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Abstract

Maternal nutrition during gestation can cause epigenetic effects that translate to alterations

in gene expression in offspring. This 2-year study employed RNA-sequencing technology to

evaluate the pre- and post-vaccination muscle transcriptome of early-weaned Bos indicus-

influenced beef calves born from dams offered different supplementation strategies from 57

± 5 d prepartum until 17 ± 5 d postpartum. Seventy-two Brangus heifers (36 heifers/yr) were

stratified by body weight and body condition score and assigned to bahiagrass pastures (3

heifers/pasture/yr). Treatments were randomly assigned to pastures and consisted of (i) no

pre- or postpartum supplementation (NOSUP), (ii) pre- and postpartum supplementation of

protein and energy using 7.2 kg of dry matter/heifer/wk of molasses + urea (MOL), or (iii)

MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET). Calves were

weaned on d 147 of the study. On d 154, 24 calves/yr (8 calves/treatment) were randomly

selected and individually limit-fed a high-concentrate diet until d 201. Calves were vacci-

nated on d 160. Muscle biopsies were collected from the same calves (4 calves/treatment/

day/yr) on d 154 (pre-vaccination) and 201 (post-vaccination) for gene expression analysis

using RNA sequencing. Molasses maternal supplementation led to a downregulation of

genes associated with muscle cell differentiation and development along with intracellular

signaling pathways (e.g., Wnt and TGF-β signaling pathway) compared to no maternal sup-

plementation. Maternal fortification with methionine altered functional gene-sets involved in

amino acid transport and metabolism and the one-carbon cycle. In addition, muscle tran-

scriptome was impacted by vaccination with a total of 2,396 differentially expressed genes

(FDR� 0.05) on d 201 vs. d 154. Genes involved in cell cycle progression, extracellular

matrix, and collagen formation were upregulated after vaccination. This study demonstrated

that maternal supplementation of energy and protein, with or without, methionine has long-

term implications on the muscle transcriptome of offspring and potentially influence postna-

tal muscle development.
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Introduction

During the last trimester of gestation, the protein, energy, and amino acid requirements of

beef cows increase in order to meet the demand of the growing fetus [1]. Previous studies

observed that supplemental protein during the last trimester of gestation increased calf wean-

ing body weight, carcass weight, and marbling scores at slaughter [2–4]. Postnatal muscle

development is highly dependent on in utero formation of muscle fibers as the number of

muscle cells is set at birth [5]. In the beef cattle fetus, secondary myogenesis predominately

occurs during the second trimester of gestation [6]. During the last trimester of gestation, mus-

cle tissue growth continues primarily through muscle hypertrophy and adipogenesis is initi-

ated [6]. Modifications to the maternal diet, either nutrient excess or restriction, during mid-

to late gestation can modulate the expression of genes involved in myogenesis and adipogen-

esis of the muscle [7, 8]. Nutrient restriction during the last 40 d of gestation alters the muscle

transcriptome of beef calves at weaning [9], indicating that maternal nutrition during late ges-

tation can program long-term gene expression in the offspring.

Methionine is a limiting amino acid for both multiparous and primiparous beef cows graz-

ing low-quality forages during the last trimester of gestation [10, 11]. Methionine is an essen-

tial amino acid that has many important functions within the body, including protein

synthesis and DNA methylation. Previous work in livestock species has reported considerable

changes in offspring DNA methylation when methyl donors are added to the maternal diet

[12, 13]. Methionine acts as a precursor for S-adenosylmethionine, a metabolite of the one-car-

bon cycle [14]. S-adenosylmethionine plays an active role in both DNA and histone methyla-

tion which in turn regulates gene transcription [15, 16]. Indeed, maternal supplementation of

methionine during the last trimester of gestation influences hepatic gene transcription in dairy

calves [17, 18].

The impact of maternal methionine supplementation on calf postnatal growth is controver-

sial. Supplementation with methionine during the last trimester of gestation in dairy cows

increased calf birth weights and body weight gain during the first 9 weeks of postnatal life [17,

19, 20]. Nevertheless, supplementing methionine to beef cows during the first or last trimester

of gestation did not impact calf postnatal growth [21–24]. The mechanisms eliciting these

changes, or lack thereof, are not well understood. Liu and colleagues reported that the muscle

transcriptome of beef calves was modified when cows were supplemented with 10 g/d of

methionine during periconception and through the first trimester of gestation [13]. However,

little information is known on how methionine supplementation during the last trimester of

gestation may influence the postnatal muscle transcriptome in beef calves.

Previous work by our research group observed that calves born to Bos indicus-influenced

cows provided pre- and postpartum supplementation of protein and energy had greater pre-

and post-weaning growth performance compared to calves born from non-supplemented

cows, whereas the methionine fortification of supplements did not further enhance calf growth

[22, 23]. Further, maternal supplementation with energy and protein enhanced the antibody

response in beef calves following vaccination [22]. During an immunological challenge, nutri-

ents are shifted towards developing an immune response at the expensive of growth [25]. San-

glard and colleagues identified correlation networks of immune related genes that were

upregulated in blood but downregulated in the muscle following vaccination [9], indicating an

interaction between muscle and the immune response. Moreover, dietary amino acid require-

ments are altered during periods of inflammation and stress [26]. In particular, maternal sup-

plementation with methionine during the last trimester of gestation can enhance the innate

immune response of calves [27]. We hypothesized that, during an immunological challenge,

we would observe differences in gene expression in pathways related to muscle development
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and growth in calves born to heifers that received pre- and post-partum molasses supplemen-

tation. Further, we anticipated that methionine would produce changes in gene expression

due to its role as a methyl donor. Therefore, the specific aim of this study was to gain insight

into individual genes and pathways influenced in the Longissimus dorsi muscle of calves, fol-

lowing an immunological challenge, when their dams were provided pre- and postpartum sup-

plementation with energy and protein, with or without methionine fortification.

