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Abstract

N-terminal tails of H2A, H2B, H3 and H4 histone families are subjected to posttranslational modifications that take part in
transcriptional regulation mechanisms, such as transcription factor binding and gene expression. Regulation mechanisms
under control of histone modification are important but remain largely unclear, despite of emerging datasets for
comprehensive analysis of histone modification. In this paper, we focus on what we call genetic harmonious units (GHUs),
which are co-occurring patterns among transcription factor binding, gene expression and histone modification. We present
the first genome-wide approach that captures GHUs by combining ChIP-chip with microarray datasets from Saccharomyces
cerevisiae. Our approach employs noise-robust soft clustering to select patterns which share the same preferences in
transcription factor-binding, histone modification and gene expression, which are all currently implied to be closely
correlated. The detected patterns are a well-studied acetylation of lysine 16 of H4 in glucose depletion as well as co-
acetylation of five lysine residues of H3 with H4 Lys12 and H2A Lys7 responsible for ribosome biogenesis. Furthermore, our
method further suggested the recognition of acetylated H4 Lys16 being crucial to histone acetyltransferase ESA1, whose
essential role is still under controversy, from a microarray dataset on ESA1 and its bypass suppressor mutants. These results
demonstrate that our approach allows us to provide clearer principles behind gene regulation mechanisms under histone
modifications and detect GHUs further by applying to other microarray and ChIP-chip datasets. The source code of our
method, which was implemented in MATLAB (http://www.mathworks.com/), is available from the supporting page for this
paper: http://www.bic.kyoto-u.ac.jp/pathway/natsume/hm_detector.htm.
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Introduction

It is widely recognized that two sets of H2A, H2B, H3 and H4

histone families assemble to form an octamer, around which DNA

wraps, turning in the condensation of DNA. Another important

aspect of histone families is their N-terminal tails, which are

subjected to posttranslational modifications such as methylation,

acetylation, ubiquitination, ADP-ribosylation, and sumolation [1].

It is now recognized that these histone modifications are deeply

involved in transcription regulation. For example, acetylation of

lysine residues, which is one of the most well-investigated histone

modifications, neutralizes the negative charge of DNA which results

in the loosening of the wrapped DNA from a condensed, silenced

state to an open active form [1]. Histone modifications are drawing

attention also because it is closely related with disorders such as

inflammation [2], diabetes [3], myelodysplasia [4], and cancer [5].

The efforts to develop new therapeutics using information on

histone modifications have been rapidly growing [6].

Recent studies on histone modifications led to concrete and

systematic understanding of its transcriptional regulation. Unique

mechanisms of gene regulation by modified amino acid residues in

histone are considered to be patterns, resulting in histone code

hypothesis [7,8]. Although this concept is under controversy, the

importance of a comprehensive understanding of the histone

modification is indicated by findings on the complicated molecular

mechanisms under histone modifications. One example is a

discovery that the preacetylated lysine 9 of histone H3 (H3 Lys9)

works as a starting point to activate transcriptional elongation of

FOSL1 by triggering phosphorylation of H3 Ser10 by PIM1

kinase, acetylation of H4 Lys16 by histone acetyltransferase MOF,

and association with BRD4 and CDK9 [9]. The motivation of this

work is to find this type of relationships from large-scale datasets as

patterns by detecting gene groups shared by expression,

transcription factors and histone modification. We call these

patterns genetic harmonious units (GHUs).

For detecting GHUs, we need to consider many possible

combinations between residues to be modified and TFs. For

example, the number of possible combinations for N residues

which can be modified reaches 2N, and this large number of

combinations makes detecting a histone modification pattern a
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difficult problem. This means that time- and cost-consuming

traditional experimental methods of investigation are not neces-

sarily best suited for finding histone modification patterns. Instead,

powerful, high-throughput tools such as ChIP-chip (Chromatin

Immunoprecipitation on chip) [10] perform more suitably to

investigate histone modifications on a genome-wide basis.

Nevertheless, regulation mechanisms in the GHUs remain largely

unclear, despite that datasets for comprehensive analysis of histone

modifications have already been accumulated in public reposito-

ries. Yuan et al. assessed the global regulatory role of histone

acetylation by using publicly available ChIP-chip datasets and a

simple regression method [11]. While they showed that multiple

histone acetylation sites such as H3 Lys9 have cumulative

regulatory effects on transcription rates, they concluded that

‘‘decoding the combinatorial complexity of histone modification

requires not only new data but also new methods to analyze the

data’’. However, no methods have been presented since then, and

we need to develop a methodology to find combinatorial histone

modification patterns using large-scale biological datasets.

