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Tumor biopsy is one of the most widely used materials in cancer diagnoses and molecular studies, where
the purity of the biopsies (i.e., proportion of cells that are cancerous) is crucial for both applications.
However, conventional approaches for tumor biopsy purity evaluation require experienced pathologists
and/or various materials/experiments therefore were time-consuming and error prone. Rapid, easy-to-
perform and cost-effective methods are thus still of demand. Recent studies had demonstrated that
molecular signatures were informative to this task. Previously, we had developed GeneCT, a deep
learning-based cancerous status and tissue-of-origin classifier for pan-tumor/tissue biopsies. In the cur-
rent work, we applied GeneCT on datasets collected from various groups, where the experimental proto-
cols and cancer types differed from each other. We found that GeneCT showed high accuracies on most
datasets; for samples with unexpected results, in-depth investigations suggested that they might suffer
from imperfect purity. In silico mixture experiments further showed that GeneCT classification was highly
indicative in predicting the purity of the tumor biopsies. Considering that transcriptome profiling is a
common and inexpensive experiment in molecular cancer studies, our deep learning-based GeneCT could
thus serve as a valuable tool for rapid, preliminary tumor biopsy purity assessment.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In clinical medicine, tissue biopsy is a widely used technique for
disease (especially cancer) diagnoses and monitoring. Moreover,
tumor biopsy is also one of the most frequently used materials in
cancer-related studies, thus the purity of the biopsies (i.e., the pro-
portion of cells that are cancerous) is critical for experimental
designs and result interpretations [1]. In fact, tumor biopsies
contain cancerous cells as well as various types of non-cancerous
cells, such as immune cells, fibroblasts, blood vessels and adjacent
non-cancerous cells. Conventional approaches for purity evalua-
tions of tumor biopsies require experienced pathologists and/or
various materials/experiments/instruments, therefore were time-
consuming and error prone. In addition, cancer metastasis is very
commonandbiopsies from such cases are also of interests in various
molecular studies, while it is challenging to correctly determine the
tissue origin and purity of biopsy samples obtained from the meta-
static lesions. Rapid, easy-to-perform and cost-effective methods
for purity assessment of tumor biopsies are thus still of demand.

Recently, various computational approaches had been devel-
oped to investigate the purities of tumor biopsies. These methods
had successfully utilized the molecular signatures, such as gene
expressions (e.g., the ESTIMATE algorithm [2]), copy number aber-
rations (e.g., the ABSOLUTE algorithm [3]) and DNA methylations
(e.g., the LUMP algorithm [1]), to either estimate the purity [4–
7], or decode the cell compositions of biopsy samples [8–14].
Despite the high accuracy and consistency demonstrated in these
studies, however, the majority of these methods only focused on
biopsy samples from the TCGA (The Cancer Genome Atlas) project
[15] and very few had been validated outside the TCGA datasets. In
addition, most of the previous methods heavily relied on tissue-
and/or tumor-specific biomarkers, therefore their performances
in handling ‘‘novel” tissue/tumor types that had not been investi-
gated in the original studies were also unexplored. Moreover,
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except for the infiltrating immune cells and stromal cells, few
methods had modelled the existence of adjacent non-cancerous
tissue cells (e.g., hepatocytes in liver tumors). Contaminations of
these non-cancerous cells were also common and of particular
interest in cancer metastasis cases. As a result, molecular-based
computational approaches for tumor purity estimations are still
under active investigations.