Materials and methods

Animals and data collection

This 2-yr study was conducted at the University of Florida, Institute of Food and Agricultural

Sciences, Range Cattle Research and Education Center (RCREC), Ona, Florida (27˚230N and

81˚560W). All animal procedures described herein were approved by the University of Florida

Institute of Animal Care and Use Committee (protocol #201709982). This experiment was

part of a larger study that investigated the effects of pre- and postpartum supplementation

with molasses + urea, with or without methionine hydroxy analog fortification, on the physiol-

ogy and growth performance of beef heifers and their offspring [22]. Briefly, on d 0 of each

year, 36 Brahman × Angus heifers (20 to 22 mo. of age) were stratified by initial body weight

(396 ± 24.1 kg) and body condition score (BCS; 5.67 ± 0.43) and assigned randomly to 1 of 12

bahiagrass (Paspalum notatum) pastures (3 heifers/pasture; 1.2 ha/pasture). Treatments were

assigned randomly to pastures (4 pastures/treatment) and consisted of (i) no supplementation

(NOSUP), (ii) supplementation of protein and energy using sugarcane (Saccharum offici-
narum) molasses + urea (MOL; 7.2 kg of DM/heifer/wk; Westway Feed Products LLC, Clewis-

ton, FL), or (iii) MOL fortified with 105 g/heifer/wk of methionine hydroxy analog

(MOLMET; MFP, Novus International Inc., Romance, AR). Molasses + urea supplements

were formulated for heifers to gain 0.5 BCS during the last 57 ± 5 d of gestation [1, 22]. Methi-

onine hydroxy analog was offered at the greatest recommended amount by the company for

growing beef heifers (15 g/d). Clements et al. reported an increase in plasma methionine pre-

cursors in multiparous cows when offered methionine hydroxy analog at a rate of 10 g/d [21].

Moreover, supplementing 15 g/d of DL -methionine during the last 58 ± 1.02 d of gestation suc-

cessfully increased plasma methionine concentrations in beef heifers [11]. Therefore, treat-

ment supplementation was initiated on d 0 (57 ± 5 d prepartum) and continued until all

heifers within each pasture had calved (17 ± 5 d postpartum).

Calves were early-weaned on d 147 of each year (89 ± 5 d of age) and were immediately

transferred to a dry-lot pen as a single group. Calves remained in the dry-lot pen until d 154 to

allow calves to adjust to a concentrate diet (Purina1 Precon1 Complete; Land O’Lakes Pur-

ina Feed LLC, Gray Summit, MO) and overcome the stress of weaning. On d 154, 24 calves/yr

(4 heifer and 4 steer calves/treatment/yr) were selected randomly and transferred to individual

concrete, covered pens where they remained until the end of the study on d 201. From d 154

to 201, calves were limit-fed a high-concentrate diet [27.2% crude protein (CP) and 75.0%

total digestible nutrients (TDN) on a dry-matter (DM) basis] starting at 2% of shrunk BW and

increasing to 3.5% of shrunk BW with concentrate increasing in increments of 0.5% or less.

Additionally, calves were offered 1 kg/d of long-stem stargrass (Cynodon nlemfuensis) hay

(7.3% CP and 53.5% TDN on a DM basis) and a complete salt-based mineral supplement (Cat-

tle Select Essentials Range, Lakeland Animal Nutrition, Lakeland, FL). On d 160, calves were

vaccinated against infectious bovine rhinotracheitis, bovine viral diarrhea virus type 1

(BVDV-1) and 2, parainfluenza-3 virus (PI-3), bovine respiratory syncytial virus, and Man-
nheimia haemolytica (2 mL subcutaneous; Bovi Shield Gold One Shot; Zoetis, Parsippany, NJ),

as well as clostridium (2 mL subcutaneous; Ultrabac 7, Zoetis) and administered an oral
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anthelmintic (5 mg/kg of BW; Safe-guard, Merck Animal Health, Summit, NJ) to protect

against internal parasites. On d 188, calves were administered a booster vaccination of Bovi

Shield Gold One Shot (2 mL subcutaneous; Zoetis) and Ultrabac 7 (2 mL subcutaneous; Zoe-

tis). This vaccination protocol was utilized to stimulate an immune response [28–30]. Addi-

tional details on management, diets and the complete nutrient analysis have been previously

reported [22].

On d 154 and 201 of yr 1 and 2, Longissimus dorsi muscle samples were collected from 12

randomly selected calves (4 calves/treatment). Muscle biopsies were collected on both heifers

(n = 6; 2 heifers/treatment) and steers (n = 6; 2 steers/treatment) in year 1 and only steers in

year 2, respectively. The same 12 calves were biopsied at both timepoints. Muscle biopsies

were conducted by a single, trained individual. Approximately 50 mg of muscle samples were

collected from the Longissimus dorsi muscle located above the 11th and 12th rib using a Tru-

Cut biopsy needle (14-gauge × 15 cm; CareFusion; Becton Dickinson, Franklin Lakes, NJ).

Muscle biopsies were always conducted on the right side of the calf following a 12-h period of

food and water withdrawal. Immediately after sample collection, muscle samples were con-

tained in aluminum foil and snap-frozen with liquid nitrogen. Muscle samples were stored at

-80˚C until RNA extraction.

RNA extraction, library preparation and sequencing

Muscle tissue was homogenized in 400 μl of TRIzol™ Reagent (Invitrogen, Carlsbad, CA) with

3.0 mm zirconium beads (#D1032-30; Thomas Scientific, Swedesboro, NJ) using a high-

throughput bead tissue homogenizer (Precellys 24; Bertin Technologies SAS, Montigny-le-

Bretonneux, France). Tissues were homogenized for 10 s at 5000 rpm, set on ice for 30 s, and

then homogenized again for 10 s at 5000 rpm. Following muscle tissue homogenization, 100 μl

of chloroform was added to the sample and centrifuged at 12,000 × g for 15 min at 4˚C. The

aqueous layer was isolated and combined with 70% ethanol at a 1:1 ratio before RNA was

extracted and purified using the RNeasy Mini Kit (catalog #74104; Qiagen, Valencia, CA). The

RNA concentration and quality were determined using the Agilent 2100 bioanalyzer (Agilent

Technologies, Santa Clara, CA). Following RNA quantification, 3 RNA samples (n = 1 and 2

for NOSUPP and MOL, respectively) were not included in subsequent library preparation due

to low concentrations of RNA (RNA concentration < 0.2 μg). The remaining 45 samples used

for library construction had an RNA integrity number of 6.1 or greater. Library construction

was conducted using the commercial kit NEBNext Ultra II RNA Library Prep by Illumina

(#E7775; New England BioLabs, Ipswich, MA). Individual library concentrations were initially

assessed using the Qubit 2.0 (ThermoFisher, Invitrogen, Grand Island, NY), sized using the

Agilent 2100 bioanalyzer (Agilent Technologies), and quantified with qPCR. After passing

quality control, 45 individual barcoded libraries were pooled at equal molar concentrations.