Informative datasets for the methodology can be suggested by

[12], which checks whether interspecies differences in transcrip-

tional regulation are directed by genetic sequence or nuclear

environment by using Tc1 cells (hepatocytes derived from a mouse

model of Down syndrome that contains human chromosome 21 in

addition to the complete mouse genome). In terms of 1) TF-

binding to DNA, 2) histone modification, and 3) gene expression,

they found that patterns on human chromosome 21 in Tc1 cells

matched those observed in human hepatocytes despite the nuclear

environment of mouse hepatocytes, which indicates that genetic

sequences are a major determinant factor of these three biological

events [12]. This means that these events should be closely

correlated with each other under given genetic sequence, which

leads to the idea that GHUs could be obtained by extracting genes

which share the same preferences in TF-binding, histone

modification and gene expression. In fact, histone acetylation

controls chromosome structure, which affects accessibility for TFs

to DNA, and TFs controls transcription initiation, finally target

genes being expressed. This also supports the idea that both

certain types of histone acetylation and TFs regulate expression of

target genes, which share the same biological function.

In light of the above, we develop a genome-wide and integrative

approach for finding GHUs using datasets regarding TF-binding,

histone modification and gene expression. Our approach employs

ChIP-chip and microarray datasets with noise-robust soft

clustering to systematically capture genes sharing patterns of TF-

binding, histone modification and gene expression to detect

GHUs. One clear advantage of our genome-wide, integrative,

computational approach is that we can use a large number of data

which are already experimented and accumulated.

Methods

Datasets
We used three different ChIP-chip datasets (matrices), all from

yeast Saccharomyces cerevisiae: 1) ChIP-chip data for transcription

factor (TR) with binding t-CDFs (Student’ t cumulative distribu-

tion function) for 203 TFs as columns and 6,229 genes as rows

[13], 2) ChIP-chip data for acetylated histones (AH) with binding

intensities for 11 acetylated histones (H4 Lys8, H4 Lys12, H4

Lys16, H3 Lys9, H3 Lys14, H3 Lys18, H3 Lys23, H3 Lys27, H2A

Lys7, H2B Lys11 and H2B Lys16) as columns and 2,453 genes as

rows [14], and 3) ChIP-chip data for histones (HS) with binding

intensities between two histones (four kinds of antibodies to H3

and three kinds of antibodies to H2B) as columns and 4,229 genes

as rows [15]. In addition, we used two different gene expression

datasets from NCBI’ GEO (Gene Expression Omnibus) [16]: 1)

Glucose depletion, GSE9217 [17] (GP: 12 experimental condi-

tions for 5,716 genes) for evaluation of our method and 2) Histone

acetyltransferase ESA1 mutant, GSE9840 (ES: eight conditions for

5,716 genes) for exploring new GHUs. We note that these two

datasets can be retrieved from GEO under the condition that yeast

cells were grown in 2% glucose YPD medium which is the same as

the ChIP-chip datasets for TF-HM. All data are compliant with

Minimal Information About Microarray Experiments (MIAME).

Data normalization
To evaluate the acetylation strength over different histones, we

normalized the intensity of each gene in AH by using the

nucleosome occupancy in HS [15]. This manner was already used

in [18], where the correlation between histone modification and

TFs was detected. Our purpose is to capture the correlation

among TFs, histone modification and gene expression. Thus we

note that this normalization is well-suited for our purpose.

Concretely, we first averaged the intensity of each gene in HS

over the antibodies to each of H3 and H2B and then divided the

intensity of each gene in AH by the averaged intensity of the

corresponding gene and histone (Note that the averaged intensities

in H3 and H2B are used for H4 and H2A, respectively. This is

possible because the nucleosome core is formed of two H2A-H2B

dimers and a H3-H4 tetramer [19], meaning that the occupancy

of H2A should be approximately the same as that of H2B, and this

is true of between H3 and H4.). We then constructed a new matrix

AH+, with binding t-CDFs for 11 acetylated histones on 1,756

genes, which are shared between AH and HS.

