Supplementary information

Coordination of bacterial cell wall and outer membrane biosynthesis

In the format provided by the authors and unedited

SUPPLEMENTARY METHODS

Plasmid construction

pKH3 [$\Omega\Delta ftsH$ sacB gent] – The upstream and downstream flanking regions of the ftsH locus were amplified from PAO1 gDNA using primers K5/K6 and K7/K8. The resulting fragments were ligated using Gibson assembly and subsequently inserted into the EcoRI/XbaI sites of pEXG2.

pKH4 [Ω6-his-lpxC sacB genf] – Upstream and downstream regions flanking the 5' end of *lpxC* were amplified from PAO1 gDNA using primers K9/K10 and K11/K12. Primer K10 encoded the introduced 6-his tag. The resulting fragments were ligated using Gibson assembly and subsequently inserted into the EcoRI/XbaI sites of pEXG2.

pKH19 [P_{ara} -6-his Pa lpxC amp] – The Pa lpxC locus was amplified from P. aeruginosa PAO1 gDNA using primers K27/K15 and subsequently ligated into the EcoRI/HindIII sites of pHerd20T.

pKH20 [P_{ara} -6-his^{Ec}lpxC amp] – The ^{Ec}lpxC locus was amplified from E. coli MG1655 gDNA using primers K24/K25 and subsequently ligated into the EcoRI/HindIII sites of pHerd20T.

pKH23 [P_{ara} - P^{a}][P_{ara} - P^{a} [P_{ara} - P^{a}][P_{ara} - P^{a} [P_{ara} - P^{a} [P_{ara} - P^{a}][P_{ara} - P^{a}][P_{ara} - P^{a} [P_{ara} - P^{a}][P_{ara

pKH24 [*P_{ara}-^{Ec}IpxC amp*] – The ^{Ec}IpxC locus was excised from the Xbal/HindIII sites of pPR111 and subsequently ligated into the Xbal/HindIII sites of pHerd20T.

pKH37 [*P_{lac}-^{Pa}murA(WT) gent*] – The ^{Pa}murA open reading frame along with the 17 base pairs immediately upstream was synthesized by Genscript and inserted into the SacI and XbaI sites of pLSM11.

pKH38 [P_{lac} - Pa murA(C117S) gent] – pKH37 was used as a template for site directed mutagenesis performed by Genscript. Specifically, the cysteine at codon 117 (TGC in WT) was mutated to a serine (AGC).

pKH39 [$\Omega\Delta PA4701$ sacB gent] – The upstream and downstream flanking regions of the PA4701 locus were amplified from PAO1 gDNA using primers K78/79 and K80/K81. The resulting fragments were ligated using Gibson assembly and subsequently inserted into the HindIII/BamHI sites of pEXG2.

pKH58 [*P_{ara}-^{Pa}murA amp*] – The ^{Pa}murA locus was amplified from PAO1 gDNA using primers K98/K112 and subsequently ligated into the Xmal/SphI sites of pHerd20T.

pKH69 [*P_{lac}-FLAG-PamurA(WT) amp*] – The *PamurA* locus was amplified from PAO1 gDNA using primers K148/K149 and subsequently ligated into the Xmal/HindIII sites of pPSV38.

pKH86 [$\Omega \Delta \textit{murA}$ sacB gent] – The upstream and downstream flanking regions of the murA locus were amplified from PAO1 gDNA using primers K166/K167 and K168/K169. The resulting fragments were ligated using Gibson assembly and subsequently inserted into the EcoRI/Xbal sites of pEXG2.

pKH87 [$\Omega\Delta$ *murB* sacB *gent*] – The upstream and downstream flanking regions of the *murB* locus were amplified from PAO1 gDNA using primers K170/K171 and K172/K173. The resulting fragments were ligated using Gibson assembly and subsequently inserted into the EcoRI/Xbal sites of pEXG2.

pKH88 [*Tn7::P*_{toplacuv5}-*murA gent*] – The ^{Pa}*murA* locus was amplified from PAO1 gDNA using primers K174/K112 and subsequently ligated into the BamHI/SphI sites of pKHT105.

pKH90 [P_{T7} -his-SUMO-FLAG- P^a IpxC amp] – The P^a IpxC locus was amplified from PAO1 gDNA using primers K179/K180. pAM205, encoding His-SUMO-FLAG- T^{aq} rodA was linearized by amplification with primers K177/K178 so as to exclude the T^{aq} rodA open reading frame. The two resulting fragments were ligated using Gibson assembly.

pKH97 [*P_{T7}-his-PamurA kan*] – The *PamurA* locus was amplified from PAO1 gDNA using primers K193/K194. pET28a was linearized by amplification with primers K183/K184 and the two resulting fragments were ligated using Gibson assembly.

pKH100 [*P_{lac}-FLAG-^{Pa}murA(C117S) gent*] – The upstream and downstream portions of ^{Pa}*murA* were amplified from PAO1 gDNA using primers K148/K108 and K109/K149. K108 and K109 encoded the C117S substitution. The resulting fragments were ligated using Gibson assembly and subsequently ligated into the Xmal/HindIII sites of pPSV38.

pKH103 [*P_{TT}-his-^{Pa}murA(C117S) kan*] – The upstream and downstream portions of ^{Pa}*murA* were amplified from PAO1 gDNA using primers K193/K108 and K109/K194. K108 and K109 encoded the C117S substitution. pET28a was linearized by amplification with primers K183/K184 and the three resulting fragments were ligated using Gibson assembly.

pKH155 [*Tn7::P*_{toplacdn1}-*murB gent*] – The ^{Pa}murB locus was amplified from PAO1 gDNA using primers K175/K176 and subsequently ligated into the BamHI/SphI sites of pKHT104.

pKH156 [*P_{TT}-his-SUMO-FLAG-^{Ec}lpxC amp*] – The ^{Ec}lpxC locus was amplified from *E. coli* MG1655 gDNA using primers K202/K203. pAM205, encoding His-SUMO-FLAG-^{Taq}rodA was linearized by amplification with primers K177/K178 so as to exclude the ^{Taq}rodA open reading frame. The two resulting fragments were ligated using Gibson assembly.

pKH157 [*P_{TT}-his-^{Ec}murA kan*] – The ^{Ec}murA locus was amplified from *E. coli* MG1655 gDNA using primers K204/K205. pET28a was linearized by amplification with primers K183/K184 and the two resulting fragments were ligated using Gibson assembly.

pKH161 [Ω^{Pa} murA(C117S) sacB genf] – Upstream and downstream regions flanking Pa murA residue 117 were amplified from PAO1 gDNA using primers K166/K108 and K109/K218. Primers K108/K109 encoded the C117S substitution. The resulting fragments were ligated using Gibson assembly and subsequently inserted into the EcoRI/BamHI sites of pEXG2.

