# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## (Biphenyl-4-yl)[2-(4-methylbenzoyl)phenyl]methanone

#### V. Silambarasan,<sup>a</sup> T. Srinivasan,<sup>a</sup> S. Sivasakthikumaran,<sup>b</sup> A. K. Mohanakrishnan<sup>b</sup> and D. Velmurugan<sup>a</sup>\*

<sup>a</sup>Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and <sup>b</sup>Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India Correspondence e-mail: shirai2011@gmail.com

Received 5 November 2011; accepted 8 November 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.047; wR factor = 0.147; data-to-parameter ratio = 18.4.

In the title compound,  $C_{27}H_{20}O_2$ , the central benzene ring makes dihedral angles of 64.86 (7) and 70.35 (7) $^{\circ}$  with the methyl-substituted ring and the biphenyl ring system, respectively. The crystal packing is stabilized by intermolecular  $C-H\cdots O$  interactions, which link the molecules into chains parallel to the b axis.

#### **Related literature**

For the uses and biological importance of diketones, see: Bennett et al. (1999); Sato et al. (2008). For applications of biphenyl derivatives, see: Kucybala & Wrzyszczynski (2002). For related structures, see: Narayanan et al. (2011); Saeed et al. (2010).



#### **Experimental**

Crystal data  $C_{27}H_{20}O_2$ 

 $M_r = 376.43$ 

| Monoclinic, $P2_1/c$<br>a = 22.2591 (5) Å<br>b = 7.7624 (2) Å<br>c = 11.4312 (2) Å<br>$\beta = 97.454$ (1)°<br>V = 1958.44 (8) Å <sup>3</sup> | Z = 4<br>Mo K $\alpha$ radiation<br>$\mu = 0.08 \text{ mm}^{-1}$<br>T = 293  K<br>$0.20 \times 0.20 \times 0.20 \text{ mm}$                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data collection                                                                                                                               |                                                                                                                                                                    |
| Bruker SMART APEXII area-<br>detector diffractometer<br>18479 measured reflections                                                            | 4860 independent reflections<br>3695 reflections with $I > 2\sigma(I)$<br>$R_{\text{int}} = 0.032$                                                                 |
| Refinement                                                                                                                                    |                                                                                                                                                                    |
| $R[F^2 > 2\sigma(F^2)] = 0.047$<br>$wR(F^2) = 0.147$<br>S = 1.01<br>4860 reflections                                                          | 264 parameters<br>H-atom parameters constrained<br>$\Delta \rho_{max} = 0.26 \text{ e } \text{\AA}^{-3}$<br>$\Delta \rho_{min} = -0.20 \text{ e } \text{\AA}^{-3}$ |
|                                                                                                                                               |                                                                                                                                                                    |

| Table 1                        |  |
|--------------------------------|--|
| Hydrogen-bond geometry (Å, °). |  |

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|--------------|--------------------------------------|
| $C16-H16\cdots01^{i}$       | 0.93 | 2.57                    | 3.4196 (18)  | 152                                  |

Symmetry code: (i) x, y - 1, z.

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

VS and DV thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the UGC SAP for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5706).

#### References

- Bennett, I., Broom, N. J. P., Cassels, R., Elder, J. S., Masson, N. D. & O'Hanlon, P. J. (1999). Bioorg. Med. Chem. Lett. 9, 1847-1852.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Kucybala, K. & Wrzyszczynski, A. (2002). J. Photochem. Photobiol. A, 153, 109-112.
- Narayanan, P., Sethusankar, K., Nandakumar, M. & Mohanakrishnan, A. K. (2011). Acta Cryst. E67, o2120.
- Saeed, A., Samra, S. A., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, 0926. Sato, K., Yamazoe, S., Yamamoto, R., Ohata, S., Tarui, A., Omote, M., Kumadaki, I. & Ando, A. (2008). Org. Lett. 10, 2405-2408.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Acta Cryst. (2011). E67, o3276 [doi:10.1107/S1600536811047131]