We and others had previously shown that the expression profile
alone could indicate the cancerous status (i.e., cancerous or not)
and tissue origin of the biopsy samples. For instance, we had built

a deep learning based classifier, GeneCT (Generalizable Cancerous-

status and Tissue-of-origin classifier), which showed high accuracy
on the TCGA pan-cancer datasets [16]. More importantly, unlike
other methods for this task, GeneCT does not use any cancer/
tissue-type specific biomarkers to build the classification models.
Instead, we utilized the common oncogenes and tumor suppressor
genes to build the cancerous classification model, and transcription
factors to build the tissue-of-origin classification model [16]. Such
unique characteristic of GeneCT made us to explore the possibility
of GeneCT as a generalizable tool in estimating the purities of tis-
sue/tumor biopsies. We reasoned that cancerous and non-
cancerous samples could be viewed as tumor biopsies of high
and low purities. To this end, in this study, we applied GeneCT on
a list of datasets generated from various non-TCGA sources. Our
result showed that GeneCT is highly generalizable and held the
potential to handle transcriptome datasets generated by various
protocols and cancer types. More interestingly, for datasets with
unexpected prediction results, further molecular investigations
suggested that the poor accuracy was possibly related to impurity
of the samples, thus demonstrating the potential of GeneCT as a
rapid, preliminary purity evaluation tool for tumor biopsies.

2. Materials and methods

2.1. Transcriptome data processing

RNA-seq (whole transcriptome sequencing) data from various
sources were collected from the literature. Sample information,
RNA extraction and library preparation methods were summarized
in Supplementary Table S1. Briefly, 10 paired clear cell renal carci-
noma (ccRCC) tumor and adjacent normal kidney tissues, 17 breast
tumors of 3 subtypes and 3 normal breast organoid samples, 29
primary liver tumor with adjacent normal tissue and 20 portal vein
tumor thrombosis tissues, 10 basal cell carcinomas (BCCs) and 8
normal skin tissues, 10 pancreatic cancer tumors from the primary
site or lung metastasis, 71 acute myeloid leukemia (AML) samples
from bone marrow or peripheral blood, 23 primary colon tumors
with their adjacent normal as well as liver metastasis and 5 normal
adjacent liver tissues were collected. The RNA-seq data was pro-
cessed following TCGA’s analysis pipeline. Briefly, raw sequencing
reads were firstly pre-processed to remove sequencing adaptors
and low-quality cycles using Ktrim [17] with default parameters;
then the pre-processed reads were mapped to the human reference
genome (NCBI build 37/UCSC hg19) using MapSplice (v12.07) [18]
with default parameters; then gene expression was quantified and
normalized using RSEM (v1.1.13) [19] against the UCSC gene anno-
tation [20] with default parameters. Detailed information of the
TCGA RNA-seq data processing pipeline could be found at
https://webshare.bioinf.unc.edu/public/mRNAseq_TCGA/UNC_
mRNAseq_summary.pdf.

2.2. In silico mixture experiments

To quantitatively evaluate the performance and behaviour of
GeneCT on tumor samples with different purity levels, in silicomix-
ture experiments were performed using RNA-seq data from tumor
and adjacent normal tissue samples. For each mixture experiment,
a total of 20 million reads were generated according to a pre-set
tumor fraction (ranged from 0% to 100%). For instance, if the tumor
fraction was 30%, then 6 million reads would be extracted from the
RNA-seq data of the tumor sample while the rest 14 million reads
would be extracted from the normal sample. In addition, two batch
of mixture experiments were performed: the first batch used a pri-
mary colon tumor sample and its adjacent normal colon tissue,
while the second batch used a colon tumor liver metastasis sample
and its adjacent normal liver tissue. The in silico mixed sequencing
reads were analysed following the TCGA’s RNA-seq analysis pipe-
line as described before, then the quantified and normalized gene
expression values were analysed by GeneCT to predict the cancer-
ous status and tissue origin. Note that besides the qualitative pre-
diction result, GeneCT also provides confidence scores for the
classifications, where a value close to 1 means it is likely to be
cancerous (the closer the value to 1, the higher the confidence),
while a value close to 0 mans it is likely to be non-cancerous
(the closer the value to 0, the higher the confidence).