Lastly, sequencing was performed using the Illumina NovaSeq 6000 platform (San Diego, CA)

and produced paired-end 150 base-pair reads. Library construction and sequencing was per-

formed by Novogene Inc. (Sacramento, CA).

RNA-seq analysis: Quality control, read mapping, and gene expression

estimation

Quality of the reads was evaluated before and after trimming using FastQC (version 0.11.7,

Babraham Bioinformatics, UK). Trimming was performed using Trim Galore (version 0.4.4,

Babraham Bioinformatics, UK) with the following parameters:—paired,—quality 20,—length
50,—clip_R1 15,—clip_R2 15,—three_prime_clip_R1 5, and—three_prime_clip_R2 5. After

processing, reads were mapped to the latest bovine reference genome (ARS-UCD1.2) using
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Hisat2 (v2.1.0) [31]. Finally, the number of reads that mapped to each annotated gene in the

bovine annotation file (GTF file) was obtained using the python script htseq-count (v0.6.1p1)

using the option intersection-nonempty [32]. One sample was removed due to low quality

reads. Therefore, 44 samples (n = 14, 14, and 16 for NOSUP, MOL, and MOLMET, respec-

tively) were used for downstream analysis of differentially expressed genes and gene-set

enrichment analysis.

RNA-seq analysis: Differential expression analysis

Genes with counts per million� 1 were removed from the raw expression data and not

included in the statistical analysis. Gene counts were normalized across biological replicates

using the method trimmed mean of M-values implemented in the R package edgeR [33]. The

expression of each gene (n = 13,010) was evaluated using the following generalized linear

mixed model:

logðgeÞ ¼ blockþ trt þ timeþ trt � timeþ calf ðtrtÞ þ e

where ge represents the normalized gene expression of the gene under consideration, block
represents the year of trial (2 levels), trt represents the treatment effect (3 levels, NOSUP,

MOL, and MOLMET), time represents the time effect (2 levels, d 154 and d 201), trt×time rep-

resents the interaction effect treatment-by-time, and calf(trt) represents the random effect of

the calf nested within treatment. Two orthogonal contrasts were evaluated: (1) the effect of

supplementation (MOL + MOLMET vs NOSUP) and (2) the effect of methionine (MOLMET

vs MOL). Kenward-Roger method was used to calculate the approximate denominator degrees

of freedom for the F tests. The effect calf nested within treatment was used as the error term

for testing the effects of treatment. Finally, P-values were adjusted for multiple testing using

the false discovery rate (FDR) method [34]. A heatmap [35] was generated to display the dif-

ference (FDR� 0.05 and a log2 fold change (log2FC)� |1|) in gene expression on d 201 vs. d

154.

Gene-set enrichment analysis

The enrichment of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathways with differently expressed genes (DEG) were analyzed using Fish-

er’s exact test. Genes were assigned to GO terms using the function getBM from the R package

biomaRt (v 2.36.1) and KEGG terms were assigned using the R package EnrichKit. The Fish-

er’s exact test, a test of proportions based on the cumulative hypergeometric distribution and

commonly used to evaluate 2 × 2 contingency tables, was implemented using the function

fisher.test in the R software. Differentially expressed genes for enrichment analysis were desig-

nated at P< 0.05 for the effect of maternal methionine fortification vs. no methionine fortifi-

cation, P< 0.025 for the effect of maternal supplementation vs. no supplementation, and

P< 0.0001 for the effect of time. Different thresholds were used to capture more genes for

each independent gene set analysis. Functional processes were considered significant when

P� 0.05. Given that terms are not independent, a classical multiple test approach would be

overly conservative, and it was not performed.

Results

Mapping summary

Forty-four RNA samples were successfully analyzed from the Longissimus dorsi of early

weaned Bos indicus-influenced calves to determine the effect of maternal supplementation
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with molasses, with or without methionine fortification, during the last 57 ± 5 d of gestation

until 17 ± 5 d postpartum. RNA-sequencing generated approximately 28.9 million paired-end

reads per sample with 93% of the total reads successfully mapped to the bovine genome. From

those aligned, approximately 91% were mapped to unique regions of the bovine genome. A

mapping summary is present in S1 Table. Sequencing data can be accessed through GEO with

accession number GSE168091.

Differential expression in longissimus dorsi muscle

A total of 13,010 genes were evaluated for differential expression in the Longissimus dorsi mus-

cle of calves for the effect of maternal supplementation with molasses, maternal supplementa-

tion of methionine, time of muscle sample collection, and the resulting interaction. No major

genes (FDR� 0.25) were identified for the treatment × time interaction; therefore, the main

effects will be discussed herein. A full list of DEG for maternal supplementation with protein

and energy, maternal supplementation of methionine, and time can be found in S2 Table.

Additionally, all significant enrichment GO terms can be found in S3 Table along with the up-

and downregulated genes associated with each functional process.

Effects of maternal protein and energy supplementation. Pre- and postpartum supple-

mentation of protein and energy did not result in any major DEG (FDR� 0.20) compared to

calves born to NOSUP heifers. Consequently, individual genes were investigated at a less strin-

gent threshold to better understand the biological impact of maternal supplementation of pro-

tein and energy on muscle transcriptome. Utilizing a less stringent approach (P� 0.01), 118

genes were differentially expressed in the muscle of calves as a result of maternal supplementa-

tion of protein and energy (S2 Table). Interestingly, all 118 genes identified were downregu-

lated in calves born to heifers that received pre- and postpartum supplementation of protein

and energy compared to calves born to NOSUP heifers.

