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Tumor metastasis is the major cause of mortality from cancer. From this perspective,
detecting cancer gene expression and transcriptome changes is important for exploring
tumor metastasis molecular mechanisms and cellular events. Precisely estimating a
patient’s cancer state and prognosis is the key challenge to develop a patient’s
therapeutic schedule. In the recent years, a variety of machine learning techniques
widely contributed to analyzing real-world gene expression data and predicting tumor
outcomes. In this area, data mining and machine learning techniques have widely
contributed to gene expression data analysis by supplying computational models to
support decision-making on real-world data. Nevertheless, limitation of real-world data
extremely restricted model predictive performance, and the complexity of data makes it
difficult to extract vital features. Besides these, the efficacy of standard machine learning
pipelines is far from being satisfactory despite the fact that diverse feature selection
strategy had been applied. To address these problems, we developed directed relation-
graph convolutional network to provide an advanced feature extraction strategy. We first
constructed gene regulation network and extracted gene expression features based
on relational graph convolutional network method. The high-dimensional features of
each sample were regarded as an image pixel, and convolutional neural network was
implemented to predict the risk of metastasis for each patient. Ten cross-validations
on 1,779 cases from The Cancer Genome Atlas show that our model’s performance
(area under the curve, AUC = 0.837; area under precision recall curve, AUPRC = 0.717)
outstands that of an existing network-based method (AUC = 0.707, AUPRC = 0.555).

Keywords: pan-cancer analysis, cancer metastasis, machine learning method, GCN, CNN

INTRODUCTION

For years, tumor metastasis remains the leading cause of death from malignancies. Researchers
have explored the causes of cancer metastasis based on a variety of biological processes (Spano
et al., 2012; Fares et al., 2020; Wang et al., 2019). Gene expression data shows tumor status directly
and is easily achieved. With its high sensitivity, wide detection range, and low cost, RNA-seq
gene expression data is suitable for the analysis of biological samples from very limited sources
like metastasizing cancer cells. For these reasons, RNA-seq gene expression data is widely used in
cancer prognosis analysis and treatment plan formulation. Besides this, large-scale cancer databases
like The Cancer Genome Atlas (TCGA), TCGA Pan-cancer Clinical Data Resource (TCGA-CDR)
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(Liu et al., 2018), and Cancer Cell Line E (Ghandi et al.,
2019) are becoming more sophisticated, providing long-term-
tracked reliable clinical data as well as the corresponding gene
expression data and making it possible to conduct an in-depth
study on the relationship between gene expression and clinical
phenotype. Such genomic feature with cancer phenotype can
effectively improve cancer prognosis outcome over the current
clinical measures for risk assessment of patients (Byron et al.,
2016; Grimes et al., 2018; Zhao et al., 2020a). The majority of
cancer metastasis prediction methods based on RNA-seq gene
expression data are feature processing followed by machine
learning models.

Cancer Metastasis Prediction Methods
Based on Fold-Change Feature Selection
The commonly used fold-change feature selection methods
include: filters, in which data is independent of the sequential
machine learning model, and the method’s evaluation is to
judge the relationship between the one-dimensional features
and the target variables (i.e., Pearson correlation coefficient,
Gini coefficient, information gain, variance check, and similarity
measurement); wrappers, in which feature selection is wrapped
with the classifier, and the result of the classifier is used as
the evaluation method of whether the feature is filtered or not
(i.e., recursive feature elimination, stability selection); embedded,
in which feature selection is carried out by the characteristics
of the classifier (i.e., L1-regularization, L2-regularization, mean
decrease impurity or mean decrease accuracy). Landemaine et al.
(2008) selected six target genes according to gene expression
fold-change and predicted breast cancer lung metastasis. Chibon
et al. (2010) selected gene expression features according to
z-scores and P-values and predicted sarcoma prognosis. GV
Glinsky (2006) filtered gene expression features according to fold-
change and predicted prostate cancer outcome. These methods
ignored the biological significance in the data, leading to limited
explanatory ability.