Clustering over ChIP-chip data
For each of TR and AH+, we grouped genes into k clusters,

according to TF-binding and histone acetylation, respectively, by

using spectral clustering [20], a standard clustering approach over

a matrix in machine learning. Briefly, we performed the following:

1) Given a matrix X , corresponding to TR (or AH+), we compute

W~XX 0, where X 0 is the transpose of X , and the normalized

graph Laplacian Lsym ~I{ D
{1
2 W D

{1
2 , where I is the identity

matrix and D is the diagonal matrix in which the (i,i)-element dii is

given by dii ~
X

j

wij , where wij is the (i,j)-element of W . 2) We

then compute eigenvectors of Lsym by eigen decomposition. 3)
Using the first k eigenvectors, we decide clusters over genes. A

typical manner is hard clustering, such as k-means, which is rather

noise-sensitive. We thus take soft clustering, more concretely a

probabilistic model-based approach. That is, with the first k
eigenvectors, we estimate parameters of a mixture of von Mises

Fisher (vMF) distributions by using the Expectation-Maximization

(EM) algorithm [21], resulting in soft clustering where genes are

assigned clusters according to some confidence. The vMF

distribution has the concentration parameter, k, corresponding

to the inverse of the variance. In terms of the stability and

reproducibility of the cluster centroids, we set k at ten by

preliminary experiments, which will be described in the next

section. We ran the EM algorithm 1,000 times with different initial

values and used the result with the highest likelihood among 1,000

runs for further analysis.

We note that soft clustering allows to assign more than one

clusters to a gene, and in particular, probabilistic model-based

clustering including our approach allows to assign a cluster to a

gene with a probability like that a gene can be in cluster 1 with

probability of 0.8 and in cluster 2 with probability of 0.2. On the

other hand, hard clustering such as k-means assigns only one

Genome-Wide Histone Modification Pattern Analysis
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cluster to a gene. This feature of soft clustering is reasonable and is

a clear advantage, since in many cases one gene has multiple

functions, which can be detected by soft clustering but not by hard

assignment. This flexibility of soft clustering leads to an advantage

in noise-robustness over hard clustering. We performed a

preliminary experiment to check the stability and reproducibility

of our approach by computing the variance of resultant cluster

centroids, comparing with k-means, which was run in the same

manner as our approach. The result was summarized into Table

S2, which demonstrates that the variance of our approach is far

smaller than that of k-means for all four datasets we used in our

experiments, implying the noise-robustness of our approach,

comparing with k-means. In addition, it was reported that

applying soft clustering to microarray data analysis leads to more

adequate clusters with information-rich structures, and increased

noise-robustness [22].

Parameter optimization
There are two parameters which we need to fix in our

clustering method: the number of clusters (k) and the concentra-

tion parameter of the von-Mises Fisher distribution (k). We fixed

values of these parameters by a preliminary experiment: We

changed these values (k = 5, 10 and 20, and k= 5, 10 and 20), and

for each setting of these values, we repeated running our

clustering procedure (of 1,000 trials with different initial values

and having a cluster set with the largest likelihood) three times

and computed the variance of the centroid coordinates of

resultant clusters over them to check the stability and reproduc-

ibility of resultant clusters. The result of this experiment is

summarized into Table S1. Considering the smallest variances,

we chose k = 10 and k= 10 for AH+ (ChIP-chip for histone

acetylation), while we chose k = 5 and k= 10 for GP (microarray

on glucose depletion) and ES (microarray on ESA1 mutant),

where the variance was minimized (See the detail for Table S1).

For TR (ChIP-chip for TFs), the minimum variance was obtained

by k = 5, but this value was comparable with that by k = 10, and

to make the matrix by TF and histone a balanced matrix, we

chose k = 10 for TR. We used these parameter settings in our

experiments.

Selecting genes by using gene expression data
We generated a TF-histone matrix (TF-HM) by using ten

clusters from TR and ten clusters from AH+. This is simply done

by assigning each of 1,756 genes (shared between TR and AH+)

to one of 10610 clusters, resulting in that all 1,756 genes are

partitioned into 100 clusters. At the same time we generated five

gene clusters from each of GP and ES (both of which include

1,730 genes shared with TF-HM) by using our clustering

approach. We then generated 500 ( = 5610610) clusters of

1,730 genes by using the five clusters generated and TF-HM.

That is, we assigned each gene to one of 500 clusters, resulting in

that all genes were partitioned into 500 clusters. We counted the

number of genes which were assigned to each element of 500

clusters. Then, the number of genes in each element was

converted into a t-CDF, and we chose elements with t-CDFs of

more than 0.99 (0.99 was chosen to keep the number of elements

approximately 15, which would be the maximum number for

which we could check the detail of genes in the elements

manually, e.g. for GP, 14 elements with t-CDFs of more than

0.99 while 25 with 0.95, and for ES, 14 with 0.99 while 30 with

0.95). We further checked the p-value of MIPS functions (See the

next section) in selected elements and elements with MIPS

functions of p,0.01 were selected and referred to as pattern-

elements for further analysis.