## (Biphenyl-4-yl)[2-(4-methylbenzoyl)phenyl]methanone

### V. Silambarasan, T. Srinivasan, S. Sivasakthikumaran, A. K. Mohanakrishnan and D. Velmurugan

#### Comment

Various biphenyl derivatives are used in the synthesis of pharmaceuticals, antifungal agents like bifonazole, optical brightening agents, dyes and polychlorinated biphenyls (PCBs). PCBs are used as heat-transfer agents, as electric insulators and are environmental pollutants causing carcinogenesis (Kucybala & Wrzyszczynski, 2002). Diketones are popular in organic synthesis for their applications in biology and medicine. They are known to exhibit antioxidants, antitumour and antibacterial activities (Bennett *et al.*,1999). They are also key intermediates in the preparation of various heterocyclic compounds (Sato *et al.*, 2008).

X-ray analysis confirms the molecular structure and atom connectivity of the title compound as illustrated in the Fig. 1. The central phenyl (C14–C19) ring makes dihedral angles of 64.86 (7)° and 70.35 (7)° with the methyl substituted phenyl ring (C21–C26) and the biphenyl ring system (C1–C12), respectively. The keto atoms O1 and O2 significantly deviate from the central phenyl ring (C14–C19) by -0.9393 (11)Å and 0.8857 (11)Å, respectively. The central phenyl ring makes dihedral angles of 57.16 (5)° and 47.51 (6)° with the ketone groups (C10/C13/C14/O1) and (C19/C20/C21/O2), respectively. The title compound exhibits structural similarities with the already reported related structure (Narayanan *et al.*, 2011).

The crystal packing is stabilized by C—H···O intermolecular interaction (Table 1). The C16—H16···O1<sup>i</sup> interaction generates a C6 chain parallel to *b* axis (symmetry code: *x*, *y*-*1*, *z*). The packing of the title compound is shown in Fig. 2.

#### **Experimental**

The furan (1 g) was dissolved in THF. The weighed lead tetracetone (1.52 g, 1520 mmol) was added to the furan. Then it was refluxed at 343 K for 0.5 h. The reaction mixture was analyzed by TLC. Then the usual workup was done with brine solution and CHCl<sub>3</sub> followed by column chromatography (10% 10% AcOEt/hexane) which lead to the solution of the pure compound. Single crystals suitable for X–ray diffraction were obtained by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

#### Refinement

The hydrogen atoms were placed in calculated positions with C—H = 0.93Å to 0.96Å and refined in the riding model with fixed isotropic displacement parameters:  $U_{iso}(H) = 1.5U_{eq}(C)$  for the methyl group and  $U_{iso}(H) = 1.2U_{eq}(C)$  for other H atoms.

#### Figures



Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.



Fig. 2. The crystal packing of the title compound viewed down b axis, showing the hydrogen bonds.

F(000) = 792 $D_{\rm x} = 1.277 \text{ Mg m}^{-3}$ 

 $\theta = 1.9-28.3^{\circ}$   $\mu = 0.08 \text{ mm}^{-1}$  T = 293 KBlock, colourless  $0.20 \times 0.20 \times 0.20 \text{ mm}$ 

Mo K $\alpha$  radiation,  $\lambda = 0.71073$  Å Cell parameters from 4860 reflections

### (Biphenyl-4-yl)[2-(4-methylbenzoyl)phenyl]methanone

Crystal data

| $C_{27}H_{20}O_2$             |
|-------------------------------|
| $M_r = 376.43$                |
| Monoclinic, $P2_1/c$          |
| Hall symbol: -P 2ybc          |
| <i>a</i> = 22.2591 (5) Å      |
| <i>b</i> = 7.7624 (2) Å       |
| c = 11.4312 (2) Å             |
| $\beta = 97.454 (1)^{\circ}$  |
| $V = 1958.44 (8) \text{ Å}^3$ |
| Z = 4                         |