Cancer Metastasis Prediction Methods
Based on Priori Knowledge Feature
Selection
Feature selection depends more on prior knowledge with
the development of biological information database, including
pathway database (i.e., KEGG, BioCyc, and Reactome) and
gene enrichment database (i.e., MSigDB). Priori-knowledge-
based cancer metastasis prediction methods mainly consist
of two key steps: feature filtering based on priori-knowledge
database or fold-change feature selection or both, then machine
learning modeling (Kamps et al., 2017; Chaurasia et al., 2018;
Ideta et al., 2021). These methods took gene pathway or
enrichment knowledge into consideration but still ignored gene–
gene regulation knowledge, from which vital information could
be extracted. Besides this, it had been proven that regulation
network information could enhance a machine learning model’s
performance (Zhao et al., 2020b, 2021b). In conclusion, prior-
knowledge-based feature extraction can promote a machine
learning model’s performance albeit limitations still exist.

Information from gene–gene regulation network should be
effectively developed and efficiently combined with existing
methods in future studies to achieve more convincing results.

Cancer Metastasis Prediction Methods
Based on Network Feature Extraction
Network information efficiently helps improve cancer outcome
prediction and is always accompanied by prior knowledge
feature selection. Protein–protein regulation information and
gene regulation network could significantly improve a model’s
prediction accuracy. In the study of Roy et al. (2014), features
were first filtered by transcript factors’ prior knowledge,
then ranked by protein–protein interaction network and gene
regulation network, and finally predicted 13 cancer cases’
prognoses by support vector machine model. Protein interaction
network is involved in the study of HY Chuang et al. (2007) and
achieved 72.2% accuracy in prediction result on breast cancer
metastasis by logistic regression classifier. In the study of Z Wang
et al. (2020), application of a gene–gene regulation network-based
feature extraction method helped raise the model’s area under
the curve (AUC) from 0.623 to 0.707 on breast cancer outcome
prediction. In conclusion, the network helped to increase the
machine learning model’s performance. Meanwhile, the feature
extracting method needs to be optimized.

Machine Learning Models Used for
Cancer Metastasis Prediction
Various machine learning models have been applied to cancer
metastasis prediction. Tapak et al. (2015) predicted breast cancer
survival and metastasis by multi-machine learning methods
including naive Bayes, random forest, AdaBoost, support
vector machine (SVM), least square SVM and Adabag, logistic
regression, and linear discriminant analysis. They found that
all these models performed well in cancer survival prediction
but had a limited effect in cancer metastasis prediction. Nicolò
et al. (2020) used random survival forest analysis to predict
early-stage breast cancer metastatic relapse [area under receiver
operating characteristic curve (AUROC) = 0.73]. Advanced
machine learning is also applied to cancer metastasis prediction
studies. Wang et al. (2020) classified a breast cancer patient’s
metastasis status by support vector machine (AUROC = 0.71)
and deep neural network (AUROC = 0.61). Among these studies,
SVM outstands other models. The prediction results of advanced
machine learning models like deep neural network (DNN)
and convolutional neural network (CNN) were not satisfying.
Until recently, DNN and CNN are used more commonly in
combination with relational network prior knowledge. The
research of Zhao et al. (2020c, 2021a) has proven the advanced
machine learning models’ prediction performance.

Application of Graph Convolutional
Network in Network Feature Extraction
Graph convolutional network (GCN) is commonly used to
handle topological data, including recovery of missing links or
classification of ungrouped nodes. It is suitable for processing
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relation data including gene–gene regulation network, protein–
protein interaction network, gene–disease relation network, etc.
The research of Zhao et al. (2020c) indicated GCN’s prediction
power on drug–target interaction networks. It is thus speculated
that GCN is with high proficiency to handle gene–gene regulation
network with improvement to directed network.

Our Aims
To address the limitations of the above-mentioned approaches,
we propose directed regulation graph convolutional network
(DR-GCN), in which improvements for directed graph are added
to GCN. In our study, gene–gene regulation network, gene–
cancer correlation, and gene expression are integrated. Then,
with the advanced feature we got from DR-GCN, we trained a
CNN model to predict pan-cancer metastasis.

The major contributions of this research are as follows:

• We integrated multiple features by DR-GCN and reserved
and extracted cancer-related information from gene
expression data.
• The results of our CNN model show that DR-GCN feature

extraction and CNN performed remarkably in pan-cancer
outcome prediction.

MATERIALS AND METHODS

In this section, we first introduce the data preparation and
workflow of the whole progress, then introduce the transfer
formula of D-GCN-based feature extraction network (DR-GCN
as well as its improvement on directed graph), and finally
introduce the CNN model’s structure designed for pan-cancer
outcome prediction.