pKH189 [*P_{TT}-his-SUMO-FLAG-*^{Aba} *IpxC amp*] – The ^{Aba} *IpxC* locus was amplified from *A. baumannii* ATCC 17978 gDNA using primers K223/K224. pAM205, encoding His-SUMO-FLAG- ^{Taq} *rodA* was linearized by amplification with primers K177/K178 so as to exclude the ^{Taq} *rodA* open reading frame. The two resulting fragments were ligated using Gibson assembly.

pKH194 [*P_{TT}-his-^{Aba}murA kan*] – The ^{Aba}murA locus was amplified from *A. baumannii* ATCC 17978 gDNA using primers K225/K226. pET28a was linearized by amplification with primers K183/K184 and the two resulting fragments were ligated using Gibson assembly. A stop codon was subsequently introduced into the AbamurA open reading frame using the QuikChange lightning kit (Agilent 210514) with primers K238/K239.

pKH215 [*P_{T7}-his-^{Pa}murA(K22R) kan*] – The *His-^{Pa}murA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K284/K285.

pKH216 [*P_{TT}-his-^{Pa}murA(C117R) kan*] – The *His-^{Pa}murA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K286/K287.

pKH217 [*P_{T7}-his-PamurA(I119F) kan*] – The *His-PamurA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K288/K289.

pKH218 [*P_{T7}-his-^{Pa}murA(D308N) kan*] – The *His-^{Pa}murA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K290/K291.

pKH219 [*P_{T7}-his-^{Pa}murA(Q310R) kan*] – The *His-^{Pa}murA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K292/K293.

pKH220 [*P_{T7}-his-^{Pa}murA(R334C) kan*] – The *His-^{Pa}murA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K294/K295.

pKH221 [*P_{TT}-his-PamurA(R334S) kan*] – The *His-PamurA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K296/K297.

pKH247 [*P*₇₇-*his-*^{Pa}*murA*(*G58D*) *kan*] – The *His-*^{Pa}*murA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K379/K380.

pKH248 [*P_{TT}-his-PamurA(E406K) kan*] – The *His-PamurA* open reading frame in pKH97 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K381/K382.

pKH251 [*P_{lac-P^a}murA(C117S,G58D) genf*] – The ^{*PamurA(C117S)* open reading frame in pKH38 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K379/K380.}

pKH252 [*P_{lac}-^{Pa}murA(C117S,E406K) gent*] – The ^{Pa}murA(C117S) open reading frame in pKH38 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K381/K382.

pKH257 [*P_{lac}-FLAG-^{Pa}murA(C117S,G58D) gent*] – The *FLAG-^{Pa}murA(C117S)* open reading frame in pKH100 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K379/K380.

pKH258 [*P_{lac}- FLAG-^{Pa}murA(C117S,E406K) gent*] – The *FLAG-^{Pa}murA(C117S)* open reading frame in pKH100 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K381/K382.

pKH261 [*P_{TT}-his-SUMO-FLAG-^{Mku}IpxC amp*] –A DNA fragment containing the *Magnetospirllum kuznetsovii lpxC* open reading frame codon optimized for expression in *E. coli* and flanked by regions homologous to primers K177 and K178 was synthesized as a gBlock by IDT. The resulting fragment was ligated into pKH90 linearized by PCR with primers K177 and K178. The gBlock sequence can be found in table S5.

pKH262 [*P_{TT}-his-SUMO-FLAG-^{Xba}lpxC amp*] –A DNA fragment containing the *Magnetospirllum kuznetsovii* (TaxID 2053833) *lpxC* open reading frame codon optimized for expression in *E. coli* and flanked by regions homologous to primers K177 and K178 was synthesized as a gBlock by IDT. The resulting fragment was ligated into pKH90 linearized by PCR with primers K177 and K178. The gBlock sequence can be found in table S5.

pKH264 [*P_{TT}-his-^{Mku}murA kan*] –A DNA fragment containing the *Magnetospirllum kuznetsovii* (TaxID 2053833) *murA* open reading frame codon optimized for expression in *E. coli,* driven by an optimized ribosome binding site, and flanked by regions homologous to primers K183 and K184 was synthesized as a gBlock by IDT. The resulting fragment was ligated into pKH97 linearized by PCR with primers K183 and K184. The gBlock sequence can be found in table S5.

pKH265 [*P_{TT}-his-^{Xba}murA kan*] –A DNA fragment containing the *Xanthomonadales bacterium* (TaxID 2006849) *murA* open reading frame codon optimized for expression in *E. coli,* driven by an optimized ribosome binding site, and flanked by regions homologous to primers K183 and K184 was synthesized as a gBlock by IDT. The resulting fragment was ligated into pKH97 linearized by PCR with primers K183 and K184. The gBlock sequence can be found in table S5.

pKH267 [*P_{TT}-his-SUMO-FLAG-^{Lpn}IpxC amp*] –A DNA fragment containing the *Legionella pneumophila subsp. Pneumophila* ATCC 33152 *IpxC* open reading frame codon optimized for expression in *E. coli* and flanked by regions homologous to primers K177 and K178 was synthesized as a gBlock by IDT. The resulting fragment was ligated into pKH90 linearized by PCR with primers K177 and K178. The gBlock sequence can be found in table S5.

pKH268 [*P_{TT}-his-^{Lpn}murA kan*] – A DNA fragment containing the *Legionella pneumophila subsp. Pneumophila* ATCC 33152 *murA* open reading frame codon optimized for expression in *E. coli*, driven by an optimized ribosome binding site, and flanked by regions homologous to primers K183 and K184 was synthesized as a gBlock by IDT. The resulting fragment was ligated into pKH97 linearized by PCR with primers K183 and K184. The gBlock sequence can be found in table S5.

pKH269 [*P_{ara}-P^amurA(G58D) amp*] – The ^{Pa}murA open reading frame in pKH58 was mutagenized using the QuikChange lightning kit (Agilent 210514) with primers K379/K380.

Strain construction

P. aeruginosa transformation – 1 mL of *P. aeruginosa* cultures grown overnight at either 30°C or 37°C were pelleted by centrifugation at 9,391 x g and washed 4 times in an equal volume of 300 mM sucrose. Cells were resuspended in 50 μ L of 300 mM sucrose, mixed with approximately 50 ng of DNA, and subsequently electroporated in 2 mm cuvettes (Genesee Scientific 40-101) at 2.5 kV using a Bio-Rad MicroPulser. Unless stated otherwise, cells were recovered in 1 mL LB rotating end-over-end at 30°C for 1 hr and transformants were selected by plating the cells onto LB agar supplemented with the appropriate antibiotic.