#### Data collection

| Bruker SMART APEXII area-detector diffractometer | 3695 reflections with $I > 2\sigma(I)$                                    |
|--------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube         | $R_{\rm int} = 0.032$                                                     |
| graphite                                         | $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$ |
| $\omega$ and $\phi$ scans                        | $h = -29 \rightarrow 29$                                                  |
| 18479 measured reflections                       | $k = -10 \rightarrow 10$                                                  |
| 4860 independent reflections                     | $l = -14 \rightarrow 15$                                                  |

#### Refinement

| Refinement on $F^2$ | 2 |
|---------------------|---|
|---------------------|---|

Least-squares matrix: full

 $R[F^2 > 2\sigma(F^2)] = 0.047$ 

 $wR(F^2) = 0.147$ 

*S* = 1.01

4860 reflections

264 parameters

0 restraints

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0727P)^2 + 0.5102P]$ where  $P = (F_o^2 + 2F_c^2)/3$  $(\Delta/\sigma)_{max} = 0.030$  $\Delta\rho_{max} = 0.26 \text{ e } \text{Å}^{-3}$  $\Delta\rho_{min} = -0.20 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc\*=kFc[1+0.001xFc^2\lambda^3/sin(20)]^{-1/4} Extinction coefficient: 0.0107 (16)

Primary atom site location: structure-invariant direct methods

### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted R-factor wR and goodness of fit S are based on  $F^2$ , conventional R-factors R are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \text{sigma}(F^2)$  is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x            | У             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|--------------|---------------|--------------|---------------------------|
| 01  | 0.28534 (5)  | 0.38124 (13)  | 0.65595 (10) | 0.0506 (3)                |
| C13 | 0.24874 (6)  | 0.27565 (17)  | 0.61339 (11) | 0.0377 (3)                |
| O2  | 0.28106 (5)  | 0.38387 (14)  | 0.38609 (10) | 0.0544 (3)                |
| C14 | 0.26900 (5)  | 0.11095 (16)  | 0.56107 (12) | 0.0375 (3)                |
| C7  | 0.05660 (6)  | 0.33333 (17)  | 0.61684 (12) | 0.0392 (3)                |
| C20 | 0.32077 (6)  | 0.27867 (17)  | 0.41439 (12) | 0.0409 (3)                |
| C21 | 0.38428 (6)  | 0.30892 (17)  | 0.39267 (12) | 0.0405 (3)                |
| C10 | 0.18236 (6)  | 0.29702 (17)  | 0.61430 (11) | 0.0386 (3)                |
| C19 | 0.30593 (6)  | 0.11233 (17)  | 0.47073 (13) | 0.0410 (3)                |
| C4  | -0.01000 (6) | 0.34472 (17)  | 0.62034 (12) | 0.0404 (3)                |
| C18 | 0.32434 (7)  | -0.0436 (2)   | 0.42671 (16) | 0.0544 (4)                |
| H18 | 0.3481       | -0.0438       | 0.3655       | 0.065*                    |
| C11 | 0.14137 (7)  | 0.2168 (2)    | 0.53081 (13) | 0.0527 (4)                |
| H11 | 0.1554       | 0.1489        | 0.4731       | 0.063*                    |
| С9  | 0.16008 (7)  | 0.4010 (2)    | 0.69754 (14) | 0.0507 (4)                |
| Н9  | 0.1868       | 0.4602        | 0.7526       | 0.061*                    |
| C15 | 0.25338 (6)  | -0.04573 (18) | 0.60771 (14) | 0.0472 (3)                |
| H15 | 0.2293       | -0.0472       | 0.6684       | 0.057*                    |
| C25 | 0.45437 (7)  | 0.4572 (2)    | 0.28431 (14) | 0.0530 (4)                |
| H25 | 0.4610       | 0.5322        | 0.2238       | 0.064*                    |
| C22 | 0.43345 (7)  | 0.2315 (2)    | 0.46015 (13) | 0.0482 (3)                |
| H22 | 0.4268       | 0.1541        | 0.5192       | 0.058*                    |
| C23 | 0.49216 (7)  | 0.2685 (2)    | 0.44031 (15) | 0.0531 (4)                |
| H23 | 0.5245       | 0.2170        | 0.4873       | 0.064*                    |
| C17 | 0.30771 (8)  | -0.1976 (2)   | 0.47294 (18) | 0.0609 (5)                |
| H17 | 0.3198       | -0.3009       | 0.4421       | 0.073*                    |
| C8  | 0.09836 (7)  | 0.4172 (2)    | 0.69900 (14) | 0.0536 (4)                |
| H8  | 0.0843       | 0.4860        | 0.7563       | 0.064*                    |
| C26 | 0.39563 (7)  | 0.4241 (2)    | 0.30508 (13) | 0.0485 (3)                |
| H26 | 0.3635       | 0.4793        | 0.2601       | 0.058*                    |
| C24 | 0.50361 (7)  | 0.3812 (2)    | 0.35152 (14) | 0.0497 (4)                |
| C12 | 0.07980 (7)  | 0.2361 (2)    | 0.53183 (14) | 0.0544 (4)                |
| H12 | 0.0532       | 0.1822        | 0.4737       | 0.065*                    |