Gene enrichment analysis using DEG (P� 0.025; 394 genes) for maternal supplementation

of protein and energy identified 10 significant KEGG pathways (Table 1) and 183 significant

Table 1. Significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the Longissimus dorsi muscle of early-weaned Bos indicus-influ-

enced calves for the effect of maternal supplementation of protein and energy1.

Differentially expressed genes2

KEGG term No.

DEG

Upregulated Downregulated P-value

Hippo signaling pathway 12 - BMPR1A, FZD7, BMP2, CCN2, SMAD4, APC, TGFBR2, STK3, FRMD6, TEAD1,

BIRC2, SMAD2
<0.001

ABC transporters 5 - ABCD3, ABCC9, ABCA1, ABCA7, LOC51533 0.001

TGF-beta signaling pathway 8 - BMPR1A, DCN, NEO1, BMP2, SMAD4, ACVR2A, TGFBR2, SMAD2 0.001

Signaling pathways regulating pluripotency of

stem cells

9 - BMPR1A, FZD7, JAK1, PCGF5, SMAD4, ACVR2A, APC, MYF5, SMAD2 0.003

Ether lipid metabolism 4 - CHPT1, PLPP1, ENPP2, PAFAH1B1 0.006

Th17 cell differentiation 7 - NFATC1, JAK1, FOS, SMAD4, IL1RAP, TGFBR2, SMAD2 0.013

Estrogen signaling pathway 7 - CALM2, FOS, CREB1, SOS2, ESR1, NCOA1, GNAS 0.016

Glucagon signaling pathway 7 - PFKFB1, CALM2, PHKB, CREB1, PPARGC1A, PRKAA2, GNAS 0.018

Osteoclast differentiation 7 - NFATC1, JAK1, FOS, CREB1, ITGB3, TAB2, TGFBR2 0.021

Hippo signaling pathway—multiple species 3 - STK3, FRMD6, TEAD1 0.036

1Treatments consisted of: no supplementation (NOSUP); supplementation of protein and energy using sugarcane molasses + urea (MOL; 7.2 kg of DM/heifer/wk;

Westway Feed Products LLC, Clewiston, FL); or MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET; MFP, Novus International Inc.,

Romance, AR). Treatments were initiated on d 0 (57 ± 5 d prepartum) and continued until all heifers within a pasture had calved (17 ± 5 d postpartum).
2Threshold for differentially expressed genes was set at P � 0.025

https://doi.org/10.1371/journal.pone.0253810.t001
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GO terms (Fig 1). All significantly enriched KEGG pathways and GO terms primarily con-

sisted of genes that were downregulated with protein and energy supplementation. Maternal

supplementation of protein and energy influenced various intracellular signaling pathways as

indicated by enriched KEGG pathways (e.g., Hippo signaling pathway, TGF-β signaling path-
way, signaling pathways regulating pluripotency of stems cells, and glucagon signaling pathways)
and GO terms (e.g., negative regulation of Wnt signaling pathway and BMP signaling pathway).

Additionally, several GO terms associated with epigenetics were enriched with maternal sup-

plementation of protein and energy such as histone methyltransferase activity (H3-K36 spe-
cific), methylated histone binding and chromatin binding. Gene enrichment analysis also

generated GO terms associated with growth and development (e.g., post-embryonic develop-
ment, developmental growth, and anatomical structure development) and more specifically with

muscle development including muscle organ development, skeletal muscle cell differentiation,

and skeletal muscle tissue development.
Effects of maternal methionine supplementation. Pre- and postpartum diet fortification

with methionine did not lead to any major DEG (FDR� 0.20) in the muscle tissue. Therefore,

individual genes were considered at a less stringent threshold (P� 0.01) in order to explore

the biological impacts of methionine supplementation on the muscle transcriptome of calves.

Fig 1. Significantly enriched gene ontology (GO) terms in the Longissimus dorsi of early-weaned Bos indicus-influenced calves for the effect of

maternal supplementation with protein and energy. The number of differentially expressed genes (P� 0.025) is reported along the bottom x-axis and is

depicted by the bars while the -log10P-value is reported along the top x-axis and is indicated by the dots. Blue bars indicate downregulated genes while red

bars indicate upregulated genes. The number in parentheses is the total number of genes associated with each functional term.

https://doi.org/10.1371/journal.pone.0253810.g001
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Under this approach, 26 genes were differentially expressed in the muscle of calves born to

dams on MOLMET vs. MOL treatments. Of the 26 genes, 15 genes were downregulated, and

11 genes were upregulated in MOLMET calves vs. MOL calves (S2 Table).

Differentially expressed genes (P� 0.05; 218 genes) were used to evaluate functional pro-

cesses enriched in calves on the MOLMET vs. MOL treatment. Enrichment analysis revealed 8

significant KEGG pathways (Table 2) and 59 significant GO terms (Fig 2). Methionine supple-

mentation influenced KEGG pathways associated with amino acid synthesis and metabolism

(e.g., biosynthesis of amino acids, glycine, serine, and threonine metabolism, and cysteine and
methionine metabolism) and the one-carbon cycle (e.g., one-carbon pool by folate). Significant

GO terms were associated with protein synthesis (e.g., regulation of translation initiation and

tRNA aminoacylation for protein translation) as well as transport across the cell membrane

(e.g., amino acid transport, transmembrane transporter activity and chloride transmembrane
transporter). Interestingly, a greater percentage of DEG involved in these functional processes

were downregulated with methionine fortification.

Effects of time (pre- vs. post-vaccination). Muscle transcriptome was highly impacted

by the effect of time (pre- vs. post-vaccination) in Bos indicus-influenced calves. A total of

2,396 genes were differentially expressed (FDR� 0.05) on d 201 (post-vaccination) compared

to d 154 (pre-vaccination) as represented by the volcano plot in Fig 3. Out of the total DEG

post-vaccination, approximately 1,336 genes were downregulated while 1,060 genes were upre-

gulated. The heatmap depicted in Fig 4 represents the difference in gene expression from all

calves sampled on d 154 and 201 for genes that had an FDR� 0.05 and a log2FC� |1|. When

employing a log2FC� |1| restriction, 270 genes are reported as differentially expressed on d

201 compared to d 154. Of the 270 genes, 61 were downregulated and 209 were upregulated

(S2 Table). Several genes involved in both the innate and adaptive immune system were differ-

entially expressed after vaccination. Downregulated genes involved in immune response

included IFI6, IFITM1, MST1, IGHG1, and CCRL2, whereas genes NFKB2, CCL2, IGDCC4
and CD83 were upregulated. Additionally, two unclassified genes involved in the complement

cascade, LOC107131209 and LOC781663, were downregulated after vaccination. Genes encod-

ing for transcription factors were upregulated including, members of the FOS family (e.g.,

FOS, FOSB, and FOSL1), JUNB, IRF7, and EGR1. Genes involved in the regulation of cell cycle

division (e.g., CCNA2, CCND1, CCND2, and CDC20) as well as formation and organization of

Table 2. Significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the Longissimus dorsi muscle of early-weaned Bos indicus-influ-

enced calves for the effect of maternal supplementation with methionine hydroxy analog1.