Characterizing clusters with MIPS functions
We characterized each cluster by checking the MIPS functions

of genes for each element by using FunCat (http://mips.

helmholtz-muenchen.de/projects/funcat)[23], which gives a p-

value showing the probability that genes in a cluster have the

corresponding MIPS function against the null hypothesis that

these genes are randomly selected. Throughout this work, 0.01

was chosen for the cut-off p-value to keep the number of

overrepresented MIPS functions at a moderate size, e.g. for ten

clusters from TR, 26 MIPS functions overrepresented by p,0.01

while 87 by p,0.05, for ten clusters from AH+, 45 MIPS functions

overrepresented by p,0.01 while 85 by p,0.05, for five clusters

from GP, 29 MIPS functions overrepresented by p,0.01 while 66

by p,0.05, and for five clusters from ES, 44 MIPS functions

overrepresented by p,0.01 while 79 by p,0.05. We note that 0.01

was used for selecting pattern elements in the final step of our

procedure.

Extracting patterns in pattern-elements
1) TF-binding: We calculated TF-scores to select TFs which

bind to promoter regions of genes in each of the selected elements.

For each of GP and ES, we computed the following TF-score from

TR:

TF{scorei~

P
j

wij

N
;

where wij is the (i,j)-element of TR (i is for TF and j is for genes)

and N is the number of genes in the corresponding pattern-

element. We then extracted TFs which are closely related with

each pattern-element, by selecting TFs with TF-scores of more

than 0.8 ( = 0.960.9), which is equivalent to selecting TFs which

bind to the promoter regions of 90% of genes in one selected

element with probability 90%.

2) Histone acetylation: See the section ‘‘Statistical testing’’ below.

3) Gene expression: We presented the patterns of gene

expressions for each pattern-element, along with their averages.

Statistical testing: SDAL (Statistically detecting pattern-
elements with Differentially Acetylated Lysine residues)
testing

To find a pair of differentially acetylated lysine residues, we

adopted a two-step procedure: We first used ANOVA (a= 0.01),

and for elements which pass the ANOVA testing, we further used

the Tukey-Kramer’ multiple comparison test (p-value ,0.05). We

ran this two-step procedure over all pairs of 11 lysine residues to

check whether each lysine residue of histones which are related to

genes in each element is significantly acetylated. This two-step

procedure is used to further focus on important pattern-elements.

In this test, we used only the corresponding genes in AH+ for each

pattern-element.

Comparison with randomized datasets
We conducted a comparative experiment by using randomized

datasets: We first generated randomized datasets from TR, AH+,

GP and ES by shuffling both rows and columns of the

corresponding table. We then run the same procedure as that of

our method over these randomized datasets, resulting in that we

had elements with high t-CDFs of more than 0.99 and having

MIPS functions with p-values. These two steps were repeated Nrand

times, by which we had a set of p-values. We used Mann Whitney

U-test under the null hypothesis that the distribution of p-values

from randomized datasets and that from TR, AH+, GP (or ES) are

the same (a= 0.01).

Genome-Wide Histone Modification Pattern Analysis
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Accession numbers
The GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) ac-

cession numbers for genes and proteins discussed in this paper are

ARP4 (NP_012454), BRD4 (NP_490597), CDK9 (NP_001252),

ESA1 (NP_014887), FHL1 (NP_015429), FOSL1 (NP_005429),

HOG1 (NP_013214), HXT1 (NP_011962), HXT2 (NP_013724),

HXT3 (NP_010632), HXT4 (NP_011960), MIG2 (NP_011306),

MOF (NP_115564), MSN2 (NP_013751), MSN4 (NP_012861),

MTH1 (NP_010563), PIM1 (NP_002639), RAP1 (NP_014183),

RGT2 (NP_010143), SIR2 (NP_010242), SNF3 (NP_010087) and

SUP2 (NP_010457).

Implementation
The source code of our method, which was implemented in

MATLAB (http://www.mathworks.com/), is available from the

supporting page for this paper: http://www.bic.kyoto-u.ac.jp/

pathway/natsume/hm_detector.htm.

Results and Discussion

GHUs responsible for adaptation to glucose depletion
We used two ChIP-chip datasets (TR and AH+) in yeast