Allelic replacement – *E. coli* SM10 strains harboring pEXG2 derivatives were used as donors in conjugations in which *P. aeruginosa* was a recipient. Transconjugants were selected by growth on Vogel-Bonner minimal medium (3 g trisodium citrate, 2 g citric acid, 10 g K_2HPO_4 , 3.5 g NaNH₄PO₄•4H₂O, and 15 g agar per 1 L) supplemented with 30 μ g/mL gentamycin. The resulting transconjugants were allowed to excise the plasmid by growth in LB at 37°C and *sacB* isolates were obtained by selection on LB agar plates supplemented with 5% (w/v) sucrose. The presence of the desired mutation was then validated as described below.

6-his-^{Pa}**IpxC** – pKH4 was introduced into *P. aeruginosa* PAO1 by conjugation and excised as described above to create PA1018. The presence of the *6-his-*^{Pa}**IpxC** mutation was verified by PCR amplification of the **IpxC** locus with primers K9/K12 and subsequent sanger sequencing with primer K17. pKH3 was introduced into PA1018 and excised as described above to create PA1037. The presence of $\Delta ftsH$ was verified by PCR with primers K5/K21.

 Δ *PA4701* – pKH39 was introduced into *P. aeruginosa* PAO1 by conjugation and excised as described above to create PA4701. The presence of Δ *PA4701* was verified by PCR with primers K81/K100.

 Δ^{Pa} mur A — pKH88 was co-transformed with pTNS2 into *P. aeruginosa* PAO1. Gentamycin-resistant colonies were selected and integration into attTn7 was confirmed by PCR with primers 67/68. pFlp2 was introduced into the resulting strain and the *gent*^R cassette was excised, resulting in PA1117. pKH86 was introduced into PA1117 by conjugation and excised in the presence of 1 mM IPTG as described above to create PA1118. The presence of Δ^{Pa} mur A was verified by PCR with primers K187/K169. PA1118 was propagated in the presence of 1 mM IPTG.

 Δ^{Pa} murB – pKH155 was co-transformed with pTNS2 into *P. aeruginosa* PAO1. Gentamycin-resistant colonies were selected and integration into attTn7 was confirmed by PCR with primers 67/68. pFlp2 was introduced into the resulting strain, the *gent*^R cassette was excised, and pKH87 was introduced by conjugation and subsequently excised in the presence of 1 mM IPTG as described above to create PA1135. The presence of Δ^{Pa} murB was verified by PCR with primers K188/K173. PA1135 was propagated in the presence of 1 mM IPTG.

PamurA(C117S) – pKH161 was introduced by conjugation into PA1117 and subsequently excised in the presence of 1 mM IPTG as described above to create PA1162. The presence of PamurA(C117S) at the native site was verified by amplification of the murA locus with primers K187/K106 and subsequent sanger sequencing with primer K187. We found that the PamurA(C117S) allele was not stably maintained in LB at 37°C and reverted to the PamurA(WT) allele with high frequency under those conditions. To mitigate this instability, PA1162 and its derivatives were propagated at 30°C in M9 media supplemented with 1 mM IPTG.

Protein Purification

His-MurA – 10 mL of an overnight culture of *E. coli* strain ER2566 harboring pKH97, pKH103, pKH157, pKH194, pKH264, pKH265, or pKH268 was subcultured into 1 L Terrific broth (24 g yeast extract, 12 g tryptone, 0.4% glycerol, 2.31 g KH₂PO₄ and 12.5 g K₂HPO₄ per 1 L) and allowed to grow at 37°C until reaching an OD₆₀₀ of 0.5-0.6. Expression of 6-his-MurA was then induced by the addition of IPTG to 1 mM and the culture was grown at 20°C for approximately 20 hours. Cells were pelleted by centrifugation at 12,000 xg for 10 min, the pellet was resuspended in 45 mL Lysis buffer A (25 mM Tris pH 8.0, 100 mM NaCl, 5 mM imidazole) and cells were subsequently lysed by 2 passages through a continuous flow cell disruptor (Constant Solutions, Ltd) at 25,000 psi. The extract was clarified by two successive centrifugations at 32,000 rpm for 20 min at 4°C using a 45 Ti rotor (Beckman Coulter) and subsequently bound to Ni-NTA agarose resin (Qiagen 30230). The resin was washed with 10 column volumes of wash buffer A (25 mM Tris pH 8.0, 100 mM NaCl, 25 mM imidazole) and protein was eluted in four 5 mL fractions of lysis buffer containing increasing concentrations of imidazole: 50 mM, 100 mM, 250 mM, and 500 mM. One fraction containing the highest concentration of 6-his-MurA as assayed by SDS-PAGE and subsequent Coomassie staining was dialyzed overnight at 4°C in 1L MurA storage buffer A (25

mM Tris pH 8.0, 150 mM NaCl, 0.5 mM DTT, 10% glycerol) using SnakeSkin dialysis tubing (Thermo 68700). Dialyzed products were flash frozen in liquid nitrogen and stored at -80°C. The concentration of 6-His-MurA orthologs were determined using Quick Start Bradford 1X Dye Reagent (Bio-Rad 5000205) and a standard curve of BSA. Purified proteins were resolved on by SDS-PAGE on a 15% polyacrylamide and protein was detected with Coomassie staining (**Extended Data 5a**)

FLAG-LpxC - 10 mL of an overnight culture of E. coli strain ER2566 harboring pAM174 as well as pKH90, pKH156, pKH189, pKH261, pKH262, or pKH267 was subcultured into 1 L Terrific broth (24 g yeast extract, 12 g tryptone, 0.4% glycerol, 2.31 g KH₂PO₄ and 12.5 g K₂HPO₄ per 1 L) and allowed to grow at 37°C until reaching an OD₆₀₀ of 0.5-0.6. Expression of FLAG-LpxC and Ulp1 were simultaneously induced by the addition of 1 mM IPTG and 0.05% arabinose. and the culture was grown at 30°C for an additional 4 hours. Cells were pelleted by centrifugation at 12,000 xg for 10 min, the pellet was resuspended in 45 mL Lysis buffer B (20 mM HEPES pH 7.5, 500 mM NaCl, 20 mM MqCl₂, 0.5 mM DTT) and cells were subsequently lysed by 2 passages through a continuous flow cell disruptor (Constant Solutions, Ltd) at 25,000 psi, The extract was clarified by two successive centrifugations at 32,000 rpm for 20 min at 4°C using a 45 Ti rotor (Beckman Coulter), CaCl₂ was added to 2 mM, and supernatant was bound to a homemade M1 a-Flag antibody resin. The resin was washed with 25 column volumes of wash buffer B (20 mM HEPES pH 7.5, 500 mM NaCl, 2 mM CaCl₂) and protein was eluted with 5 column volumes of elution buffer B (20 mM HEPES pH 7.0, 500 mM NaCl, 5 mM EDTA pH 8.0, 100 µg/mL FLAG peptide). The elution was concentrated by centrifugation at 4°C using 10 kDa molecular weight cutoff centrifugal filters (Amicon UFC801024). The concentrated protein was next subjected to size exclusion chromatography using an ActaPure system equipped with a SuperdexTM 75 10/300 GL column equilibrated with SEC buffer (20 mM HEPES, 500 mM NaCl). LoxC peak fractions were pooled and dialyzed overnight at 4°C in 1L LpxC storage buffer (25 mM Tris pH 8.0, 150 mM NaCl, 2 mM DTT, 10% glycerol) using SnakeSkin dialysis tubing (Thermo 68700). Dialyzed products were flash frozen in liquid nitrogen and stored at -80°C. The concentration of Flag-LpxC orthologs were determined using Quick Start Bradford 1X Dye Reagent (Bio-Rad 5000205) and a standard curve of BSA. Purified proteins were resolved on by SDS-PAGE on a 15% polyacrylamide and protein was detected with Coomassie staining (Extended Data 5a)

Supplementary Table 1. Proteins that co-purify with PaLpxC identified by mass spectrometry.