2.3. Building classification models

The detailed information on model building of GeneCT could be
found in our previous work. Briefly, pan-cancer RNA-seq data from
11 common cancer types (~5300 samples in total) were collected
from TCGA and separated into training and testing datasets. Due
to the much higher number of tumor than adjacent normal sam-
ples, we randomly selected half number of normal samples and
equal number of tumor samples to form the training dataset
(~500 samples) and all the resting samples as testing dataset
(~4800 samples). Notably, we did not use any cancer/tissue-type
specific biomarkers. Instead, we utilized known oncogenes/tumor
suppressor genes and transcription factors that showed high vari-
ability (i.e., not expressed constantly) in the RNA-seq data to build
cancerous status and tissue origin classification models (the gene
list could be found in Supplementary Table S2). Using artificial
neural network (ANN) approach and the expression values of the
variable oncogenes/tumor suppressor genes and transcription fac-
tors, we built two models for cancerous status and tissue origin
determination of the biopsy samples, respectively. A 10-fold
cross-validation was incorporated during training. Then the
trained models were applied on the testing dataset to validate its
performance, where our model demonstrated high accuracy
(>98% in both cancerous status and tissue origin predictions),
which was better than previous approaches. We also found that
our models possessed high generalizability, i.e., its performance
was not biased to any cancer types and it would work on ‘‘novel”
cancer types that did not exist in the training dataset [16].

2.4. Statistical analysis

Statistical significance between two groups was determined by
Mann-Whitney rank sum test. P < 0.05 was considered as statisti-
cally significant, and all probabilities were two-tailed.
3. Results

3.1. Application of GeneCT on cancer datasets collected from various
sources

GeneCT classification models were built using TCGA’s pan-
cancer transcriptome datasets, which data was generated under a
unified protocol and platform. We thus wonder whether GeneCT
possessed the ability to handle transcriptome data generated in
different scenarios. To do this, a list of cancer transcriptome data-
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sets from non-TCGA sources were collected from the literature.
Notably, these datasets were generated using various protocols
and library preparation kits. GeneCT prediction results were sum-
marized in Table 1. Briefly, study from Yao et al. [21] contained
10 pairs of clear cell renal cell carcinoma (ccRCC) tumors and adja-
cent normal kidney tissues; GeneCT showed an accuracy of 100% in
both cancerous status and tissue-of-origin classifications on this
dataset. Similarly, study by Eswaran et al. [22] used 17 breast
tumors (in 3 sub-types) and 3 adjacent normal breast tissues. Gen-
eCT classified 16 out of 17 (94.1%) tumor samples as cancerous and
3 out of 3 (100.0%) normal tissues as non-cancerous; meanwhile all
the samples (100.0%) were classified as breast origin. Yang et al.
[23] used paired hepatocellular carcinoma (HCC) tumor, portal
vein tumor thrombosis (PVTT) and adjacent normal liver tissues
from 20 patients in their study. GeneCT successfully classified 16
(80%) tumors, 19 (95%) PVTT samples to be cancerous and 18
(90%) normal tissues as non-cancerous. Meanwhile, 59 out of the
60 biopsies were classified as liver origin, corresponding to an
overall accuracy of 98.3% in tissue-of-origin classification on this
dataset.