| C16  | 0.27311 (7)  | -0.19908 (19) | 0.56502 (17) | 0.0573 (4) |
|------|--------------|---------------|--------------|------------|
| H16  | 0.2632       | -0.3031       | 0.5980       | 0.069*     |
| C5   | -0.05078 (8) | 0.2644 (3)    | 0.53690 (18) | 0.0706 (5) |
| Н5   | -0.0363      | 0.2027        | 0.4766       | 0.085*     |
| C3   | -0.03413 (8) | 0.4333 (3)    | 0.70758 (17) | 0.0674 (5) |
| H3   | -0.0082      | 0.4883        | 0.7663       | 0.081*     |
| C1   | -0.13564 (7) | 0.3628 (2)    | 0.62571 (17) | 0.0599 (4) |
| H1   | -0.1773      | 0.3700        | 0.6269       | 0.072*     |
| C2   | -0.09621 (8) | 0.4423 (3)    | 0.7099 (2)   | 0.0786 (6) |
| H2   | -0.1112      | 0.5036        | 0.7698       | 0.094*     |
| C27  | 0.56713 (8)  | 0.4206 (3)    | 0.3272 (2)   | 0.0718 (5) |
| H27A | 0.5789       | 0.3394        | 0.2711       | 0.108*     |
| H27B | 0.5944       | 0.4126        | 0.3993       | 0.108*     |
| H27C | 0.5685       | 0.5351        | 0.2958       | 0.108*     |
| C6   | -0.11250 (8) | 0.2728 (3)    | 0.54021 (19) | 0.0753 (6) |
| H6   | -0.1386      | 0.2159        | 0.4828       | 0.090*     |

## Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$    | U <sup>33</sup> | $U^{12}$    | $U^{13}$    | $U^{23}$     |
|-----|------------|-------------|-----------------|-------------|-------------|--------------|
| 01  | 0.0451 (6) | 0.0452 (6)  | 0.0626 (7)      | -0.0084 (4) | 0.0114 (5)  | -0.0064 (5)  |
| C13 | 0.0380 (6) | 0.0378 (7)  | 0.0384 (6)      | -0.0015 (5) | 0.0089 (5)  | 0.0035 (5)   |
| O2  | 0.0517 (6) | 0.0479 (6)  | 0.0665 (7)      | 0.0115 (5)  | 0.0188 (5)  | 0.0113 (5)   |
| C14 | 0.0300 (6) | 0.0359 (6)  | 0.0466 (7)      | -0.0011 (5) | 0.0052 (5)  | 0.0024 (5)   |
| C7  | 0.0373 (6) | 0.0397 (7)  | 0.0413 (7)      | 0.0034 (5)  | 0.0073 (5)  | 0.0015 (5)   |
| C20 | 0.0451 (7) | 0.0375 (7)  | 0.0421 (7)      | 0.0028 (6)  | 0.0133 (5)  | -0.0010 (5)  |
| C21 | 0.0432 (7) | 0.0384 (7)  | 0.0417 (7)      | -0.0007 (6) | 0.0122 (5)  | -0.0009 (5)  |
| C10 | 0.0369 (6) | 0.0393 (7)  | 0.0405 (6)      | 0.0019 (5)  | 0.0087 (5)  | 0.0024 (5)   |
| C19 | 0.0366 (6) | 0.0360 (7)  | 0.0517 (8)      | 0.0013 (5)  | 0.0108 (6)  | 0.0005 (5)   |
| C4  | 0.0383 (7) | 0.0379 (7)  | 0.0456 (7)      | 0.0037 (5)  | 0.0074 (5)  | 0.0027 (5)   |
| C18 | 0.0524 (9) | 0.0432 (8)  | 0.0707 (10)     | 0.0056 (7)  | 0.0201 (7)  | -0.0062 (7)  |
| C11 | 0.0422 (7) | 0.0691 (10) | 0.0469 (8)      | 0.0090 (7)  | 0.0060 (6)  | -0.0192 (7)  |
| С9  | 0.0409 (7) | 0.0565 (9)  | 0.0555 (8)      | -0.0048 (6) | 0.0091 (6)  | -0.0179 (7)  |
| C15 | 0.0370 (7) | 0.0426 (8)  | 0.0625 (9)      | -0.0052 (6) | 0.0077 (6)  | 0.0080 (6)   |
| C25 | 0.0565 (9) | 0.0518 (9)  | 0.0531 (8)      | -0.0110 (7) | 0.0160 (7)  | 0.0069 (7)   |
| C22 | 0.0509 (8) | 0.0487 (8)  | 0.0464 (7)      | 0.0034 (6)  | 0.0116 (6)  | 0.0068 (6)   |
| C23 | 0.0450 (8) | 0.0567 (9)  | 0.0574 (9)      | 0.0049 (7)  | 0.0057 (6)  | -0.0004 (7)  |
| C17 | 0.0544 (9) | 0.0353 (8)  | 0.0933 (13)     | 0.0058 (7)  | 0.0102 (9)  | -0.0072 (8)  |
| C8  | 0.0440 (8) | 0.0611 (9)  | 0.0576 (9)      | -0.0001 (7) | 0.0135 (7)  | -0.0221 (7)  |
| C26 | 0.0485 (8) | 0.0493 (8)  | 0.0478 (8)      | -0.0024 (6) | 0.0067 (6)  | 0.0075 (6)   |
| C24 | 0.0465 (8) | 0.0480 (8)  | 0.0568 (9)      | -0.0062 (6) | 0.0151 (6)  | -0.0105 (7)  |
| C12 | 0.0401 (7) | 0.0729 (11) | 0.0483 (8)      | 0.0061 (7)  | -0.0011 (6) | -0.0209 (7)  |
| C16 | 0.0465 (8) | 0.0344 (7)  | 0.0893 (12)     | -0.0049 (6) | 0.0021 (8)  | 0.0105 (7)   |
| C5  | 0.0442 (9) | 0.0904 (14) | 0.0785 (12)     | -0.0044 (9) | 0.0123 (8)  | -0.0382 (11) |
| C3  | 0.0443 (8) | 0.0872 (13) | 0.0711 (11)     | 0.0035 (8)  | 0.0091 (8)  | -0.0318 (10) |
| C1  | 0.0381 (7) | 0.0653 (10) | 0.0778 (11)     | 0.0021 (7)  | 0.0130 (7)  | 0.0006 (9)   |
| C2  | 0.0476 (9) | 0.0999 (16) | 0.0911 (14)     | 0.0064 (10) | 0.0200 (9)  | -0.0371 (12) |
| C27 | 0.0503 (9) | 0.0731 (12) | 0.0956 (14)     | -0.0116 (9) | 0.0233 (9)  | -0.0098 (11) |