	PAO1 (WT)					PA1018 (6-his- ^{Pa} LpxC)					PA1009 (6-his-EcLpxC)							
	150		mM	30	-	mM		•			•		15		mM			mM
	Na	CI		Na	CI		15	υm	M NaCl	30	U M	M NaCi	Na	ICI		Na	CI	
Gene Symb ol	Unique ^a	Totalb	Sum Intensity ^c	Unique	Total	Sum Intensity	Unique	Total	Sum Intensity	Unique	Total	Sum Intensity	Unique	Total	Sum Intensity	Unique	Total	Sum Intensity
		1	3.8E+		1	3.7E+	2	65	9.9E+	2	76	2.8E+		3	3.4E+	1	3	6.8E+
<i>lpxC</i>	6	0	06	7	1	06	8	7	09	9	0	10	9	3	80	0	3	80
			2.6E+			1.9E+	1		5.8E+	2		1.2E+			9.0E+			2.8E+
murA	2	2	05	1	1	04	1	17	06	1	42	80	2	5	05	2	2	05
PA47									5.0E+	1		2.4E+						
01	0	0	NF	0	0	NF	9	14	06	9	28	07	0	0	NF	0	0	NF

^aUnique indicates the number of unique peptides identified. ^bTotal indicates the total number of peptides identified.

^cNF = Not Found

Supplementary Table 2 – Plasmids used in this study

, Boston, MA
Boston, MA
· · · · · · · · · · · · · · · · · · ·
Cambridge, MA
Cambridge, MA
Cambridge, MA

pKH156	P _{T7} -6-his-SUMO-FLAG- ^{Ec} lpxC amp
pKH157	P _{T7} -6-his- ^{Ec} murA kan
pKH161	Ω ^{Pa} murA(C117S) sacB gent
pKH189	P _{T7} -6-his-SUMO-FLAG- ^{Āba} lpxC amp
pKH194	P _{T7} -6-his- ^{Aba} murA kan
pKH215	P _{T7} -6-his- ^{Pa} murA(K22R) kan
pKH216	P _{T7} -6-his- ^{Pa} murA(C117S) kan
pKH217	P _{T7} -6-his- ^{Pa} murA(I119F) kan
pKH218	P _{T7} -6-his- ^{Pa} murA(D308N) kan
pKH219	P _{T7} -6-his- ^{Pa} murA(Q310R) kan
pKH220	P_{T7} -6-his- Pa murA(R334C) kan
pKH221	P _{T7} -6-his- ^{Pa} murA(R334S) kan
pKH247	P _{T7} -6-his- ^{Pa} murA(G58D) kan
pKH248	P _{T7} -6-his- ^{Pa} murA(E406K) kan
pKH251	P _{lac} -PamurA(C117S,G58D) gent
pKH252	P _{lac} -PamurA(C117S,E406K) gent
pKH257	P _{lac} -FLAG- ^{Pa} murA(C117S,G58D) gent
pKH258	P _{lac} -FLAG- ^{Pa} murA(C117S,E406K) gent
pKH261	Рт7-6-his-SUMO-FLAG- ^{Mku} lpxC amp
pKH262	P _{T7} -6-his-SUMO-FLAG- ^{Xba} lpxC amp
pKH264	P _{T7} -6-his- ^{Mku} murA kan
pKH265	P _{T7} -6-his- ^{Xba} murA kan
pKH267	P _{T7} -6-his-SUMO-FLAG- ^{Lpn} IpxC amp
pKH268	P _{T7} -6-his- ^{Lpn} murA kan
pKH269	P _{ara-} PamurA ^{G58D} amp