[13,14]. Our method first generated gene clusters in terms of TF-

binding and those in terms of histone acetylation, from TR and

AH+, respectively (The number of clusters is set at ten; See

MATERIALS AND METHODS). The biological functions of the

generated clusters were checked by characterizing each cluster

using significantly (p,0.01) overrepresented functional categories

(which we call MIPS functions; Table S3 for TR and Table S4 for

AH+) of FunCat [22]. We then generated a 10610 matrix (or

Figure 1. A schematic overview of the proposed approach. (A) Preparation of the TF-HM matrix using the clustering results of ChIP-chip
datasets. This matrix has cluster IDs for TF-binding as one dimension and cluster IDs for histone acetylation as the other dimension. (B) Clustering
genes with microarray data into five groups to generate 500 clusters by using TF-HM. We then compute the number of genes assigned to each of 500
clusters which is turned into t-CDF. (C) Heatmaps of 500 clusters (or five TF-HMs). Out of 500 ( = 5610610) possible elements, we select those with t-
CDFs of more than 0.99 and overrepresented MIPS functions (p,0.01). These chosen elements are used to detect patterns of the GHUs, in terms of
histone acetylation as well as TF-binding and gene expression. Each of 500 clusters is named like T5H9E4, standing for cluster 5 of TR, cluster 9 of AH+
and cluster 4 of gene expression. See main text for details.
doi:10.1371/journal.pone.0022281.g001
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Figure 2. The GHUs obtained from microarray data regarding glucose depletion. The detected patterns of TF-binding, histone acetylation
and gene expression. Each row corresponds to a pattern-element, which is labeled by using cluster IDs of TF-binding, histone acetylation and gene
expression (e.g. T1H10E1: cluster 1 of the TF-binding clusters, cluster 10 of the histone acetylation clusters, and cluster 1 of the gene expression
clusters), and the number of genes (e.g. n = 12 means that 12 genes for T1H10E1). For each row, we showed TFs with TF-scores of more than a pre-
specified threshold (0.8), acetylation rates of 11 lysine positions and the variation in gene expression by changing glucose concentration. Each line in
graphs corresponds to a gene, and each bar shows the average over the corresponding values.
doi:10.1371/journal.pone.0022281.g002

Genome-Wide Histone Modification Pattern Analysis
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Figure 3. A schematic diagram of the detected two GHUs in Fig. 2. Pattern Ga: T1H10E1, T3H10E1 and T6H10E1 are put together into pattern
Ga, because they are regulated by the same acetylated residues of histone and show the same variation in gene expression intensities. The list boxes
on TFs and MIPS functions of target genes are represented by three colors corresponding to three pattern elements: red square: T1H10E1, green
square: T3H10E1 and purple square: T6H10E1. For example, T1H10E1 shows that TFs (HOG1, RLR1 and ARG80) in the red box regulate genes related
with the MIPS function in the red box (transmembrane signal transduction) in an acetylated H4 Lys16-dependent manner. Only annotated TFs are
shown. Pattern Gb: obtained from T5H9E4. In each row, boxes on the left-hand side represent frequently-binding TFs, and those on the right-hand
side represent the overrepresented MIPS functions in each GHU (p,0.01). The two overlapping circles in each row represent a histone octamer with
its N-terminal tails and lysine residues (m). The number attached to each m is the corresponding residue position. The colors of the lysine residues
reflect the results from a multiple comparison test (See Table S6 for the entire result of the test): Red m shows significantly acetylated lysine residues
against those represented by blue m (p,0.05), and yellow m shows other lysine residues.
doi:10.1371/journal.pone.0022281.g003
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table, which we call TF-HM) where in each matrix cell (or

element), genes in the associated cluster behave similarly according

to both TF-binding and histone acetylation (Fig. 1A).

Our method further grouped genes in terms of expression

patterns by subdividing genes in each element of TF-HM

according to gene expression. Here we used a microarray dataset

on a well-studied issue of histone acetylation, i.e. glucose depletion

(GSE9217). We partitioned genes in this microarray dataset (1%,

0.5% and 0.25% glucose YPD media against control of 2%) into

five clusters (Fig. 1B) and checked the MIPS functions which were

significantly (p,0.01) overrepresented in each cluster (Table S5).

For each of the five clusters, we checked the number of genes

which were assigned to each element of TF-HM (Fig. 1C). Out of

the total 500 ( = 5610610) possible elements, 14 elements with t-

CDFs (Student’ t cumulative distribution function) of more than

0.99 (t.0.99) were first selected (Figs. S1A and S1B). Out of the 14

elements, we then selected four pattern-elements which have

significantly (p,0.01) overrepresented MIPS functions (See

MATERIALS AND METHODS) and pass SDAL testing for

lysine residue pairs (Fig. 2).