| C6              | 0.0417 (9)    | 0.0968 (15) | 0.0863 (13) | -0.0110 (9) | 0.0047 (8) | -0.0311 (12) |
|-----------------|---------------|-------------|-------------|-------------|------------|--------------|
| Geometric param | neters (Å, °) |             |             |             |            |              |
| O1-C13          |               | 1 2122 (16) | C25-        | -C26        | 1          | 383 (2)      |
| C13-C10         |               | 1 4881 (18) | C25-        | -C24        | 1          | 386 (2)      |
| C13 - C14       |               | 1 5052 (18) | C25-        | -H25        | (          | 9300         |
| 02-020          |               | 1 2159 (17) | C22         | -C23        | 1          | 385 (2)      |
| C14—C15         |               | 1.3901 (18) | C22—        | -H22        | (          | .9300        |
| C14—C19         |               | 1.4009 (19) | C23—        | -C24        | 1          | .388 (2)     |
| C7—C12          |               | 1.3825 (19) | C23—        | -H23        | (          | 0.9300       |
| C7—C8           |               | 1.394 (2)   | C17—        | -C16        | 1          | .383 (3)     |
| C7—C4           |               | 1.4908 (18) | C17-        | -H17        | (          | .9300        |
| C20—C21         |               | 1.4854 (19) | C8—I        | 48          | (          | .9300        |
| C20—C19         |               | 1.4987 (19) | C26—        | -H26        | (          | 0.9300       |
| C21—C26         |               | 1.3897 (19) | C24—        | -C27        | 1          | .507 (2)     |
| C21—C22         |               | 1.391 (2)   | C12—        | -H12        | (          | 0.9300       |
| C10-C11         |               | 1.380 (2)   | C16—        | -H16        | (          | 0.9300       |
| С10—С9          |               | 1.3878 (19) | C5—0        | C6          | 1          | .381 (2)     |
| C19—C18         |               | 1.3929 (19) | C5—I        | H5          | (          | 0.9300       |
| C4—C3           |               | 1.376 (2)   | С3—(        | 22          | 1          | .387 (2)     |
| C4—C5           |               | 1.378 (2)   | C3—I        | H3          | (          | 0.9300       |
| C18—C17         |               | 1.377 (2)   | C1—0        | 26          | 1          | .356 (3)     |
| C18—H18         |               | 0.9300      | C1—0        | C2          | 1          | .363 (3)     |
| C11—C12         |               | 1.380 (2)   | C1—I        | H1          | (          | 0.9300       |
| C11—H11         |               | 0.9300      | C2—I        | H2          | (          | 0.9300       |
| С9—С8           |               | 1.382 (2)   | C27—        | -H27A       | (          | 0.9600       |
| С9—Н9           |               | 0.9300      | C27—        | -H27B       | (          | ).9600       |
| C15—C16         |               | 1.380 (2)   | C27—        | -H27C       | (          | ).9600       |
| C15—H15         |               | 0.9300      | C6—I        | H6          | (          | 0.9300       |
| O1—C13—C10      |               | 122.55 (12) | C22—        | -C23—C24    | 1          | 21.14 (15)   |
| O1—C13—C14      |               | 120.89 (12) | C22—        | -C23—H23    | 1          | 19.4         |
| C10-C13-C14     |               | 116.52 (11) | C24—        | -C23—H23    | 1          | 19.4         |
| C15-C14-C19     |               | 119.29 (12) | C18—        | -C17—C16    | 1          | 20.25 (14)   |
| C15-C14-C13     |               | 119.20 (12) | C18—        | -C17—H17    | 1          | 19.9         |
| C19—C14—C13     |               | 121.41 (11) | C16—        | -C17—H17    | 1          | 19.9         |
| С12—С7—С8       |               | 116.82 (12) | С9—(        | С8—С7       | 1          | 21.77 (13)   |
| C12—C7—C4       |               | 120.98 (12) | С9—6        | С8—Н8       | 1          | 19.1         |
| C8—C7—C4        |               | 122.19 (12) | C7—0        | С8—Н8       | 1          | 19.1         |
| O2—C20—C21      |               | 121.61 (13) | C25—        | -C26-C21    | 1          | 20.51 (14)   |
| O2—C20—C19      |               | 119.99 (12) | C25—        | -C26—H26    | 1          | 19.7         |
| C21—C20—C19     |               | 118.39 (12) | C21—        | -C26—H26    | 1          | 19.7         |
| C26—C21—C22     |               | 118.29 (13) | C25—        | -C24—C23    | 1          | 17.80 (14)   |
| C26—C21—C20     |               | 119.21 (13) | C25—        | -C24—C27    | 1          | 20.31 (16)   |
| C22—C21—C20     |               | 122.44 (12) | C23—        | -C24—C27    | 1          | 21.89 (16)   |
| С11—С10—С9      |               | 118.26 (12) | C11—        | -C12—C7     | 1          | 21.81 (13)   |
| C11—C10—C13     |               | 120.85 (12) | C11—        | -C12—H12    | 1          | 19.1         |
| C9—C10—C13      |               | 120.87 (12) | С7—6        | С12—Н12     | 1          | 19.1         |
| C18—C19—C14     |               | 119.20 (13) | C15—        | -C16C17     | 1          | 19.75 (14)   |