Another study by Huang et al. [24] included liver cancer sam-
ples from 9 pairs of tumors and adjacent normal tissues. Strikingly,
GeneCT predicted only 1 out of 9 (11.1%) tumor samples as cancer-
ous and 5 out of 9 (55.5%) adjacent normal tissues as non-
cancerous, despite that all the samples (100.0%) were classified
as liver origin. To dissect the reason behind the unexpected results
on this dataset, we performed Principal Component Analysis (PCA)
using the expression profile of all annotated genes to study the
consistency among the samples [25]. As shown in Fig. 1A, the adja-
cent normal liver tissues which were predicted to be non-
cancerous (grey dots) was closer to the tumor samples predicted
as non-cancerous (blue dots), but not to those adjacent normal tis-
sues predicted to be cancerous (red dots). In contrast, PCA analysis
using Yang et al. dataset showed that adjacent normal tissues were
clustered together and were not mixed with the tumor samples
(Fig. 1B). Furthermore, we also investigated the expression of the
ALB (Albumin) gene, the most commonly used marker gene in
the liver tissue which is known to be frequently down-regulated
in liver cancer [26]. As shown in Fig. 1C, the tumor samples pre-
dicted to be non-cancerous (blue dots) by GeneCT indeed showed
a similar expression level to the adjacent normal tissues predicted
to be non-cancerous (grey dots), while much higher than those
adjacent normal tissues predicted to be cancerous (red dots;
P = 0.016). Furthermore, we applied ESTIMATE software on the
tumor samples in this dataset and found that those predicted as
cancerous by GeneCT showed much lower ESTIMATE scores com-
pared to others predicted as non-cancerous (Fig. 1D). The ESTI-
MATE score is a measurement of infiltrating stromal/immune
cells in the tumors and higher scores indicate lower purity [2];
Table 1
Prediction results of GeneCT on various non-TCGA datasets.

Study Sample type Total no. of samples Canc

Yao et al. Clear cell renal cell carcinoma 10 100.0
Normal kidney tissue 10 100.0

Eswaran et al. Breast cancer 17 94.1
Normal breast tissue 3 100.0

Yang et al. Hepatocellular carcinoma 20 80.0
Normal liver tissue 20 95.0
portal vein tumor thrombosis 20 90.0

Huang et al. Hepatocellular carcinoma 9 11.1
Normal liver tissue 9 55.5

McDonald et al. Pancreatic cancer 10 100.0
Garzon et al. Acute Myeloid Leukemia 71 83.1
Atwood et al. Basal cell carcinoma 13 100.0

Normal skin tissue 8 62.5
Fig. 1D thus suggested that GeneCT was consistent with ESTIMATE
on these samples. Together, these results suggested that in Huang
et al. dataset, the sample purity might not be perfect in the ‘‘mis”-
classified samples (e.g., possibly due to cross-contamination during
sample collection).

Furthermore, we also collected transcriptome datasets from
cancer types that were not included in the training dataset when
building GeneCT, in which scenario these tissue types were consid-
ered as ‘‘unknown” to further test GeneCT’s generalizability. For
example, McDonald et al. [27] investigated 10 primary tumor
and metastatic tumor samples from pancreatic cancer cases in
their study, and GeneCT successfully classified all samples (100%)
as cancerous. Similarly, GeneCT correctly classified 59 out of 71
(83.1%) acute myeloid leukemia (AML) cases as cancerous in a
study by Garzon et al. [28]. Notably, the dataset was composed
of 52 bone marrow and 19 peripheral blood biopsies, and GeneCT’s
accuracies on biopsies from these two sources were not identical
(88.5% and 68.4% on bone marrow and peripheral blood biopsies,
respectively), which was in line with the fact that biopsies from
bone marrow was usually preferred than peripheral blood in
AML diagnoses and studies [29]. The last dataset from Atwood
et al. [30] study contained 13 basal cell carcinoma (BCC) cases
and 8 adjacent normal skin tissues. As a result, GeneCT successfully
classified all the tumor cases (100%) as cancerous and 5 (62.5%)
normal tissues as non-cancerous. These results thus demonstrated
that GeneCT was highly generalizable and held the potential to be
applied on any cancer types, even ‘‘unknown” ones.