Figure 4. The GHUs obtained from microarray data for ESA1 and/or SUP2 mutants. The detected patterns of TF-binding, histone
acetylation and gene expression are shown in the same manner as in Fig. 2: Each row is a pattern-element labeled with the cluster ID obtained from
TF-binding, histone acetylation and gene expression.
doi:10.1371/journal.pone.0022281.g004

Genome-Wide Histone Modification Pattern Analysis

PLoS ONE | www.plosone.org 7 July 2011 | Volume 6 | Issue 7 | e22281



Genome-Wide Histone Modification Pattern Analysis

PLoS ONE | www.plosone.org 8 July 2011 | Volume 6 | Issue 7 | e22281



Out of four pattern-elements obtained (T1H10E1, T3H10E1,

T6H10E1 and T5H9E4), T1H10E1, T3H10E1 and T6H10E1

shared the same acetylated residues of histone (H4 Lys16) and

variation in expression intensities of target genes, although TFs are

different. We then put these three pattern-elements together as pattern

Ga in Fig. 3, implying that one type of histone acetylation regulates

three types of clusters of TFs, which results in only one type of gene

expression. Thus we have two different patterns (Fig. 3: patterns Ga

(T1H10E1, T3H10E1 and T6H10E1) and Gb (T5H9E4)), where we

colored lysine residues red if significantly (p,0.05) acetylated by a

multiple comparison test in SDAL testing (Table S6).

Under glucose depletion, yeast cells switch the energy-supplying

reaction from fermentation to respiration. This change results in

the elevation of cellular NAD+ concentration, which in turn

activates the class III HDAC SIR2, causes NAD+-dependent

deacetylation of H4 Lys16 and invokes generalized gene

inactivation by chromatin silencing [24]. In other words, H4

Lys16 must be kept acetylated in the steady state, where glucose

depletion does not happen. In fact, AH and HS are expected to be

obtained under the steady state (where glucose depeletion does not

happen), and Fig. 2 shows H4 Lys16 is well acetylated, implying

the consistency between our result and the expectation from the

literature. In pattern Ga where only H4 Lys16 is colored red,

expression intensities of target genes were unchanged for all three

pattern elements, meaning that these genes were inactivated both

at the steady state (1: 2% -.2%) and under glucose depletion (2, 3

and 4: 2% -.1, 0.5 and 0.25%, respectively). This result indicates

that acetylated H4 Lys16 might be deeply involved with the

regulation of TFs in pattern Ga to keep their target genes

inactivated, which implies the validity of pattern Ga. Furthermore,

HOG1, a TF in pattern Ga, interacts with glucose-regulated

transcription factor MSN2/MSN4 [25–26]. MIG2, another TF in

pattern Ga, is a glucose-regulated TF and represses genes involved

in metabolism of alternative carbon sources such as galactose (GAL

genes) and maltose (MAL genes) under high concentration of

glucose [25]. This result also supports pattern Ga, implying that

some TFs which are already known to work under high

concentration of glucose might remain inactivated in pattern Ga.

In pattern Gb, genes related to ribosome biogenesis were up-

regulated independently of H4 Lys16. More concretely, target

genes were up-regulated under mildly low concentration of glucose

(2 and 3: 2% -.1% and 0.5%, respectively) but not necessarily

under extremely low concentration (4: 2% -.0.25%). Ribosome

biogenesis is responsible for global stress response [27], which thus

may not be glucose depletion-specific. Furthermore this result is

consistent with a report that genes involved in cytoplasmic

ribosomes respond only to glucose concentrations of .0.1% and

both transcriptional and post-transcriptional mechanisms combine

to accelerate the accumulation of ribosomal protein mRNAs [28].

Among the selected TFs in pattern Gb, FHL1 [29] and RAP1 [27]

are independently reported to regulate ribosome biogenesis and

were clearly dependent on the same type of histone acetylation (co-

acetylation of five lysine residues in H3 with H4 Lys12 and H2A

Lys7), which also supports pattern Gb.

Overall, two GHUs we detected can be characterized by: i)

generalized gene inactivation caused by deacetylation of H4 Lys16

and ii) up-regulation of genes related to ribosomal biogenesis.

These two patterns have supportive literature, validating the

results as well as our approach for finding GHUs.

We further performed comparison with randomized datasets,

keeping Nrand = 10, and confirmed that the distribution of p-values

on MIPS functions was significantly different from that of

randomized datasets (p-value: 0.0078,0.01).

GHUs responsible for the essential role of ESA1
Here we replaced the microarray dataset (GSE9217) with

another dataset for ESA1 mutant (GSE9840). We again

partitioned genes into five clusters, for which we checked

associated MIPS functions, which were all significantly (p,0.01)

overrepresented (Table S7). Then, out of total 500 ( = 5610610)

possible elements, 11 elements (t.0.99) were first selected (Figs.

S2A and S2B). Out of the 11 elements, three pattern-elements

which have significantly (p,0.01) overrepresented MIPS functions

and pass SDAL testing for lysine residue pairs were further

selected, resulting in three kinds of GHUs in TF-binding, histone

acetylation and gene expression (Fig. 4 and Fig. 5: patterns Ea

(T3H10E3), Eb (T9H1E5) and Ec (T5H9E2)). We again colored

lysine residues in red (Fig. 5) if significantly (p,0.05) acetylated

according to a multiple comparison test (Table S8).