| C18—C19—C20     | 120.14 (12)  | C15—C16—H16     | 120.1        |
|-----------------|--------------|-----------------|--------------|
| C14—C19—C20     | 120.42 (11)  | C17—C16—H16     | 120.1        |
| C3—C4—C5        | 116.35 (14)  | C4—C5—C6        | 121.87 (16)  |
| C3—C4—C7        | 122.13 (13)  | С4—С5—Н5        | 119.1        |
| C5—C4—C7        | 121.51 (13)  | С6—С5—Н5        | 119.1        |
| C17—C18—C19     | 120.63 (15)  | C4—C3—C2        | 121.48 (16)  |
| С17—С18—Н18     | 119.7        | С4—С3—Н3        | 119.3        |
| C19—C18—H18     | 119.7        | С2—С3—Н3        | 119.3        |
| C12—C11—C10     | 120.89 (13)  | C6—C1—C2        | 118.16 (15)  |
| C12—C11—H11     | 119.6        | С6—С1—Н1        | 120.9        |
| C10-C11-H11     | 119.6        | С2—С1—Н1        | 120.9        |
| C8—C9—C10       | 120.36 (13)  | C1—C2—C3        | 121.03 (17)  |
| С8—С9—Н9        | 119.8        | С1—С2—Н2        | 119.5        |
| С10—С9—Н9       | 119.8        | С3—С2—Н2        | 119.5        |
| C16—C15—C14     | 120.81 (14)  | С24—С27—Н27А    | 109.5        |
| C16—C15—H15     | 119.6        | С24—С27—Н27В    | 109.5        |
| C14—C15—H15     | 119.6        | H27A—C27—H27B   | 109.5        |
| C26—C25—C24     | 121.53 (14)  | С24—С27—Н27С    | 109.5        |
| C26—C25—H25     | 119.2        | H27A—C27—H27C   | 109.5        |
| С24—С25—Н25     | 119.2        | H27B—C27—H27C   | 109.5        |
| C23—C22—C21     | 120.71 (14)  | C1—C6—C5        | 121.10 (17)  |
| C23—C22—H22     | 119.6        | С1—С6—Н6        | 119.4        |
| C21—C22—H22     | 119.6        | С5—С6—Н6        | 119.4        |
| O1—C13—C14—C15  | 120.10 (15)  | C19—C14—C15—C16 | -0.9 (2)     |
| C10-C13-C14-C15 | -57.39 (16)  | C13—C14—C15—C16 | -177.50 (13) |
| O1—C13—C14—C19  | -56.44 (18)  | C26—C21—C22—C23 | 0.0 (2)      |
| C10-C13-C14-C19 | 126.07 (13)  | C20—C21—C22—C23 | -177.29 (14) |
| O2—C20—C21—C26  | -22.7 (2)    | C21—C22—C23—C24 | -1.1 (2)     |
| C19—C20—C21—C26 | 156.20 (13)  | C19—C18—C17—C16 | -0.9 (3)     |
| O2—C20—C21—C22  | 154.55 (15)  | C10—C9—C8—C7    | -1.1 (3)     |
| C19—C20—C21—C22 | -26.53 (19)  | C12—C7—C8—C9    | -1.5 (2)     |
| O1-C13-C10-C11  | 155.07 (15)  | C4—C7—C8—C9     | 177.69 (15)  |
| C14—C13—C10—C11 | -27.48 (19)  | C24—C25—C26—C21 | -1.8 (2)     |