Data Preparation
In this study, we choose gene expression data (mRNA expression
sequenced by second-generation technique) as our model’s input
feature, which were downloaded from TCGA. To label the data,
we analyzed clinical data downloaded from TCGA-CDR (Liu
et al., 2018), which is the official clinical supplement for TCGA.

We choose three key clinical indicators from TCGA-CDR
clinical file, which are tumor_status, new_tumor_event_type,
new_tumor_event_site, and PFI.time; tumor_status tells whether
one patient is in a state of with tumor, tumor-free, or
not clear; new_tumor_event_type tells whether one patient’s
new tumor event is metastasis, recurrence, new primary, or
none; new_tumor_event_site tells whether one patient has a
tumor discovered in a certain site; and PFI.time tells one
patient’s last record time point or last tumor event time
point, whichever is shorter. Firstly, three types of patients were
labeled ”metastasis” (1): cases that have a clear tumor_status
metastasis, cases that have no clear tumor_status but have
clear new_tumor_event_type metastasis, and cases that have
no clear tumor_status or new_tumor_event_type label but have
a clear new_tumor_event telling the metastasis site. Secondly,
among the residual cases, we removed the cases in which the
tumor_status is “not clear” or “NA” and then preliminarily label

the remaining cases “non-metastasis” (0); among these “non-
metastasis” cases, we kept those with new_tumor_event “NA” as
well as tumor_status ”tumor free.” Finally, we considered the
PFI.time; some of the non-metastasis cases could be temporary
due to the short clinical test interval. According to this
consideration, we kept 70% of the longest non-metastasis cases
and all the metastasis cases.

Considering the sample size, for a relatively balanced
proportion of positive and negative cases, we choose six
cancer types from TCGA for this study, which are as follows:
breast invasive carcinoma, stomach adenocarcinoma, lung
squamous cell carcinoma, lung adenocarcinoma, pancreatic
adenocarcinoma, and skin cutaneous melanoma as pan-cancer
input. These six cancer types have the highest rate of clearly
described metastasis status in TCGA-CDR. Besides that, they
have a moderate proportion of positive and negative cases (near
1:1). They are also among the most common human cancers. The
number of positive and negative cases for each cancer is shown in
Table 1.

Each case’s gene expression feature is listed in a feature
matrix, in which fij presents genej’s expression quantity in casei
(Figure 1A). The gene regulation network here is downloaded
from humannet V2 (Ideta et al., 2021); an adjacency matrix of
the gene regulatory network was obtained, A total of 17,926
genes were included in this network, in which aij = 1 presents
genei regulates genej (Figure 1A). The initial feature of each
gene, which is gene’s correlation with certain cancer types, is
downloaded from DisGenet (Glinsky, 2006), and then we made
a gene–cancer correlation table in which wik = 1 presents genei
and cancerk is related (Figure 1A. Then, we kept the intersection
genes and filtered the data (Figure 1A).

Workflow
After the data preparation process, we extracted advanced
feature from pan-cancer gene expression data by relational
graph convolutional network (R-GCN)-based model DR-GCN
with improved model’s ability for directed graph. In this step,
data’s dimension is increased, the whole dataset is shaped
(m,1,8526,6), in which m presents m cases included in our study,
1 presents one-layer graph structure, and 8526,6 presents the two-
dimension feature extracted by DR-GCN (Figure 1B). Finally,
based on the feature and label prepared, we designed and trained
a CNN model and made prediction of pan-cancer outcomes. The
whole workflow is shown in Figure 1.

TABLE 1 | Number of positive and negative cases for each cancer type.

Non-metastasis Metastasis

cases (0) cases (1)

Breast invasive carcinoma 589 102

Lung adenocarcinoma 152 122

Lung squamous cell carcinoma 157 76

Stomach adenocarcinoma 151 99

Skin cutaneous melanoma 75 153

Pancreatic adenocarcinoma 21 82

Total 1,145 634
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FIGURE 1 | Workflow (A) showing the input data matrix for directed relation-graph convolutional network (DR-GCN). Then, data were put into a DR-GCN feature
extraction model. After feature extraction, we get a graph–structure data matrix as shown in panel (B). Then, this data matrix combined label were put into a
convolutional neural network prediction model. Finally, we got the prediction result.