Supplementary Table 3 - Strains used in this study

Strain name	Strain #	Genotype ^{a,b}	Reference or Source
E. coli strains			
ER2566	-	lacZ::T7 gene1 fhuA2 lon ompT gal sulA11 mcr	New England Biolabs
		endA1 dcm	
XL1-red	-	endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac	10
		mutD5 mutS mutT Tn10 (Tetr)a	
P. aeruginosa strair	ns		
PAO1	-	P aeruginosa Wild type	Lory Lab, Boston, MA
PAO1/pPSV38	PA239	[P _{lac} -empty gent]	
PAO1/pKH19	PA1008	[P _{ara} -6-his- ^{Pa} lpxC amp]	
PAO1/pKH20	PA1009	[P _{ara} -6-his- ^{Ec} lpxC amp]	
PAO1/pHerd20T	PA1010	[P _{ara} -empty amp]	
PA1018/pPSV38	PA1013	6-his- ^{Pa} lpxC [P _{lac} -empty gent]	
PA1018	PA1018	6-his-PalpxC	
PAO1/pKH23	PA1020	[P _{ara} -Pa IpxC amp]	
PAO1/pKH24	PA1021	[P _{ara} -EclpxC amp]	
PAO1/pKH37	PA1035	[P _{lac} -PamurA gent]	
PAO1/pKH38	PA1036	[P _{lac} - ^{Pa} murA(C117S) gent]	
PA1037	PA1037	6-his- ^{Pa} lpxC ∆ftsH	
PAO1/pKH69	PA1068	[P _{lac} -FLAG- ^{Pa} murA gent]	
PA1018/pKH69	PA1071	6-his- ^{Pa} lpxC [P _{lac} -FLAG- ^{Pa} murA gent]	
PA1080	PA1080	ΔPA4701	
PA1117	PA1117	attTn7::P _{TOPLACUV5} -PamurA	
PA1118	PA1118	Δ ^{Pa} murA attTn7::PτοPLACUV5- ^{Pa} murA	
PA1018/pKH100	PA1121	6-his- ^{Pa} lpxC [P _{lac} -FLAG- ^{Pa} murA(C117S) gent]	
PA1135	PA1135	∆murB attTn7::P _{TOPLACDN1} -murB	
PAO1/pKH37-2A	PA1136	[P _{lac} -PamurA(K22R) gent]	
PAO1/pKH37-4C	PA1137	[P _{lac} - ^{Pa} murA(D49V) gent]	
PAO1/pKH37-1A	PA1138	[P _{lac} -PamurA(G116S) gent]	
PAO1/pKH37-5R	PA1139 [†]	[P _{lac} - ^{Pa} murA(C117R) gent]	
PAO1/pKH37-5U	PA1140	[P _{lac} - ^{Pa} murA(C117S) gent]	
PAO1/pKH37-3D	PA1141	[P _{lac} - ^{Pa} murA(I119F) gent]	
PAO1/pKH37-1B	PA1142	[P _{lac} -PamurA(L126P) gent]	
PAO1/pKH37-1C	PA1143 [†]	[P _{lac} - ^{Pa} murA(V166A) gent]	
PAO1/pKH37-1E	PA1144	[P _{lac} -PamurA(E193G) gent]	
PAO1/pKH37-2B	PA1145	[P _{lac} -PamurA(D234A) gent]	
PAO1/pKH37-4N	PA1146	[P _{lac} -PamurA(I236T) gent]	
PAO1/pKH37-4L	PA1147	[P _{lac} -PamurA(T240l) gent]	
PAO1/pKH37-5D	PA1148	[P _{lac} - ^{Pa} murA(D308G) gent]	
PAO1/pKH37-1D	PA1149 [†]	[P _{lac} - ^{Pa} murA(D308N) gent]	
PAO1/pKH37-5N	PA1150	[P _{lac} - ^{Pa} murA(Q310R) gent]	
PAO1/pKH37-5L	PA1151	[P _{lac} -PamurA(E328G) gent]	
PAO1/pKH37-2J	PA1152	[P _{lac} - ^{Pa} murA(V330A) gent]	
PAO1/pKH37-2H	PA1153	[P _{lac} -PamurA(F331L) gent]	
PAO1/pKH37-4J	PA1154	[P _{lac} -PamurA(R334C) gent]	
PAO1/pKH37-1L	PA1155	[P _{lac} -PamurA(R334S) gent]	
PAO1/pKH37-3G	PA1156 [†]	[P _{lac} -PamurA(D372G) gent]	
PAO1/pKH37-3C	PA1157	[P_{lac} - P^{a} murA(A375) gent]	
PAO1/pKH37-4I	PA1158	[P _{lac} -PamurA(L379P) gent]	
PA1162	PA1162	PamurA(C117S) attTn7::PTOPLACUV5-PamurA	
PA1118/pHerd20T	PA1164	attTn7::P _{TOPLACUV5} -PamurA [P _{ara} -empty amp]	
PA1162/pHerd20T	PA1167	PamurA(C117S) attTn7::PtopLacuv5-PamurA [Para-	
		empty amp]	
PA1118/pKH269	PA1242	attTn7::P _{TOPLACUV5} -PamurA [P _{ara} -PamurA(G58D)	
		amp]	
	I	атр	I

PA1162/pKH269	PA1243	PamurA(C117S) attTn7::PTOPLACUV5-PamurA [Para-	
		PamurA(G58D) amp]	

^a Brackets indicate genetic material encoded by a plasmid.

†The indicated strain also contains a silent mutation in the plasmid-encoded *murA* open reading frame. See Table S2 for details.

Supplementary Table 4 - Primers used in this study

	nentary Table 4 - Primers used in this study
Primer	Sequence
15	ACTGTTGGGAAGGGCGATCAAA
67	CACAGCATAACTGGACTGATTTC
68	GCACATCGGCGACGTGCTCTC
76	ACACTTTATGCTTCCGGCTC
K5	AGGAGGAATTCTCGGCTACGATCAATACCG
K6	CGATGGGAGGGTGTTCTCCAGCCACAGAATCAGATTCTT
K7	AAGAATCTGATTCTGTGGCTGGAGAACACCCCTCCCATCG
K8	AGGAGTCTAGAGCCCAGCTTGAGAACGAAG
K9	AGGAGGAATTCCCGTTCGAAGGTCGCAAG
K10	CATGGCTTTGGCCGCTTAAG
K11	TTAAGCGGCCAAAGCCATGCATCACCATCACCACATCAAACAACGCACCTTGAAG
K12	AGGAGTCTAGAGCCGGGCGCATATAGGAAA
K15	AGGAGAAGCTTGCCTCCAAATATGGAAAGGA
K17	TGACCTCCTTGACGAAGGAA
K21	GTCCAGCCGGTCGTAACG
K24	AGGAGGAATTCAGGAGGAATACACCATGCATCATCACCATCACCACATCAAACAAA
N24	
KOE	AAACGTAT AGGAGAAGCTTTGTCGTTATGCCAGTACAGC
K25	
K27	AGGAGGAATTCAGGAGGAATACACCATGCATCATCACCATCACCACATCAAACAACGCACCTTG
175.4	AAG
K54	AGGAGGGTACCTTAAGCGGCCAAAGCCATG
K55	AGGAGGCATGCGCCTCCAAATATGGAAAGGA
K78	AGGAGAAGCTTCCATCCTGGCCGAGGAACA
K79	GCGAATGCCGTCGACCAGGGCGATCAGGGTCTGGCT
K80	AGCCAGACCCTGATCGCCCTGGTCGACGGCATTCGC
K81	AGGAGGGATCCTTCCTTGAGCTGCCTGGTC
K98	AGGAGCCCGGGCACGGGGATCATTGCAAT
K100	GACCGGCGATCCGGCAAAT
K106	TTCATGGAGATGAACTGGGC
K108	GATCGCGCTACCGCCCGG
K109	CCGGGCGTAGCGCGATC
K112	AGGAGGCATGCACAGCCTCGCTAGCCCG
K148	AGGAGCCCGGGACGGAGGAAAGATGGACTACAAAGACGACGATGATAAGGATAAACTGATTA
	TTACCGGCG
K149	AGGAGAAGCTTACAGCCTCGCTAGCCCG
K166	AGGAGGAATTCTACGACAACCAGGACATCCG
K167	ACCGCCGGTAATAATCAGTT
K168	AACTGATTATTACCGGCGGTAAGATCCGCCGCGTACCGG
K169	AGGAGTCTAGATGGAGACCGTCGAAGCGCT
K170	AGGAGGAATTCGATGCCATCGTGGTCAACGT
K171	TTGCAGTTCCAGGCTCACAG
K172	CTGTGAGCCTGGAACTGCAACCTGAACCCAATCTCTACTGAGGG
K173	AGGAGTCTAGAGGCAGCGAGGCGACCGATAA
K174	AGGAGGGATCCACGGGAGGAAAGAATGGATAAACTGATTATTACCGGCG
K175	AGGAGGGATCCACGGGAGGAAAGATGAGCCTGGAACTGCAAGAG
K175	AGGAGGCATGCCGCACCCTCAGTAGAGATTGG
K176	GGATGACCCCCAGGGCCTTGAA
K177	GCCCGGTGACTGCAGGAAG
	TTCAAGGCCCTGGGGGGTCATCCATGATCAAACAACGCACCTTGA
K179	
K180	CTTCCTGCAGTCACCCGGGCCTACACCAC
K183	GGTATATCTCCTTCTTAAAGTTAAACAA
K184	GAATTCGAGCTCCGTCGACA
K187	AAGCGTCAGCAGCAGGTCTA
K188	GAGGATTTCTCCCGCCATGA