| O1—C13—C10—C9   | -23.5 (2)    | C22—C21—C26—C25 | 1.4 (2)      |
| C14—C13—C10—C9  | 153.91 (13)  | C20—C21—C26—C25 | 178.82 (13)  |
| C15-C14-C19-C18 | 2.3 (2)      | C26—C25—C24—C23 | 0.7 (2)      |
| C13-C14-C19-C18 | 178.87 (13)  | C26—C25—C24—C27 | -179.65 (16) |
| C15-C14-C19-C20 | 176.73 (12)  | C22—C23—C24—C25 | 0.8 (2)      |
| C13-C14-C19-C20 | -6.7 (2)     | C22—C23—C24—C27 | -178.89 (15) |
| O2-C20-C19-C18  | 129.29 (16)  | C10-C11-C12-C7  | -1.1 (3)     |
| C21-C20-C19-C18 | -49.65 (19)  | C8—C7—C12—C11   | 2.6 (3)      |
| O2—C20—C19—C14  | -45.1 (2)    | C4—C7—C12—C11   | -176.60 (15) |
| C21—C20—C19—C14 | 136.01 (13)  | C14—C15—C16—C17 | -1.5 (2)     |
| C12—C7—C4—C3    | 176.57 (17)  | C18—C17—C16—C15 | 2.4 (3)      |
| C8—C7—C4—C3     | -2.6 (2)     | C3—C4—C5—C6     | 0.3 (3)      |
| C12—C7—C4—C5    | -2.4 (2)     | C7—C4—C5—C6     | 179.32 (18)  |
| C8—C7—C4—C5     | 178.45 (17)  | C5—C4—C3—C2     | -0.8 (3)     |
| C14—C19—C18—C17 | -1.5 (2)     | C7—C4—C3—C2     | -179.81 (18) |
| C20—C19—C18—C17 | -175.88 (15) | C6—C1—C2—C3     | 0.7 (3)      |

| C9—C10—C11—C12<br>C13—C10—C11—C12<br>C11—C10—C9—C8<br>C13—C10—C9—C8 | -1.6 (2)<br>179.78 (15)<br>2.6 (2)<br>-178.71 (14) | C4—C3—C2—C1<br>C2—C1—C6—C5<br>C4—C5—C6—C1 | 0<br><br>0   | .3 (4)<br>1.2 (3)<br>.7 (4) |
|---------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------|--------------|-----------------------------|
| Hydrogen-bond geometry (Å, °)                                       |                                                    |                                           |              |                             |
| D—H···A                                                             | <i>D</i> —Н                                        | H···A                                     | $D \cdots A$ | D—H··· $A$                  |
| C16—H16…01i                                                         | 0.93                                               | 2.57                                      | 3.4196 (18)  | 152                         |
| Symmetry codes: i.                                                  |                                                    |                                           |              |                             |

Fig. 1