R-GCN-Based Gene Expression Feature
Extraction
R-GCN was introduced and applied to network link prediction
(recovery of missing facts) and entity classification (recovery of
missing entity attributes) (Kipf and Welling, 2016; Schlichtkrull
et al., 2018). In this study, R-GCN is applied to handle gene–
gene regulation network. More than ever, gene–gene regulation
network is a directed network, and R-GCN was generally applied
to undirected graph. To address this issue, we apply DR-
GCN, a novel directed-graph processing method that has been
added in this study.

DR-GCN Model Architecture
For gene–gene regulation network G = (V, E), we use binary
adjacency matrix A, as described in data preparation. The
adjacency matrix shows the associative property of the graph; to
add the nodes’ self-connection feature, we add identity matrix to
the adjacency matrix:

Ã = A+ I (1)

A graph convolution layer can be written as such a nonlinear
function:

Hl+1
= f ( Hl, Ã) (2)

in which H0 = A. Graph convolution problems can be
abstracted as solution of f

(
Hl, A

)
= σ

(
AHW(l)

)
, in which

W(l) is the graph feature, H is weight, and σ is an activation
function, H0 = Ã.

Here we consider our model with the following layer-wise
propagation rule:

H(l+1)
= σ(D̃−1ÃH(l)W(l)) (3)

We consider that all genes have equal weight; then, we have:

H(l+1)
= σ(D̃−1ÃH(l)) (4)

H(l) denotes the feature vector of each gene as described in “Data
Preparation.” D̃ is the diagonal node degree matrix of Ã. We have
D̃ =

∑
j

Ãij. LRW
= D̃−1Ã = In − D−1A is Laplacian.

After the DR-GCN feature extraction, a new feature matrix
contains all gene–cancer information as well as gene–gene
regulation network information. In the following section, we
show that the form of this propagation rule can be applied on
directed graphs.

Directed-Graph Processing Method
For the directed graph, we use each nodes’ out-degree to initialize
the degree matrix D. In order to make this matrix full rank, we
have a strategy as follows:

Dji =


1∑
Din

−
1∑

D
0

if Dij 6= 0 and Dinij 6= 0
if Dij 6= 0 and Dinij = 0

otherwise

1∑
Din is the normalization operator for directed graph. We

use in-degree in this study; − 1∑
D is minimal value added

Frontiers in Cell and Developmental Biology | www.frontiersin.org 4 June 2021 | Volume 9 | Article 675978

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-675978 May 31, 2021 Time: 18:25 # 5

Xu et al. Pan-Cancer Metastasis Prediction

FIGURE 2 | Convolutional neural network structure and parameters.

to the degree matrix. In this way, we keep the directivity
of the graph and also guarantee the invertibility of the
Laplace matrix.

CNN-Based Classification Model
After the feature extraction by DR-GCN, a CNN model is
designed and used as a supervised machine learning model to
classify TCGA pan-cancer as benign or malignant.

We designed a CNN model, the structure of which is shown
in Figure 2. We got one input layer, seven convolution layers
followed by activation layers, one flattened layer, one batch-
normalized layer, and two dense layers with one drop layer in
CNN. LeakyReLU is chosen as each convolution layer’s activation
function to avoid neuronal death; the parameter of LeakyReLU
is 0.1. We converted the two-category result to one-hot format
and used softmax activation function for the last dense layer to
achieve a two-category prediction result. Each layer’s parameters
are shown in Figure 2.

We choose categorical_crossentropy as loss function and
optimizer “adam.” This pair worked better in our study than
the more commonly used binary_cross_entropy and “RMSProp”
optimizer in our two-category data.

EXPERIMENTS

In this section, we first generated a real-world gene–gene
regulation network, set the initial weight feature of each gene as
the gene–cancer correlation, then put them into DR-GCN, and
run the feature extraction module. After DR-GCN, we got a gene–
gene regulation that masked the gene–cancer correlation weight
table, and then we weighed the pan-cancer gene expression
data from TCGA by the gene–cancer correlation weight table.
Finally, we designed and trained a CNN model to identify the
malignancy of the tumor.

Experiments on Feature Extraction
The gene–gene regulation network used here was downloaded
from humannetV2 (Hwang et al., 2019), and the initial weight
feature of each gene is downloaded from DisGenet (Piñero et al.,
2020). With a raw network gene list, we converted all gene names
to gene symbol ID, and then an intersection was made between
raw TCGA FPKM gene list and raw network gene list. Finally,
8,526 overlapping unique genes derived from the two gene lists
were included in this study.