Differentially expressed genes2

KEGG term No. DEG Upregulated Downregulated P-value

Biosynthesis of amino acids 8 - PYCR1, CBS, ASNS, PSPH, ALDOC, PSAT1, PHGDH, PRPS2 <0.001

Glycine, serine and threonine metabolism 4 - CBS, PSPH, PSAT1, PHGDH 0.001

One carbon pool by folate 3 - MTHFD2, ALDH1L2, MTHFD1L 0.003

Cysteine and methionine metabolism 4 - CBS, PSAT1, MTAP, PHGDH 0.005

Aminoacyl-tRNA biosynthesis 4 - CARS1, SARS1, TARS1, GARS1 0.007

Carbon metabolism 5 - PSPH, ALDOC, PSAT1, PHGDH, PRPS2 0.026

Steroid biosynthesis 2 - SOAT1, DHCR7 0.031

Protein digestion and absorption 3 DPP4 ATP1A1, SLC3A2 0.046

1Treatments consisted of: no supplementation (NOSUP); supplementation of protein and energy using sugarcane molasses + urea (MOL; 7.2 kg of DM/heifer/wk;

Westway Feed Products LLC, Clewiston, FL); or MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET; MFP, Novus International Inc.,

Romance, AR). Treatments were initiated on d 0 (57 ± 5 d prepartum) and continued until all heifers within a pasture had calved (17 ± 5 d postpartum).
2Threshold for differentially expressed genes was set at P � 0.05

https://doi.org/10.1371/journal.pone.0253810.t002
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the extracellular matrix (e.g., COL1A2, COL8A1, FBN3, FN1, and NPNT) were upregulated

after vaccination. Further, genes associated with energy metabolism were upregulated on d

201 such as PFKFB3, INSIG1, and GCGR.

Differentially expressed genes (P� 0.0001; 452 genes) based on the main effect of time

(pre- and post- vaccination) generated 7 KEGG pathways (Table 3) and 180 GO terms (Fig 5).

Ribosome was the most significant GO term and KEGG pathway identified by gene-set enrich-

ment analysis and all genes associated with this pathway were downregulated after vaccination.

Further, there was an overrepresentation of genes involved in pathways related to cell cycle. A

greater percentage of genes associated with cell cycle pathways were upregulated on d 201

compared to d 154. There was a significant overrepresentation of genes associated with colla-

gen formation and the extracellular matrix on d 201. Lastly, both GO and KEGG enrichment

analysis reported functional processes associated with energy metabolism, including KEGG

pathway fatty acid degradation and GO term fatty acid beta-oxidation using acyl-CoA
dehydrogenase.

Discussion

Effects of maternal protein and energy supplementation

Overall, we acknowledge that there are limitations with the interpretation of our results con-

sidering that a less restrictive threshold was used to investigate the biological impact of mater-

nal supplementation with energy and protein and maternal supplementation with methionine.

However, the use of mixed models with orthogonal contrasts to investigate gene expression

Fig 2. Significantly enriched gene ontology (GO) terms in the Longissimus dorsi of early-weaned Bos indicus-
influenced calves for the effect of maternal supplementation with methionine hydroxy analog. The number of

differentially expressed genes (P� 0.05) is reported along the bottom x-axis and is depicted by the bars while the -log10P-

value is reported along the top x-axis and is indicated by the dots. Blue bars indicate downregulated genes while red bars

indicate upregulated genes. The number in parentheses is the total number of genes associated with each functional term.

https://doi.org/10.1371/journal.pone.0253810.g002
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data is relatively novel. Protein and energy supplementation of heifers coincided with the last

trimester of gestation when the fetus is growing at an accelerated rate [36]. Our research group

has shown that providing additional protein and energy, in the form of a molasses + urea sup-

plement, during the last trimester of gestation modulated the postnatal growth and physiology

of beef calves born to primiparous and multiparous cows [22, 23]. Our results reveal genes in

pathways relating to muscle differentiation, intracellular signaling, and epigenetic biology

were modified with pre- and postpartum protein and energy supplementation in the Longissi-
mus dorsi muscle of beef calves.

Pre- and postpartum supplementation of protein and energy led to an overrepresentation

of downregulated genes in association with muscle development, such as skeletal muscle cell
differentiation, skeletal muscle cell development, muscle organ development and striated muscle
cell differentiation. Further observation into the functional processes associated with muscle

development revealed that MYF5, a myogenic regulatory factor (MRF), was downregulated in

calves born to heifers supplemented with molasses compared to calves born to heifers on the

NOSUP treatment. Gene MYF5, along with other MRF, regulate the differentiation and prolif-

eration of muscle satellite cells [37, 38]. In addition, several genes (e.g., EGR1, SIX1, SIX4 and

NR4A1) encoding for transcription factors involved in the regulation of MRF expression [39–

43], were also downregulated with maternal supplementation of protein and energy. In sup-

port, Paradis et al. reported greater expression of genes MYOG and MYOD1 in the Longissimus
dorsi muscle of fetuses when cows were fed a low vs. high energy diet (85% vs. 140% of total

metabolizable energy requirements, respectively) from mid- to late gestation, although no dif-

ferences in phenotype were observed [8]. Further, expression of MYOG was increased in the

longissimus muscle of fetuses when cows were offered 72% vs. 87% of their total energy

Fig 3. Volcano plot representing the differently expressed genes due to the main effect of time (pre- vs. post-

vaccination). A total of 2,396 genes were differently expressed after vaccination (d 201 vs. d 154). The cutoff for DEG

was considered at FDR� 0.05, as indicated by the dash line. The y-axis is the -log10FDR while the x-axis represents the

log2FC. Each dot represents a gene. Blue dots indicate downregulated genes, red dots indicate upregulated genes, and

black dots indicate non-differentially expressed genes on d 201.

https://doi.org/10.1371/journal.pone.0253810.g003
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requirements from d 85 to 180 of gestation [7]. Collectively, these studies suggest that improv-

ing the nutrient status of the dam during mid- to late gestation could negatively impact genes

related to muscle development. However, more work is needed to evaluate how the duration

and extent of maternal nutrient restriction or excess influences genes related to muscle

development.