3.2. Application of GeneCT on metastatic cancer samples

Metastatic cancer cases were one of the most challenging sce-
narios for quality control of the tissue biopsies. To evaluate the per-
formance of GeneCT on such cases, two datasets with metastatic
cancer samples were collected from the literature and the results
were shown in Table 2. Both datasets were generated from colorec-
tal cancer (CRC) with liver metastasis, which is one of the most
common metastatic cancer types. Briefly, Lee et al. [31] employed
5 cases in their study and profiled the transcriptome of the primary
colon tumor, metastatic tumor in liver, adjacent normal tissues of
colon and liver for each case. GeneCT application led to 100% accu-
racy on this dataset in both cancerous-status and tissue-of-origin
classifications (Table 2). In the other dataset, study from Kim
et al. [32] recruited a larger cohort of colon-liver metastasis cases.
GeneCT successfully classified all the adjacent normal colon tissues
(100.0%) as non-cancerous and of colon origin. Meanwhile, 17 out
of 18 (94.4%) of the colon tumors were predicted as colon origin;
however, only 10 (55.6%) of them were predicted as cancerous.
Moreover, only 50.0% (9 out of 18) of the liver metastatic samples
were predicted as cancerous and 50.0% (9 out of 18) were predicted
erous status prediction accuracy (%) Tissue-of-origin prediction accuracy (%)

100.0
100.0
100.0
100.0
95.0
100.0
100.0
100.0
100.0
NA
NA
NA
NA



Fig. 1. Troubleshooting of the liver cancer datasets. PCA result on (A) Huang et al. dataset and (B) Yang et al. dataset. The samples were colored according to cancerous status
prediction results. (C) Expression of ALB gene among the samples. Expression was quantified as log2-scaled RPKM values. (D) ESTIMATE scores on the tumors grouped by
GeneCT prediction result.

Table 2
Prediction results of GeneCT on cancer metastasis datasets.

Study Sample type Total no. of
samples

No. of samples predicted
to be cancerous

Accuracy (%) No. of samples predicted
to be colon origin

Accuracy (%)

Lee et al. Colon tumor 5 5 100.0 5 100.0
Liver metastasis 5 5 100.0 5 100.0
Normal colon tissue 5 0 100.0 5 100.0
Normal liver tissue 5 0 100.0 0 100.0

Kim et al. Colon tumor 18 10 55.6 17 94.4
Liver metastasis 18 9 50.0 9 50.0
Normal colon tissue 18 0 100.0 18 100.0
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to be colon origin with the remaining 50.0% (9 out of 18) predicted
as liver origin (Table 2). To confirm the prediction result, we per-
formed PCA analysis using the expression profile of all annotated
genes on this dataset, paying special attention to the colon tumors
that were (mis-)classified as non-cancerous and the metastasis
samples that were (mis-)classified as liver origin. The result
(Fig. 2A) indicated that, indeed the colon tumor samples predicted
as non-cancerous (blue dots) were closer to the adjacent normal
colon tissues (grey dots) than those predicted as cancerous (red
dots). Furthermore, NAT1 (N-Acetyltransferase 1; Fig. 2B) gene,
known to be down-regulated in colon tumors [33] displayed signif-
icantly lower expression in the colon tumors classified as cancer-
ous (red dots) compared to those classified as non-cancerous
(P = 0.0014). Similarly, PCNA (Proliferating cell nuclear antigen;
Fig. 2C) gene [33], known to be up-regulated [33], showed signifi-
cantly higher expression in colon tumors classified as cancerous
than those classified as non-cancerous (P = 0.021). These results
led us to speculate that the purity of the colon tumors that were
classified as non-cancerous might be not as high as those predicted
as cancerous. Indeed, both colon tumors and liver metastasis sam-
ples predicted to be non-cancerous showed much higher ESTI-
MATE scores than those predicted as cancerous (Fig. 2D, E). In
addition, we examined the expression profiles of top 10 up-
regulated and 10 down-regulated genes in colon cancer mined
from GEPIA database [34]. The results were shown in Supplemen-
tary Fig. S2. We found that for 15 (75%) out of 20 genes investi-
gated, the tumors predicted as non-cancerous expressed in
similar levels to the adjacent normal colon tissues which were
significantly different from those predicted as cancerous. For the
metastasis samples, we replotted the PCA result using the tissue-
of-origin prediction result as the color scheme (Fig. 2F). The metas-
tasis samples were not clustered together while those samples