The patients were classified as non-metastasis and metastasis
groups based on the clinical information from the TCGA-CDR.
After data processing, we got 1,145 non-metastasis cases and
634 metastasis cases from six different cancer types (shown in
Table 1). All the cases were mixed randomly, and we generated
our final dataset.

We next input gene–gene interaction network (8526,8526)
and gene–cancer (8526,6) initial weight into DR-GCN. After

TABLE 2 | Comparison of prediction models on pan-cancer data.

AUROC AUPRC

DR-GCN-CNN 0.8365 0.7164

NetML-SVM 0.6122 0.4837

NetSML 0.6396 0.6331
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FIGURE 3 | Convolutional neural network model’s receiver operating characteristic curve and precision recall curve in 10-fold cross-validations.

DR-GCN feature extraction, we got the gene–gene interaction
network that masked the gene–cancer relation weight (8526,6).
Then, we multiplied pan-cancer’s gene expression data by this
weight as CNN’s input in the following experiment.

Experiments Across Pan-Cancer
Datasets
We applied the CNN model to predict the cancer outcome
on pan-cancer data. In the training progress, we choose
categorical_crossentropy as loss function and optimizer “adam.”

This pair worked better in our study than the more commonly
used binary_cross_entropy and “RMSProp” optimizer in our
two-category data. In modeling progress, we adjusted the model’s
parameter by AUROC as performance measure. After parameter
adjustment and model structure adjustment, we got a CNN
model structure as well as each layer’s parameters as shown in
Figure 2.

To evaluate the prediction power of the workflow and
the models described above, we performed a 10-fold cross-
validation (CV) on pan-cancer data with ninefold data for
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training and onefold data for test. The classification performance
was evaluated on the test data in each dataset separately.

Then, we applied the same pan-cancer data and experimental
process on the network-based model of Wang et al. (2020) to
demonstrate our model’s predictive ability compared with those
of other network-based models. We report 10CVs’ mean AUROC
and the area under precision recall curve (AUPRC) scores of each
model mentioned above in Table 2. Our CNN model’s 10-CV
receiver operating characteristic curve and precision recall results
are shown in Figure 3.

DISCUSSION AND CONCLUSION

For years, researchers made efforts to enhance the cancer
metastasis predicting models’ performance. Many methods have
been raised for different cancers’ metastasis prediction, but the
prediction results of the models were not satisfying, especially
in pan-cancer metastasis studies; few of them took gene–gene
regulation network into consideration. We believe that gene–
gene regulation network information provides vital information
in a pan-cancer metastasis study. According to this consideration,
we applied DR-GCN to extract feature from gene–gene regulation
net and achieved high AUC and AUPR scores in a CNN
predicting model.

In most studies, researchers used prior knowledge like gene
co-expression information and pathway analysis in feature
selection to enhance the cancer metastasis predicting models’
performance. In contrast, our work applied an effective R-GCN
method, DR-GCN, specially for gene–gene regulation network
information extraction. We efficiently added information to
regular gene expression data and thereby achieved a better
CNN prediction result, but limitations still exist in DR-GCN
feature extraction and similar researches. DR-GCN essentially
highlighted nodes that could be vital according to information
network; its reliability highly depends on the network’s reliability.
Due to DR-GCN’s character mentioned above, as well as the
gene–gene regulation network which remained to be improved,
we believe that DR-GCN’s performance is far from optimal.
In subsequent studies, R-GCN can be applied to gene–gene
regulation focusing on unknown regulation relation detection.

In cancer metastasis predictions, the most commonly used
predicting model is SVM, and it always worked better than
advanced models like DNN and CNN because SVM is more
suitable for linear gene expression data. DR-GCN feature
extraction provided a higher feature dimension and therefore
enhanced CNN model’s prediction performance.

In conclusion, DR-GCN feature extraction distinctly
improved the CNN model’s prediction ability compared with
other cancer metastasis prediction methods. Ten-fold cross-
validation confirmed the high AUC and AUPR of CNN. The
code and results of DR-GCN and CNN model are uploaded
on Github1, which will allow researchers to apply it to other
pan-cancer datasets.
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