K193	TTGTTTAACTTTAAGAAGGAGATATACCATGCATCATCACCATCACCACGATAAACTGATTATTAC
K194	CGGCGG TGTCGACGGAGCTCGAATTCCTAGCCCGGTACGCGGCGG
K194 K202	TTCAAGGCCCTGGGGGTCATCCATGATCAAACAAAGGACACTTAAA
K202	CTTCCTGCAGTCACCCGGGCTTATGCCAGTACAACGAAGGACACTTAAA
K203	TTGTTTAACTTTAAGAAGGAGATATACCATGCATCATCACCACCACGATAAATTTCGTGTTCA
N204	GGGG
K205	TGTCGACGGAGCTCGAATTCTTATTCGCCTTTCACACGCTC
K218	AGGAGGGATCCCATTGACGAACTTGGTGGCC
K223	TTCAAGGCCCTGGGGGGTCATCCGTGAAACAGCGTACTCTCAAT
K224	CTTCCTGCAGTCACCCGGGCTTATGTCACACTCACGTATGGA
K225	TTGTTTAACTTTAAGAAGGAGATATACCATGCATCATCACCATCACCACGATAAATTTTTAATCAC
I NZZO	GGGCG
K226	TGTCGACGGAGCTCGAATTCTTAACTTACTCGCTTAATTTTGG
K238	CCAAAATTAAGCGAGTAAGTTAAGAATTCGAGCTCCGTCGACA
K239	TGTCGACGGAGCTCGAATTCTTAACTTACTCGCTTAATTTTGG
K284	CGCATTTCCGGCGCGCAACTCGGCGCTGCCG
K285	CGGCAGCGCCGAGTTGCGCGCGCGGAAATGCG
K286	CCTGCCGGGCGCTCGCTTC
K287	GAACCGATCGCGCGCCCGGCAGG
K288	GGCGGTTGCGCGTCCG
K289	CGGACGCGAACCAAACGCGCC
K290	GCGTTCCCCACCAACATGCAGGCCC
K291	GGGCCTGCATGTTGGTGGGGAACGC
K292	TTCCCCACCGACATGCGCCCCAGTTCATCTCC
K293	GGAGATGAACTGGGCGCATGTCGGTGGGGAA
K294	GACGGTCTTCGAGAACTGCTTCATGCATGTTTAC
K295	GTAAACATGCATGAAGCAGTTCTCGAAGACCGTC
K296	GACGGTCTTCGAGAACAGCTTCATGCATGTTTAC
K297	GTAAACATGCATGAAGCTGTTCTCGAAGACCGTC
K379	GATCGAACTGTTCGACCGCATGGGCGTGC
K380	GCACGCCCATGCGGTCGAACAGTTCGATC
K381	GTGGCTACGAGTGCATCAAGGAGAAACTCCAGCTGC
K382	GCAGCTGGAGTTTCTCCTTGATGCACTCGTAGCCAC