ESA1 is an essential histone acetyltransferase (HAT), which

acetylates primarily histone H4 [30,31]. In spite of its well-known

HAT activity, the essential role of ESA1 is under controversy. It is

reported that the essential function of ESA1 may be to bind acetyl-

CoA or lysine substrates, not to function as HAT, because single

mutations in the catalytic pocket of ESA1 (with loss of catalytic

activity of ESA1) were not lethal [32]. To specify the essential role

of ESA1, a bypass suppressor of ESA1 (SUP2) was identified by

bypass suppression screening for GSE9840 dataset. We attempted

to characterize the role of ESA1 by comparing the gene expression

profiles of wild type (ESA1 SUP2), SUP2 mutant (ESA1 sup2) and

ESA1 SUP2 double mutant (esa1 sup2). We expected that

expression intensities of genes related to the essential function of

ESA1 should change in ESA1 sup2 mutant, when compared to

ESA1 SUP2 and esa1 sup2 (Fig. 6). In fact this was shown in

pattern Ea (Fig. 5), indicating that the genes of interest were

assigned to pattern Ea. In pattern Ea, genes were dependent on

acetylated H4 Lys16 only (Fig. 5), meaning that the recognition of

acetylated H4 Lys16 would be crucial for ESA1. This result is

consistent with the literature which suggests the involvement of

acetyl-CoA or lysine substrates [32], and implying more detail: the

involvement of acetylated H4 Lys16. H4 Lys16 is not a compatible

substrate of ESA1 in spite of its preference for H4 [33]. This

implies that H4 Lys16 is distinguished from other lysine residues in

H4, and serves as the basis for ESA1 to recognize H4. Meanwhile,

the gene expression of pattern Eb indicates that ESA1 mutation

rather than SUP2 mutation was responsible for gene regulation,

although this function was not essential. In pattern Eb, genes are

dependent on acetylated H2B Lys16, which might also be

recognized by ESA1 for a different response. Both patterns Ea

and Eb include genes such as DNA helicase and mitochondrial

transporter (Fig. S2B), demonstrating that ESA1 controls DNA

turnover and mitochondrial functions under the corresponding

histone acetylation pattern. In fact, the acetylation of histone H4 is

related to the recruitment of ESA1-ARP4 HAT complex and is

required for DNA double-strand break repair [34]. Finally, we

found that pattern Ec is consistent with pattern Gc in TF-binding,

histone acetylation and overrepresented MIPS functions. Pattern

Ec shows that genes were up-regulated equally by each of two

Figure 5. A schematic diagram of the detected GHUs in Fig. 4. Pattern Ea: obtained from T3H10E3. Only annotated TFs are shown. Pattern Eb:
obtained from T9H1E5. Pattern Ec: obtained from T5H9E2. Each pattern is shown in the same manner as that in Fig. 3. The entire result of the multiple
comparison test, by which lysine residues are colored, is shown in Table S8.
doi:10.1371/journal.pone.0022281.g005
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mutations. This implies that the number of mutations rather than

gene specificity was influential on gene expression, demonstrating

that genes regarding ribosome biogenesis were up-regulated in

response to the cellular stress caused by gene mutations. In

addition, we performed comparison with randomized datasets,

keeping Nrand = 10 again, and confirmed that the distribution of p-

values on MIPS functions was significantly different from that of

randomized datasets (p-value: 0.0015,0.005).

Conclusion
We have developed a genome-wide and data-driven method,

which discovers patterns of histone acetylation through correla-

tions with TF-binding and gene expression. This is the first

genome-wide approach of integrating three types of information,

i.e. TF-binding, histone acetylation and gene expression, for

detecting GHUs. In addition to the report that inspired this work

[12], both the correlations between histone acetylation and TF-

binding [18,35] and between TF-binding and gene expression [13]

have been already reported, implying that our integration is

reasonable because our approach is an expansion along with the

literature in terms that all three types of data are used. We stress

that our method revealed a well-studied histone modification

pattern in a GHU under glucose depletion as well as new patterns

related with ESA1 functions, which would be valid in terms of the

latest literature.

By using a microarray dataset measured under another

experimental condition, our method might find unknown GHUs

which are obtained under the given condition. In other words,

experimentalists can use any microarray dataset as an input of our

method to learn histone modification patterns under the condition

of interest. Similarly, we may find other patterns by considering

different modifications, such as methylation and phosphorylation,

by using a ChIP-chip dataset for methylated or phosphorylated

histones.

