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Aim: Propose new metrics of impulsiveness of manual chest compressions (CCs) that account for 
shape and duration, separate the characteristics of the compressive part of the CC cycle from 
those of the recoil part, and are uncorrelated to CC depth and rate.

Methods: We conducted a retrospective analysis of adult out-of-hospital cardiac arrest monitor-

defibrillator recordings having CPR data. Specifically, episodes of adult patients with ≥ 1000 
compressions free of leaning were examined. CCs were obtained from the depth signal of the valid 
episodes, and we calculated the novel metrics: compression area index (CAI), recoil area index 
(RAI), compression impulsiveness index (CII) and recoil impulsiveness index (RII). Generalized 
linear mixed-effects models and Jonckheere-Terpstra trend analyses were employed to measure 
differences between populations and trends, and the absolute value of Pearson’s correlation 
coefficient |𝑟| was used to report dependence between variables. Statistics are reported as median 
and interquartile range.

Results: We analyzed 982,340 CCs corresponding to 453 episodes, for which we calculated their 
CAI, RAI and duty cycle (DC). We analyzed the metrics for various populations: age, sex, any 
ROSC achieved and disposition, and found that CAI was significantly different according to 
patient disposition and RAI relative to age and sex (𝑝 < 0.05). None of the metrics was correlated 
strongly to depth or rate (|𝑟| values of 0.22 or smaller), and all of them varied for CC series 
corresponding to the same rescuer over the course of resuscitation (𝑝trend < 0.05). However, we 
observed that the metrics are not balanced, in that for any value of DC, CAI and RAI span almost 
their entire ranges.

Conclusion: The proposed metrics correctly and completely describe manual CC waveforms, 
improve upon the DC, since they depend on the signal waveform, and provide additional 
information to current indicators of quality CPR, depth and rate. Furthermore, they allow to 
differentiate the compressive and recoil parts of the CC cycle, reflecting influence of the rescuer 
(via CAI or CII) and of the biomechanics of the patient’s chest (via RAI or RII). Thus, they have 
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the potential to contribute to better understanding CPR dynamics and, eventually, to enhanced 
quality of CPR practice as additional indicators of proper manual CC technique.

1. Introduction

In sudden cardiac arrest, a key link in the chain of survival is early cardiopulmonary resuscitation (CPR). Chest compressions and 
ventilations are essential elements of modern CPR, and quality indicators for these maneuvers have been established both by the 
American Heart Association (AHA) and the European Resuscitation Council (ERC) guidelines [1,2], as well as by other Committees 
on Resuscitation worldwide.

Guidelines include recommendations for compression depth, rate, complete release and hands-on time, based on consensus exam-

ination of available evidence, which constitute current references for CPR quality. However, the precise relationships among these 
parameters and their effects on patients’ haemodynamics, and ultimately to survival, are still not well understood [3], warranting 
further research. One potential advance stems from the use of high-impulse chest compression (HI-CC) techniques, defined as those 
characterized by a “brief” duration and applied with “moderate force” [4,5]. HI-CC methods have been associated with improved 
haemodynamics in animals and, as a consequence, to better cardiac outcomes, since the early 80s [4–9] but research in this area 
has had little continuity over the years and a small impact on current resuscitation guidelines. Traditionally, works in the literature 
have mainly characterized HI-CC through reduced duty cycles1 (DC), i.e. such that the duration of the compressive part of the CC 
waveform is smaller than half its total duration [2,8,10,11]. This has been reflected in the latest AHA guidelines [2], which men-

tion two studies [12,13] reporting DC in clinical practice below 50%. Even so, they do not provide enough evidence of improved 
haemodynamics or survival, which is why the current recommendation of 50% for DC remains.

Our hypothesis is that impulsiveness might be better characterized through a morphological analysis of the depth waveform, 
combined with its duration, especially for manual CCs. The purpose of this study was to better examine the impulsiveness of the 
CC signal, for the compressive and recoil parts of the cycle, derived from an existing out-of-hospital cardiac arrest (OHCA) dataset. 
Improved quantification of impulsiveness might facilitate replication of the success of animal studies in human studies, providing 
evidence of their usefulness as an additional quality indicator. To that end, we introduce four new metrics of impulsiveness, and 
examine the DC as well as depth and rate to assess the independent value of our approaches. We propose that these new metrics may 
contribute to a better understanding of CPR dynamics, reflecting characteristics of the rescuer and of the biomechanics of the chest, 
leading to a renewed interest in this field and, eventually, to enhanced quality of CPR practice.

2. Materials and methods

2.1. Data collection

Data used in the analysis were extracted from a collection of adult (≥ 18 years old) OHCA resuscitation episodes, collected by 
Tualatin Valley Fire & Rescue (Tigard, OR, USA) from 2013 through 2017. Further details of this database can be found in our 
previous studies [14,15]. No patient sensitive information was required for this study.