In the current study, calves born to heifers offered molasses supplementation had greater

postweaning body weight gain compared to calves born to heifers on the NOSUP treatment

[22]. Hence, it was unexpected to observe that genes associated with muscle differentiation

and development were downregulated in the Longissimus dorsi muscle of calves born to heifers

supplemented molasses vs. calves born to heifers on the NOSUP treatment. Longissimus mus-

cle area and muscle fiber characteristics were not measured during this study; therefore, it is

unknown how changes in gene expression influenced the actual longissimus muscle tissue

mass. However, previous research reported that calves born to cows that received a protein

supplement during the last trimester of gestation had greater weaning and carcass weights, but

there was no difference in the longissimus muscle area at time of harvest [2, 4], suggesting that

the greater body weight gain of calves born from supplemented cows may be explained by

other mechanisms besides differences in muscle tissue growth. Further, genes related to

Fig 4. Heatmap of differently expressed genes with a fold change restriction [FDR� 0.05 and a log2 fold change

(log2FC)� |1|] in the longissimus muscle of calves on d 154 and d 201. Each row represents a differentially expressed gene,

and each column is an individual calf. Columns under the green bar represent samples collected on d 154 and columns under

the yellow bar represent samples collected on d 201. Red indicates upregulated genes and blue represents downregulated

genes. Rows and columns are clustered using correlation distance and average linkage.

https://doi.org/10.1371/journal.pone.0253810.g004
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myogenesis can respond differently to maternal nutrition based on muscle tissue type [8]. It is

plausible that different muscle tissues responded differently to maternal supplementation of

energy and protein, which could have led to an increase in calf post-weaning body weight.

Muscle, adipose, and connective tissue are all derived from mesenchymal stem cells and are

considered competitive processes regulated by various signaling pathways [44, 45]. Pathway

enrichment analysis revealed an overrepresentation of downregulated DEG involved in Wnt

signaling, transforming growth factor (TGF)–β signaling and bone morphogenic protein

(BMP) signaling in calves born to heifers that received energy and protein supplementation

vs. NOSUP calves. The expression of each pathway has differing effects on muscle growth and

development. In general, activation of the Wnt/β-catenin pathway enhances myogenesis and

promotes the expression of MRF while inhibition of the Wnt/β-catenin pathway increases

expression of adipogenic factors [46, 47]. On the other hand, activation of TGF-β signaling

suppresses muscle growth and promotes the proliferation of fibroblasts [48]. The BMP are a

subfamily of the TGF–β superfamily; however, BMP signaling promotes muscle fiber hypertro-

phy [49]. Previous work in both the bovine and ovine model has shown that the Wnt/β-catenin

and TGF- β signaling pathways are susceptible to changes when modifications are made to the

maternal diet during gestation. In fact, maternal overnutrition during gestation downregulates

Wnt/β-catenin signaling and increases the expression of genes associated with adipogenesis

and fibrogenesis in the fetus [50, 51]. Whereas, maternal obesity in pregnant ewes activated

the TGF-β pathway and increased collagen formation in the semitendinosus muscle of fetuses

[52]. In the present study, heifers were not considered obese prior to calving, however, this

study suggests that even subtle increases in the nutrient status of heifers during gestation can

have long-lasting effects on signaling pathways that influence muscle development. Moreover,

all DEG related to WNT, TGF-β, and BMP signaling were downregulated, potentially indicat-

ing a downregulation in myogenesis and an increase in adipocyte differentiation. However,

muscle phenotype (i.e., muscle mass and adipocyte population) was not investigated in the

Table 3. Significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the Longissimus dorsi muscle of early-weaned Bos indicus-influ-

enced calves for the effect of time (pre- vs. post- vaccination)1.

Differentially expressed genes2

KEGG term No.

DEG

Upregulated Downregulated P-value

Ribosome 30 - MRPL23, RPS12, RPL21, MRPL10, RPL14, MRPL21, RPS3, RPL10, UBA52, RPS14,

RPS2, RPSA, RPS19, RPS11, RPS8, RPL18, RPS10, RPL18A, RPS5, MRPL28, RPLP0,

RPS20, RPL10A, RPS15, RPS16, RPL28, MRPS15, RPS25, LOC101902561, RPS13

<0.0001

Valine, leucine and

isoleucine degradation

7 - HADH, IVD, MCCC1, ALDH7A1, BCKDHB, MMUT, HSD17B10 0.001

ECM-receptor interaction 7 TNC, THBS1, NPNT, FN1,

COL1A1, COL1A2, SDC4
- 0.010

Neuroactive ligand-

receptor interaction

8 LPAR1, GRIA3, HRH2 GCGR, VIPR1, LPAR6, CHRND, PTH1R 0.016

Complement and

coagulation cascades

5 SERPINE1 LOC107131209, MASP1, FGB, LOC781663 0.019

Nitrogen metabolism 2 CA3 CA14 0.031

Fatty acid degradation 4 - HADH, ALDH7A1, ECI1, GCDH 0.045

1Treatments consisted of: no supplementation (NOSUP); supplementation of protein and energy using sugarcane molasses + urea (MOL; 7.2 kg of DM/heifer/wk;

Westway Feed Products LLC, Clewiston, FL); or MOL fortified with 105 g/heifer/wk of methionine hydroxy analog (MOLMET; MFP, Novus International Inc.,

Romance, AR). Treatments were initiated on d 0 (57 ± 5 d prepartum) and continued until all heifers within a pasture had calved (17 ± 5 d postpartum).
2Threshold for differentially expressed genes was set at P � 0.0001

https://doi.org/10.1371/journal.pone.0253810.t003
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present study and further work is warranted to determine how genes modified in the current

study affected muscle and adipose development.