Supporting Information

Figure S1 Elements with t-CDFs of more than 0.99
(GSE9217). (A) Each of five heatmaps represents the number of

genes assigned to each element in TF-HM under the correspond-

ing one of five clusters from GSE9217. Red square: elements with

t-CDFs.0.99. (B) List of genes in each of elements with t-CDFs of

more than 0.99. Each element ID consists of cluster IDs of TF-

binding, histone acetylation and gene expression (e.g. T9H1E1:

cluster 9 of the TF-binding clusters, cluster 1 of the histone

acetylation clusters, and cluster 1 of the gene expression clusters).

(PDF)

Figure S2 Elements with t-CDFs of more than 0.99
(GSE9840). (A) Each of five heatmaps represents the number of

genes assigned to each element in TF-HM under the corresponding

one of five clusters from GSE9840. Red square: elements with t-

CDFs.0.99. (B) List of genes in each of elements with t-CDFs of

more than 0.99. Each element ID consists of cluster IDs of TF-

binding, histone acetylation and gene expression (e.g. T3H1E1:

cluster 3 of the TF-binding clusters, cluster 1 of the histone acetylation

clusters, and cluster 1 of the gene expression clusters). DNA helicases

are colored pink. Mitochondrial transporters are colored green.

(PDF)

Table S1 Results of preliminary experiment: Variances of the

coordinates of cluster centroids obtained by clustering of genes in

datasets TR, AH+, GP and ES. To optimize two parameters k and

k in our approach, we repeated our clustering procedure (which

runs our clustering algorithm 1,000 trials with different initial

values and obtains a set of clusters which gives the largest

likelihood out of 1,000 trials) three times and computed the

variance of the coordinates of cluster centroids over three runs.

The smallest values are in boldface. A) Optimization of

concentration parameter k. The results by k= 10 were more

stable and reproducible (the variance is the smallest) than those by

k= 5 or 20 for both TR and AH+. We chose k= 10 in our

experiments. B) Optimization of the number of clusters k. The

smallest variance made us chose k = 10 for AH+, and k = 5 for GP

and ES. For TR, the result by k = 10 was comparable with that by

k = 5, and we chose k = 10, making TF-HM (TF-histone matrix) a

balanced matrix.

(DOC)

Table S2 Results of preliminary experiment: Variances of the

coordinates of cluster centroids obtained by clustering of genes in

datasets TR, AH+, GP and ES. We used the parameter set fixed in

Table S1 for our approach. Also the variance of our method was

obtained by the same manner as that of Table S1. On the other

hand, the variance of k-means was obtained in the same manner.

That is, we repeated the following process three times: we run k-

means 1,000 times with random initial values and obtain the best

cluster sets, and computed the variance of the coordinates of

cluster centroids over resultant three cluster sets. The smallest

value for each dataset is in boldface. This result clearly shows the

advantage of our approach over k-means in reproducibility and

stability of resultant clusters.

(DOC)

Table S3 Overrepresented MIPS functions in ChIP-chip
data [13]. We show Level 1 and 2 of MIPS functions only. P-

values represent the probability of finding the observed number of

Figure 6. Schematic pathways presumed for the essential function of ESA1. Red path: intact, and blue path: damaged. The ESA1 sup2
mutant is supposed to transmit a signal excessively, while the esa1 SUP2 mutant fails to transmit a signal downstream.
doi:10.1371/journal.pone.0022281.g006
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genes with the specified MIPS function under the null hypothesis

that the genes were selected at random.

(DOC)

Table S4 Overrepresented MIPS functions in ChIP-chip
data [14]. We show Level 1 and 2 of MIPS functions only. P-

values represent the probability of finding the observed number of

genes with the specified MIPS function under the null hypothesis

that the genes were selected at random.

(DOC)

Table S5 Overrepresented MIPS functions in micro-
array data (GSE9217). We show Level 1 and 2 of MIPS

functions only. P-values represent the probability of finding the

observed number of genes with the specified MIPS function under

the null hypothesis that the genes were selected at random.

(DOC)

Table S6 The result of Tukey-Kramer’ multiple com-
parison test (GSE9217, p,0.05). The lysine residue pairs

which were significantly different from each other are listed.

(DOC)

Table S7 Overrepresented MIPS functions in micro-
array data (GSE9840). We show Level 1 and 2 of MIPS

functions only. P-values represent the probability of finding the

observed number of genes with the specified MIPS function under

the null hypothesis that the genes were selected at random.

(DOC)

Table S8 The result of Tukey-Kramer’ multiple com-
parison test (GSE9840, p,0.05). The lysine residue pairs

which were significantly different from each other are listed.

(DOC)
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