Supplementary Table 5 – gBlock sequences used in this study

gBlock	Sequence ^a
Mku lpxC	TTCAAGGCCCTGGGGGGTCATCC <u>CCC</u> GGATCCAATGCGCCGAGTCTGGCGTCGGAAGCCAG
	TGCAGTGCGCTCCCGTACCCTGAAAACTTCGATCGGTTGTACGGGGGTGGGACTTCATTCA
	GTGCCAAAGTTACGATGGTCCTGCATCCGGCCGAGCCTGGAACGGGGATTCGCTTCCGCCGT
	GTGGATATTAACGGTGGCGGAGCTATCGTTCCTGCAATCTGGTCGGCTGTACATGATACTCGT
	ATGAACAGCTGCCTGAAAAACGACGATGGTATCGTAGTAGGCACCGTAGAGCATCTGATGTC
	GGCGTTGGCTGGGATGCAGATTGATAACTGTTTGATCGACATCAATGGTCCTGAAGTCCCTGT
	AATGGATGGATCTGCTGCGCCGTTCCTTTTTTTAATTGAGTGCGCAGGCGTGGTCGAACAGTC
	TGCTCCACGCCAAGCCATTAAAGTTTTAAAGCGCGTCTCAGTGAAGGATGGCGATCGCGTAG
	CGTCGTTAACCCCAAGCTCTGGCTTTTCGATCCGCTTTGAAATTGACTTTGGGGCATCTGCTA
	TCAGTCGTCAAGAGTTTTTCGTGAATCTGAGCCGCGGCACTTTCAAAAGCGAAATTAGTCGCG
	CGCGCACCTTCGGTTTTGAACAAGAGGTGGCTTTTCTGCGTGCAAATGGTCTTGCTCGTGGG
	GGTAGCTTGGATAACGCAGTCGTCATTGACTCAACGGGAACGCGCGTCCTTAACGATGAGGG
	CCTGCGTTATACCGACGAGTTCGTGCGTCACAAAGTCCTGGACGCGGTTGGAGATTTATATTT
	AGCTGGAGCCCCTTGATTGGTCATTTTCATGGGATTCGTTGCGGCCATGCCTTAAATAATCA
	GTTACTTCGCGCTTTATTTGCCGATCAGACGGCATGGACACTGACGACCGTGGCCCCAGGTT
	CTGCCGCGCACCTTTCGCAGCTGAACCTCAACGTGCCGCTTTAAGTGCGTAAGCCCGGGTG
	ACTGCAGGAAG
^{Xba} lpxC	TTCAAGGCCCTGGGGGGTCATCCCTGAAGCAGCGCACATTGAAGAACTCGATCCGCGCGACT
ιρκο	GGAGTTGGTCTTCATACTGGGAAGAAGGTCTTGATGGTATTACGTCCCGCCCCAGCAGACAC
	GGGGATTGTGTTTCAACGTACCGACTTGGACGAGCCTGTGGATATCCCAGCCCGCGCGCG
	ACGTCACCGAGACCACACTGGGCACCACTGACTGTTGGCGAGGCTCGCGTCTCGACTGTC
	GAGCACCTTATGAGTGCATTAGCTGGCCTGGGTATTGACAACTTATATGTTGAACTTTCTGCG
	GGGGAGGTCCCGATTATGGACGGCTCAGCAGGGCCATTCGTCTTCTTACTGCAAAGCGCTGG
	CATCGAGGAGCAGAATGCGCCGAAACGTTTTGTTCGCATCAAGAAAAGCGTCAAAGTCGAGG
	ACGGAGATAAATGGGCTCGTTTCGATCCTTACGACGGGTTCAAAGTAAACTTCGAAATTGAGT
	TCGATCATCCAGTCTTTAAGCGCCGCTCGCAGGTTGCGTCAATGGACTTTAGTACCACTACCT
	TTTTGCGTGAGGTGAGTCGTGCCCGCACCTTTGGATTATGCGCGACCTTGAATACATGCGTT
	CTCGCAATCTGGCATTGGGGGGCAATCTGGATAACGCCATTGTACTTGACGATTACCGTGTAC
	TGAACGAAGACGGGCTGCGCTACGAAGATGTACTGTCAAGCACAAAATCTTGGATGCTATTG
	GTGACTTGTATCTTCTTGGTCATTCGCTGATTGGGGAGTTCTCTGGTTATAAGTCAGGGCATG
	GTCTTAATAATCGTTTGTTACGTACCTTGGTTGCGGACGCTTCAGCCTGGGAAGAAGTCACTT
	TTGAAACGCTGCAAGATGCACCAATTAGCTACGTGGCTGCTGCTGCCACCGCG TAA GCC
	CGGGTGACTGCAGGAAG
^{Lpn} IpxC	TTCAAGGCCCTGGGGGGTCATCCATCAAGCAGCGTACACCCAAAAAGGTCATCCAGGCGACG
Πρχυ	GGTGTTGGTTTACATAGCGGGGAAAAGGTTCTTCTTACTCTGCGTCCAGCCCTGTCAACACT
	GCATTGTTTTCCGCCGCGTGGATCTTTCGCCAGTGGTAGAAATCCCAGCATCTTACGAGTAT
	GTAGGTGATACTATGTTGTGTACCACCCTGCATCACGGAAAAGTTAAAATCGCGACAGTAGAA
	CACCTGCTGTCTGCACTGGCAGGGTTGGGAATTGACAACGCCTACATTGATGTGAACGCCCC
	CGAGATTCCGATTATGGACGGTAGTGCGGCACCATTCGTATTTCTGATCAGCAGGTAT
	TCGCGAACAGAACGCGGTAGTGCGGCACCATTCGTATTTCTGATTCAGTCAG
	CGGAAAATATGTACAATTTTTACCCCACAAGGGGTATAAGATTACTTTCACCATTGGGTTCGAG
	CACCCAGTGTTTAATGATCGCCCGCAGACAGTGAGCTTCGACTTTTCCGGTACTTCTTATGTG
	AAGGAAGTCTGCCGTGCCCGCACCTTTGGTTTCTTGTCTGACTACGAAAAGCTTCGTGAATGT
	GATTTGGCAAAGGGGGGATCACTTGACAACGCGATTGTCGTAGATGACTACCGCGTATTGAAT
	GAGGACGGATTACGCTTCGAGTCTGAGTTCGTAACCCATAAAGTACTTGACGCAATCGGGGAT
	TTGTACTTATTAGGCAGCAGTTTGATCGGGGCGTTCGAGGGATACAAGTCAGGGCACGAGCT
	GAACAATCGCCTGCTGCGCGAATTGATGGTTCGTCAAGATGCGTGGGAATATACCTACTTCGA
	TACAGAGAATTACTTACCCGCTGTACATCCCGAATATTATCCTGTGGAAGCCTAAGCCCGGGT
.,,	GACTGCAGGAAG
^{Mku} murA	TTGTTTAACTTTAAGAAGGAGATATACC <u>ATG</u> CATCATCACCATCACCACGATCGTATTCGTATC
	ATTGGAGGCACGCCCTTAAAAGGCACAATTACGATCGGTGGCGCTAAGAACGCTGCCCTTGC
	CTTGATGCCAGCGTGTTTGTTGACTGACGAAACTTTGTCTCTTGCAAACCTTCCCCACCTGGT
	AGACATCACTACAATGGCGAACCTTCTGGCACAACATGGAGTCGGAATGATTCTGAATGGAGA

CGCGGCGAATGGCGGACATACCGGCCGCGTGCTTGAGTTGACTGCCGCGGAAATCACGAAT ACTACTGCCCCGTATGATCTGGTGCGTAAGATGCGTGCCTCGGTCCTTGTCTTGGGTCCCCTT TTGGCTCGCTGTGGACAGGCGCGCTTTCTTTGCCTGGCGGGTGTGCAATCGGAACTCGCCC CGTTGACTTGCACCTGAAAGCGTTGGAACAAATGGGTGCAGTGATCGAGCTGGAGGAAGGCT ACATCGTAGCGCACGTTCGTGGCCGCCTGAAGGGAGCACATATTATTTTCCCCCAGGTAACC GTCGGCGGACGGACATCTTGATGGCCGCTTCACTGGCTGAGGGGGAAACCGTAATCG CTAACGCCGCTCGTGAGCCAGAGGTCGCGGATTTGGCCCACTGCTTGGTAGCTATGGGGGC TAAAATTGAGGGCATTGGAAGCGGAACCTTGCACATCCAAGGTGTGGACCGCTTGCATGGGG CTCATTACTCGGTTGTGCCTGACCGCATTGAGACTGGGTCCTATGCTGTAGCAGCCGCGATC ACCCGCGGAGACATCGAATTGGTTGGGGCACGCTTTGACCTTATGGAGTCGGTAAACACGAT CTTAACCGAGTGCGGAGTACTGGTGGAGGAAACGCCGCGGGGATGCGCGTCTGCGCTGAG GGCCGCGATATTGCGGGGGTGGACATTATGACAGAACCCTATCCCGGTTTCCCTACCGATAT GCAGGCTCAGCTTATGGCACTGATGTCCACTTCATCGGGAGCCTCCATGATTACCGAGACAAT TTTTGAAAATCGCTTTATGCACGTTCCTGAAATGACGCGCATGGGAGCGCGTATCAACGTACA TGGCGCTTCAGCTATTGTACGTGGATCGGCGAAATTATCAGGCGCACAAGTAATGGCCACCG ACTTACGCGCGTCCGTTTCGTTAATCTTGGCCGGACTTGCTGCAAGGCGAAACAATCGTAA ATCGCGTGTACCACCTTGACCGTGGATACGAACGTGTAGAGGAGAAGTTAGCGGCGTGTGGA GCGCGTATCGAGCGTTTAAAAGCGACGGCTGCCGAGTAAGAATTCGAGCTCCGTCGACA TTGTTTAACTTTAAGAAGGAGATATACCATGCATCATCACCATCACCACGATAAACTGATCATT