It has been established that alterations to the mothers’ diet during the last trimester of gesta-

tion can cause alterations in gene expression [9, 53]. In the present study, there was a signifi-

cant downregulation of DEG in the muscle tissue of calves born to heifers that received

molasses compared to calves on the NOSUP treatment. Pathway enrichment analysis revealed

a downregulation of DEG in functional terms related to gene transcription, such as positive
regulation of transcription, DNA- binding transcription factor activity, and RNA polymerase II
proximal promoter sequence-specific DNA binding. One potential mechanism to explain how

maternal environment modulates gene expression is through epigenetic modifications, includ-

ing DNA methylation, histone and chromatin modifications, and regulation of non-coding

RNA [54]. Interestingly, we identified individual genes and pathways closely related to DNA

methylation, chromatin remodeling, and histone methylation that were influenced by molas-

ses supplementation.

Pathway enrichment analysis identified functional terms related to chromatin biology

(chromatin, chromatin binding). Within the chromatin binding pathway there were several

downregulated genes of interest, including: (1) ANDP, which interacts with members of the

chromatin remodeling complex [55], (2) PHF21A, a gene involved in regulating histone meth-

ylation [56], and (3) ASXL2, which facilitates the binding of the Polycomb Repressive Complex

Fig 5. Significantly enriched gene ontology (GO) terms in the Longissimus dorsi muscle of early-weaned Bos indicus-influenced calves for the main effect

of time (pre- vs. post-vaccination). The number of differentially expressed genes (P� 0.0001) is reported along the bottom x-axis and depicted by bars while

the -log10P-value is reported along the top x-axis is indicated by dots. Blue bars indicate downregulated genes while red bars indicate upregulated genes. The

number in parentheses is the total number of genes associated with each functional term.

https://doi.org/10.1371/journal.pone.0253810.g005
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2 to the promoter region and subsequently represses gene expression [57]. Further, histone

methylation (histone methyltransferase activity [H3-K36 specific] and methylated histone bind-
ing) was another process altered in calves born to heifers offered molasses supplementation vs.

NOSUP. In particular, methylation of histone H3K36 plays a role in the activation of gene

body transcription [58]. Genes ASH1L and NSD1 were downregulated within the histone
methyltransferase activity [H3-K36 specific] pathway and encode for methyltransferases specific

for mono- and di-methylation of histone H3K36 [59]. While histone modifications were not

measured in the present study, several changes in genes related to epigenetic biology provide

evidence that maternal nutrition impacts genes involved in histone and chromatin modifica-

tions which can have long-term implications on offspring gene expression.

Further, methylation of DNA is largely dependent on the availability of methyl donors and

is therefore influenced by maternal nutrition. Lan et al. reported differences in methylation in

the fetus of ewes offered different isoenergetic diets during the last trimester of gestation [60].

They found that fetuses from ewes offered alfalfa haylage and dried distillers grains had

increased methylation compared to fetuses from ewes offered corn, which they attributed to a

greater amino acid intake [60]. Generally, when DNA methylation occurs in the promoter

region it leads to the silencing of genes [61], which would explain the significant downregula-

tion of genes observed with molasses supplementation. However, when we further investigate

genes associated with pathways involved in gene transcription, we observed that DNMT3a was

downregulated in calves born to heifers that received molasses supplementation vs. NOSUP

calves. Gene DNMT3a encodes for DNA methyltransferase 3a, which is one enzyme responsi-

ble for de novo DNA methylation [62]. In the present study, DNA methylation was not mea-

sured, thus it is unknown how a reduction in DNMT3a affected methylation in the muscle

tissue of calves.

Effects of methionine fortification of supplements

The most significant pathways enriched in the muscle of calves born to heifers on the MOL-

MET treatment compared to calves born to heifers on the MOL treatment were composed of

genes related to amino acid transport, synthesis, and metabolism. Within the functional term

amino acid transport, two downregulated genes, SLC7A5 and SLC3A2, encode for proteins

that form a transmembrane complex responsible for the delivery of large neutral amino acids

(namely, histidine, methionine, leucine, isoleucine, valine, phenylalanine, tyrosine, trypto-

phan, and glycine). In addition, SLC7A1 was also downregulated in calves on the MOLMET

treatment compared to the calves on the MOL treatment. Gene SLC7A1 encodes for a trans-

membrane protein that mediates the transport of cationic amino acids (arginine, lysine, and

histidine). In general, amino acid transporters facilitate the transport of amino acids, but they

also act as intra- and extracellular amino acid sensors, thus playing an active role in the regula-

tion of amino acid metabolism in the muscle cell [63]. For instance, expression of the SLC7A5

transporter in the skeletal muscle of rats influences the mammalian target of rapamycin

(mTOR) signaling pathway [64], which is critical for the initiation of protein synthesis and

muscle hypertrophy. Thus, the downregulation of genes involved in amino acid transport

could have influenced downstream processes that require amino acids.

Synthesis and metabolism of amino acids were biological processes (e.g., biosynthesis of
amino acids, glycine, serine, and threonine metabolism, cysteine and methionine metabolism,

and glutamine metabolic process) modified in the muscle tissue of calves born to heifers on the

MOLMET treatment compared to calves born to heifers on the MOL treatment. Among these

processes, there were four genes, PSPH, PSAT1, PHGDH, and CBS, that were consistently

downregulated in calves on the MOLMET treatment vs. the MOL treatment. Genes PSPH,
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PSAT1, and PHGDH encode enzymes responsible for the production of the nonessential

amino acid serine from 3-P-glycerate [65]. While CBS encodes for the enzyme, cystathionine

β-synthase, which converts homocysteine, an intermediate in the methionine cycle, and serine

to cystathionine in the first step of the transsulfuration pathway [66]. The downregulation of

CBS in the current study could indicate a reduction in the transsulfuration pathway, which

would suggest an increase in the remethylation of methionine [66]. In contrast, maternal sup-

ply of methionine (offered at 0.09% of the diet DM) during the last trimester of gestation

increased expression of CBS along with metabolites found in the transsulfuration pathway in

the liver of dairy calves [18]. It is possible that breed impacted the differences in gene expres-

sion observed between the two studies. However, discrepancies between the two studies could

also suggest that maternal supplementation with methionine during the last trimester of gesta-

tion affects the metabolism of amino acids differently based on tissue type.