Fig. 2. Troubleshooting of the colon cancer with liver metastasis datasets. (A) PCA result colored by the cancerous status prediction results. (B) Expression of NAT1 and (C)
PCNA genes among the normal colon and colon tumor samples, respectively. The black and red dots represent the samples predicted as non-cancerous and cancerous,
respectively. (D) ESTIMATE scores on colon tumors grouped by GeneCT prediction result. (E) ESTIMATE scores on liver metastasis samples grouped by GeneCT prediction
result. (F) PCA result colored by the tissue-of-origin prediction results. (G) Expression of ALB, (H) JCHAIN and (I) TMSB10 genes among the normal colon, colon tumor and liver
metastasis samples. The black and red dots represent the samples predicted to be colon and liver origin, respectively. Expression was quantified as log2-scaled RPKM values in
B, C, G, H, and I. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. GeneCT prediction results on the in silico mixture data using (A) a colon tumor sample and its adjacent normal colon tissue, and (B) a colon tumor liver metastasis
sample and its adjacent normal liver tissue. The y-axis was the scores in GeneCT cancerous status prediction, where 1 means cancerous and 0 means non-cancerous. Each dot
represented one mixture experiment and the color of the dots indicated the tissue origin prediction result: black meant colon and red meant liver. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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classified as colon origin (green dots) were closer to the colon
tumors (red dots) and adjacent normal colon tissues (grey dots).
The expression patterns of the liver marker gene, ALB, were shown
in Fig. 2G. The metastasis samples classified as liver origin (red
dots) showed a significantly higher expression (P = 0.024) than
those classified as colon origin (grey dots). Furthermore, we mined
Expression Atlas [35] and identified two highly expressed, colon-
specific genes: TMSB10 (Thymosin Beta 10) and JCHAIN
(Immunoglobulin J chain precursor). As shown in Fig. 2H and I,
the metastasis samples that were classified as liver origin (red
dots) showed lower expression than those classified as colon origin
(grey dots; P = 0.050 and 0.011 for TMSB10 and JCHAIN,
respectively). These results thus suggested that the metastatic
tumor samples classified as liver origin might suffer from
contamination of adjacent liver cells, and further demonstrated
that GeneCT classifications was informative in evaluating the purity
of the tissue biopsies in metastatic cancer samples.

3.3. Relationship between GeneCT classification and tumor purity

To further investigate the relationship between GeneCT
prediction and tumor purity, two batches of in silico mixture
experiments were performed using Lee et al. dataset. We first
mixed the RNA-seq reads from a colon tumor and its adjacent
normal colon tissue with various combinations. As a result, the
proportion of tumor-derived reads in the in silico mixture data
ranged from 0% to 100% with a gradient of 10% to simulate var-
ious levels of tumor purity. The mixture experiments were
repeated 10 times and the GeneCT prediction results were shown
in Fig. 3A. Note that the detailed cancerous status prediction
score (a value between 0 and 1, where 1 means cancerous and
0 means non-cancerous) calculated by GeneCT were utilized.
Fig. 3A showed that GeneCT prediction was qualitative in infer-
ring the cancerous status of the samples that it would predict
the sample as non-cancerous when the tumor fraction was
below 80%. In the second batch, we performed mixture experi-
ments using a liver metastasis and its adjacent normal liver tis-
sue. The results were shown in Fig. 3B, which also showed a
qualitative characteristic: GeneCT would predict the sample to
be cancerous when the tumor fraction was higher than 30%.
Moreover, when the tumor fraction increased, the tissue origin
prediction turned from liver to colon. The results thus suggested
that GeneCT classification was indeed indicative in predicting the
purity of the tumor biopsies.
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4. Discussion