^{Xba}murA

ACAGGTGGTGTCCTTTAAATGGAGAAATTCGCATCTCAGGTGCTAAGAATGCGGCGCTGCC GATCTTGGCCGCCACATTGCTTAGCGATTCGCCAATGACAGTGGGTAACATTCCACATCTGCA CGACGTTACTACGACTATGGAACTTTTAGGCCGTATGGGTGCAACTTGTAGTTGACGAGAC TATGAACATTGAAGTTGATGCAAGTTCCATTCGTGAATTTTACGCCCCATACGAACTGGTCAAA TCATTGCCGGGAGGATGCGCCATTGGCTCGCGTCCGGTTAACCTGCACATTCACGGCCTGGC GAAGATGGGTGCTGACATCCATGTTGAGAACGGGTTTATCCGCGCCCGTGCAAAACGTTTAAA AGGCACACGTCTGGTTATGGACTTGGTAACGGTGACGGCACTGAAAATTTGATGATGGCGG CAACCCTGGCAAAGGGAACACAGTGATTGAGAACGCTGCTCGTGAGCCTGAGGTTGTTGAT CTTGCGAATTGTTTGATCGCAATGGGGGCTAGCATTGATGGAGCGGGGACCGATACAATCAC CATCGATGGAGTCGACTCGCTTTCTGGTACACACTATAATGTACTTCCGGACCGCATCGAATC TGGCACGTTCCTTGTCGCCGCAGCAATTACTGGTGGTAACGTGAAGATTAAAGACACTCGTCC TGCAATGTTGGAAGCCATCCTGGAGAAACTTGAAGAGGTGGGAGCGGAGTTGGAAATCGGCG ATGATTGGATTCGTTTGAATATGCACGGACGCCCCTAAAGCCGTTAGCGTTCGCACAAGTC CGTACCCCGCCTTCCCGACTGACATGCAAGCTCAATTCACGGCACTTAACGCTGTAGCTGAC GGGACTGGTGTAATTCTTGAAACTGTATTTGAGAATCGTTTTATGCATGTACACGAGCTGCAG CGCATGGGTGCCAATATTCGTTTGGAGGGAAACACAGCAGTGACCCAGGGTGTCAAAAAACT GACTGCAGCGCCCGTGATGGCAACTGATCTGCGCGCTTCAGCCTCTCTTGTTTTGGCAGGAC ATTGAAGAAAACTGGCCCGTTTAGGAGCGCGTATCCGTCGTGTTCCCGGA**TAA**GAATTCGA **GCTCCGTCGACA**

^{Lpn}murA

TTGTTTAACTTTAAGAAGGAGATATACCATGCATCACCATCACCACGATAAATTACTGATC AATGGTGGTAAAGCTCTTCATGGTGAGGTAGTCATTAGTGGAGCAAAAAATGCGGCTTTACCC ATTATGGCTGCCTCTTTGTTGGCTAGTGACCACGTAACTATTTCGAATGTTCCCCACCTTAAGG ATATTACAACCATGATGGAACTGTTAGGTCAGCTTGGCGCGCACTTAATCGTGGATGAGAAAA TGAATGTCCAGGTAGATTCATCGCAGGTGAACGAGTTTGTGGCCCCCTATGATCTTGTCAAGA CGATGCGTCGTCAATCTTAGTCTTGGGGCCTATGCTGGCCCGCTTTGGAAAGGCCGACGTA AGCCTGCCGGTGGGTGCGCCATTGGAACACGCCCCGTCGACCTGCACTTAAAGGCCCTTC GTGCTATGGGCGCGGACATCACAGTCAAGAACGGATACATCAACGCACGTTGTAAAAAGGGC TGCCTGCAAGGCAAACGTTTAATGTTTGATACCGTAACTGTGACGGGAACAGAAAACGTGTTG ATGGCTGCAGTCCTGGCTGAGGGAATTACTACCATCAAGAATGCAGCCCGTGAGCCTGAAGT CGTGGATCTGGCTAACTTCCTTATCCAAATGGGTGCAAAAATTCGCGGCGCAGGTACTTCCAC TATTGAGGTGGAAGGGGTTGAGTCGCTGAACGGAGGGACATACTCCGTCATGTCCGATCGTA TCGAGGCTGGAACATATTTGGCAGCCGGTGCATTGACGCGCGCCAGGTAACTGTTAAAAAA GTCCGTCCAGACACTTGTTATCGCAACTTTGCAAGTTTGAGGAAGCGGGAGCCGAATTGACA ATCGGGGAAGACTGGGTCAGTCTTAATATGCACAATAAACGCCCGCAGGCTGTAAATATTTCA ACTGCCCGTATCCTGCCTTCGCTACGGATATGCAAGCCCAATTCATGGCTATGAACAGTGTT

^a The first codon of the open reading frame is underlined and the stop codon is indicated in bold.

SUPPLEMENTARY REFERENCES:

- 1 Miller, J. Experiments in molecular genetics. *Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.* (1972).
- Meeske, A. J. *et al.* SEDS proteins are a widespread family of bacterial cell wall polymerases. *Nature* **537**, 634-638, doi:10.1038/nature19331 (2016).
- Rietsch, A., Vallet-Gely, I., Dove, S. L. & Mekalanos, J. J. ExsE, a secreted regulator of type III secretion genes in Pseudomonas aeruginosa. *Proc Natl Acad Sci U S A* **102**, 8006-8011, doi:10.1073/pnas.0503005102 (2005).
- 4 Hoang, T. T., Karakhoff-Schweizer, R. R., Kutchma, A. J. & Schweizer, H. P. A broad-host-range Flp-*FRT* recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked *Pseudomonas aeruginosa* mutants. *Gene* **212**, 77-86 (1998).
- Qiu, D., Damron, F. H., Mima, T., Schweizer, H. P. & Yu, H. D. PBAD-based shuttle vectors for functional analysis of toxic and highly regulated genes in Pseudomonas and Burkholderia spp. and other bacteria. *Appl Environ Microbiol* **74**, 7422-7426, doi:10.1128/AEM.01369-08 (2008).
- Marmont, L. S. & Bernhardt, T. G. A conserved subcomplex within the bacterial cytokinetic ring activates cell wall synthesis by the FtsW-FtsI synthase. *Proc Natl Acad Sci U S A* **117**, 23879-23885, doi:10.1073/pnas.2004598117 (2020).
- Fivenson, E. M. & Bernhardt, T. G. An Essential Membrane Protein Modulates the Proteolysis of LpxC to Control Lipopolysaccharide Synthesis in Escherichia coli. *mBio* **11**, e00939-00920, doi:10.1128/mBio.00939-20 (2020).
- 8 Vvedenskaya, I. O. et al. Growth phase-dependent control of transcription start site selection and gene expression by nanoRNAs. Genes Dev 26, 1498-1507, doi:10.1101/gad.192732.112 (2012).
- 9 Choi, K. H. *et al.* A Tn7-based broad-range bacterial cloning and expression system. *Nat Methods* **2**, 443-448, doi:10.1038/nmeth765 (2005).
- Greener, A. & CaUahan, M. XL1-RED: a highly efficient random mutagenesis strain. *Strategies* **7**, 32-34 (1994).