This study revealed several functional terms related to protein synthesis, such as regulation
of translational initiation and tRNA aminoacylation for protein translation. Of further impor-

tance, all DEG corresponding to protein synthesis were downregulated in calves on the MOL-

MET treatment compared to calves on the MOL treatment. Body weight gain is positively

correlated to protein deposition, which is achieved when protein synthesis occurs at a greater

rate than protein degradation [67]. Therefore, a reduction in genes related to protein synthesis

in calves on the MOLMET vs. MOL could have impacted postnatal growth. Utilizing calves

from the current study, our research group reported that post-weaning body weight gain did

not differ between calves born to heifers that received or not methionine supplementation

[22]. In support, maternal supplementation of methionine during the last trimester of gesta-

tion in multiparous beef cows did not affect calf body weight gain [21, 23]. It remains possible

that a reduction in the expression of genes related to protein synthesis in the muscle of MOL-

MET vs. MOL calves could partially explain why maternal supplementation with methionine

did not further enhance postnatal body weight gain. However, additional mechanisms were

likely involved because, as we discussed previously, maternal gestational supplementation of

protein and energy downregulated genes associated with myogenesis, but simultaneously

enhanced calf postnatal growth performance compared to calves born from non-supple-

mented heifers.

The one carbon cycle is regulated through the availability of methyl donors in the diet, such

as methionine. Hence, it was not surprising that calves born to heifers on the MOLMET treat-

ment had an overrepresentation of DEG involved in one-carbon metabolism. Interestingly, all

genes (MTHFD2, ALDH1L2, and MTHFD1L) were downregulated in calves on the MOLMET

treatment and encode for enzymes in the mitochondrial folate pathway [68–70]. The mito-

chondrial folate pathway produces formate, which is used by the cytosolic folate pathway in

the regeneration of 10-formyl tetrahydrofolate [71]. The folate cycle is required for several

metabolic processes in the body including the synthesis of purines and pyrimidines and the

regeneration of methionine. Interestingly, the functional term nucleoside metabolic process was

enriched in calves on the MOLMET vs. MOL treatments and all DEG were downregulated.

Effects of time (pre- vs. post-vaccination)

Genes and pathways connected to energy metabolism were influenced by vaccination. There

was an overrepresentation of downregulated genes related to processes involved in fatty acid

metabolism, such as fatty acid degradation and fatty acid beta-oxidation using acyl-CoA biosyn-
thetic process. Individual genes regulating glucose homeostasis (e.g., PFKFB3 and GCGR) were

also upregulated on d 201. PFKFB3 encodes for a gene that stimulates the synthesis of fruc-

tose-6,2-bisphosphosphate and promotes glycolysis [72]. PFKFB3 has further been identified
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as a target for PPARy, a protein responsible for the initiation of adipocyte differentiation [73].

Additionally, INSIG1, a gene involved in energy metabolism, was upregulated on d 201 vs. d

154. Gene INSIG1 is a target of PPARy and is associated with adipogenesis in the muscle tissue

of early weaned calves [74].

In the present study, there was an upregulation of genes related to the extracellular matrix,

collagen formation, and cell cycle regulation in the muscle of calves after vaccination. Guo

et al. identified gene-sets involved in the cell cycle process and extracellular matrix to be co-

expressed in muscle tissue and positively correlated to average daily gain in Brahman steers

[75]. Using known cell marker types, authors proposed that the functional processes of cell

cycle and extracellular matrix were derived predominately from fibroblasts during postnatal

muscle development [75]. Collectively our results suggest that there was an increase in genes

related to adipogenesis and fibrogenesis in the longissimus dorsi muscle after vaccination. It is

important to note that muscle biopsies were collected from the same area of the longissimus
dorsi on d 154 and 201; thus, the upregulation of genes related to fibrogenesis could be partially

due to changes in the muscle tissue following the first muscle biopsy.

Ribosome structure and translation were among the top functional processes enriched on d

201 vs. d 154. Within those pathways, most DEG were downregulated, possibly indicating a

reduction in protein synthesis in muscle tissue on d 201. Calves did exhibit positive body

weight gain from d 154 to d 201, however, average daily gain of calves observed in the present

study was reduced compared to earlier studies conducted by our research group where calves

were early-weaned and offered a high-concentrate diet [76, 77]. Unlike the present study,

calves from earlier studies were not subjected to a vaccination challenge. Vaccination stimu-

lates an acute phase protein response which is a component of the innate immune system [78].

Thus, it is plausible that the reduction in genes related to protein synthesis in the muscle tissue

of calves on d 201 is due to the repartitioning of nutrients towards the immune system and

away from growth [25]. This is further supported by the fact that time of sample collection had

a significant influence on the expression of individual genes related to both the innate and

adaptive immune response. Further, there as an overrepresentation on d 201 of upregulated

genes related to the NF-κB signaling pathway, which is also a component of the inflammatory

response.

Conclusions

In conclusion, this study revealed that maternal pre- and postpartum supplementation of

energy and protein, with or without methionine fortification, altered the muscle transcriptome

of Bos indicus-influenced beef calves. Maternal supplementation of energy and protein

impacted genes involved in biological processes related to muscle development, intracellular

signaling pathways, and epigenetic modifications. Maternal supplementation with methionine

downregulated gene-sets involved in the transport, synthesis, and metabolism of amino acids

as well as the one-carbon cycle. Vaccination had a significant impact on the longissimus mus-

cle transcriptome of beef calves and influenced genes associated with ribosome structure,

translation, extracellular matrix, collagen formation, and immune function. This study

revealed genes and pathways in the muscle tissue of offspring influenced by maternal nutrition

and vaccination. Further research is needed to understand how these modifications might

translate into phenotypic changes in the offspring.
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