In this study, we showed that our previously developed cancer-
ous status and tissue-of-origin classifier, GeneCT, which utilized a
deep learning approach to analyze transcriptome data, was able
to work on various cancer types and serve as a rapid preliminary
tool for tumor/tissue biopsy purity evaluations. It is notable that
for the transcriptome datasets tested in this study, the RNA extrac-
tion protocols and library preparation kits are different from each
other as well as from TCGA, which scenario may introduce adverse
effects on the consistency of gene expression profiles [25,36]. More
importantly, considering that GeneCTwas trained using TCGA data-
sets, these non-TCGA sources therefore allowed us to perform
independent investigations and avoided the analysis to go around
in circles. GeneCT showed high accuracy on most of these datasets.
On the other hand, for those yielding a poor performance, further
investigations indicated that the incorrect classifications might
stem from the impurity of the samples. In fact, cross-
contamination between tumors and adjacent normal tissues fre-
quently occurs during biopsy collection; even TCGA could only
guarantee that 80% cells in their tumor samples are cancerous.
Impurity is especially detrimental for cancer metastasis studies
because it may lead to incorrect interpretation of the results [1].
We think that the purity issue may not affect the results and con-
clusions in Huang et al. and Kim et al. datasets tested here, while
may limit the sensitivity of their assays in discovering informative
genes/pathways for downstream functional studies.

One valuable characteristic of GeneCT is that it is only based on
few common oncogenes, tumor suppressor genes and transcription
factors to do the analysis. Such genes are known to be frequently
altered in various cancer types, therefore purity estimation using
these genes should introduce minor bias in downstream cancer
type specific differentially expressed genes mining, which is the
most widely performed investigations in molecular cancer studies.
In addition, we believe that generalizability is another valuable
characteristic for any purity evaluation tools, especially the ability
to handle ‘‘unknown” tissue types. We think that the high general-
izability of GeneCT originates from the feature genes that we used
to build it. Unlike most other methods [37–41], GeneCT does not
require any cancer/tissue-type specific biomarkers for its classifi-
cation models. We reasoned that the numbers of cancer/tissue-
type specific biomarkers usually vary significantly among different
cancer/tissue types [34,35] thus might introduce biases in the clas-
sification models. In addition, currently it is infeasible to include all
cancer types to build one universal classifier due to the large num-
ber of existing and ever-growing newly discovered cancer types,
therefore for classifiers trained with cancer-type specific biomark-
ers, it could be risky to apply them on biopsies with unclassified or
unknown cancer types considering that their underline biomarkers
are only informative to specific cancer types during training. In
contrast, oncogenes and tumor suppressor genes used by GeneCT
are usually not specific to one cancer type instead frequently
altered in multiple cancer types [42–44]. Similarly, even though
most of the transcription factors do not show strong specificity
toward certain tissue type [45,46], however, their expression pat-
tern is highly related to the tissue identity [46,47], thus promises
the generalizability. The high performance on datasets of various
(including ‘‘unknown”) cancer types from non-TCGA sources
indeed demonstrated the wide applicability of our approach as
well as the generalizability of our method.

The in silico mixture experiments showed that GeneCT
prediction results were indeed indicative to the purity of the tumor
biopsies. The data also suggested that deep learning technology
could play roles in biopsy purity evaluation fields. However, the
results on the two batches of mixture experiments also showed
that GeneCT prediction might only serve as a preliminary, qualita-
tive assessment of tumor purity.

5. Conclusion

In conclusion, considering the high generalizability and require-
ment of transcriptome data only, we believe that GeneCT could
serve as a valuable tool for rapid, preliminary purity evaluation
of pan-cancer tumor biopsies with minor request on materials
and cost. Further works towards a quantitative method to accu-
rately deduce the purity level of the tumor biopsies using deep
learning approaches would be valuable in the future (e.g., using
various purity levels of tumor biopsies to training the models).
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