradation of curcumin on the non-target organisms were esti-
mated using the ecological structure-activity relationship (ECOSAR) model (version 1.11,
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Washington, DC, USA) [67]. The LC50 concentration values for Daphnia and fish were de-
termined as well as the concentration (EC50) that inhibits the growth of the green algae
population by 50%. Consequently, it is possible to estimate the acute toxic unit (TU), defined
as (1/LC50)× 100 or (1/EC50)× 100 [68].

ECOSAR was developed by the Office of Pollution Prevention and Toxics, U.S. Envi-
ronmental Protection Agency (U.S. EPA/OPPT), and collaborators, to predict the aquatic
toxicity of new chemicals for industrial applications, pointing to those requiring further
toxic testing and characterization [68,69]. The model takes into account the linear rela-
tionship between the calculated log KOW values and the related logarithm of the mea-
sured toxicity values for a given training set of compounds within each class of interest.
For freshwater fish data, species such as bluegill sunfish (Lepomis macrochirus) and fat-
head minnow (Pimephales promelas) are included; for freshwater invertebrates, species
involve Daphnia magna or Daphnia pulex; and for algae, Desmodesmus subspicatus or
Pseudokirchneriella subcapitata [68,69]. Therefore, it is important to highlight that the terms
fish, Daphnia, and green algae represent a set of species adopted in the training set of
the program to assess the toxicity values of chemicals on the general trophic levels that
they embody.

4. Conclusions

Curcumin was formulated with sucrose and showed significant photoactivity against
larvae of Ae. aegypti under field conditions. This study confirmed the potential of this
natural-based photosensitizer to mitigate mosquito growth in field conditions. It also
identified byproducts from photodegradation in a natural environment with the proposal
of degradation byproducts. Based on LC-MS studies, these compounds were suggested
and revealed the main ones with m/z 194, 278, and 370. Ecotoxicity predictions for these
intermediates do not indicate any harmful potential for species Daphnia, fish, and green al-
gae. Therefore, curcumin-promoted oxidative storms (photodynamic effect) under a broad
light spectrum (sunlight) can simultaneously induce the death of Ae. aegypti larvae and
a fast and efficient photodegradation of curcumin, yielding water-soluble byproducts that
are not potentially ecotoxic. Consequently, the present work proved that curcumin could
be used as an environmentally safe photosensitizer to deal with the larval population of
Ae. aegypti under field conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27175699/s1, Figure S1: Mass spectra of intermediates
from curcumin photodegradation obtained in ethanol at 0, 90, and 180 min; Table S1: Temperature
and irradiance measured daily at 10 A.M. at the experimental site.
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