Episodes were collected using HeartStart MRx monitor-defibrillators equipped with Q-CPR monitors (Koninklijke Philips N.V, 
Amsterdam, The Netherlands), which incorporate force and acceleration sensors. Rescuers received real time feedback on chest 
compression (CC) depth, rate and presence of leaning from the monitors. Acceleration and force signals were extracted from the 
monitor-defibrillators and analyzed with Matlab® (Natick, MA, USA). Depth and velocity signals were computed from chest acceler-

ation during compressions, as previously described in other publications [16].

2.2. Data inclusion and annotation

Each compression was automatically detected in the velocity signal by using a 25 mm/s threshold, and corroborated by a peak 
force of at least 5 kg-F. Leaning was annotated for the intervals of time in which the force exceeded a 2.5 kg-F at the end of the 
compression, representative of the rescuer not releasing adequately [16]. All episodes included in the study contained at least 1000 
compressions free of leaning.

Several annotations were performed for each CC in the depth signal, and the following parameters were calculated (see Fig. 1

(b)):

• Peak depth (𝑑𝑝): maximum value of the depth signal (measured in mm).

• Compression time (𝑇𝑐): duration of the compression part of the cycle (in s).
• Recoil time (𝑇𝑟): duration of the recoil part of the cycle (s).
• Compression area (CA): area under the depth curve corresponding to the compression part of the cycle.

• Recoil area (RA): area under the depth curve corresponding to the decompression part of the cycle.
2

1 The duty cycle of the CC corresponds to the proportion of the duration of the compression phase with respect to the total duration of the CC cycle.
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Fig. 1. Graphical examples of the comparison between the metrics DC and CAI, with signals extracted from our database. (a-b) Comparison of waveforms presenting 
very similar values of DC, for fixed depth and duration, but large variation of CAI. (c-d) Comparison of waveforms presenting very similar values of CAI, for fixed 
depth and duration, but large variation of DC.

In addition, we identified CC pauses as intervals of time lasting longer than 5 seconds in which no CC had been detected; and CC 
series as sets of successive CCs between 2 consecutive pauses.

2.3. Metrics of impulsiveness

We developed the following metrics of impulsiveness to characterize the resuscitation maneuvers:

• Compression area index (CAI): proportion of the area under the depth curve corresponding to the compression part of the 
cycle, CA, with respect to the area of the rectangle depicted in Fig. 1 (b).

• Recoil area index (RAI): proportion of the area under the depth curve corresponding to the recoil part of the cycle, RA, with 
respect to the area of the rectangle of Fig. 1 (b).

These metrics are smaller for more impulsive signals, and therefore provide inverse measurements of impulsiveness of CCs. For 
comparison with CAI and RAI, we also computed the duty cycle of each compression. The idea behind the definition of the inverse 
metrics was to compare them to the DC of the CCs.

In addition, we calculated the impulse factor of each CC, defined as the relation between its maximum absolute value and its 
mean absolute value [17–20] (see Supplementary Material). In particular, we obtained the impulse factor of the compression (IFc) 
and of the decompression (IFr ) parts of the cycle.

We also defined and calculated the following metrics of impulsiveness:

• Compression impulsiveness index (CII): direct measurement of the impulsiveness of the compressive part of the cycle of a CC. 
It is computed as the inverse of CAI, resulting directly proportional to IFc and inversely proportional to DC (see Supplementary 
3

material).
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Table 1

Patient characteristics and disposition of cases with extended CPR (≥1000 
compressions, leaning absent). ROSC refers to any event of return of spon-

taneous circulation.

Characteristic Observed Value

Age (y), median (IQR) 66 (53–75)

Sex, n (%)

Female 153 (33.8)

Male 300 (66.2)

Initial EGC rythm, n (%)

Shockable (VF/VT) 116 (25.6)

Pulseless electrical activity 119 (26.3)

Asystole 210 (46.3)

Not recorded 8 (1.8)

Return of Spontaneous Circulation (ROSC), n (%) 145 (32)

Disposition, n (%)

Died in field 170 (37.5)

Died in emergency department 166 (36.6)

Died after hospital admission 89 (19.7)

Discharged alive 20 (4.4)

Unknown 8 (1.8)

• Recoil impulsiveness index (RII): direct measurement of the impulsiveness of the decompression part of the cycle. It is com-

puted as the inverse of RAI, resulting directly proportional to IFr and inversely proportional to 1 − DC (see Supplementary 
material).

Therefore, CII (or CAI) is composed of a duration dependent factor (DC) and a shape dependent factor (IFc). This is like saying 
that the metric decomposes the waveform into a characteristic used for mechanical CPR, the DC, associated to rectangular force 
signals; and a characteristic relevant to the shape of manual CPR, the IFc. In effect, the higher the IF of the compression or the lower 
its DC, the greater its impulsiveness according to CII. A similar reasoning applies to RII (or RAI).

2.4. Statistical analysis

Distributions of the metrics and annotations are reported in the form of tables and box plots, which include median and in-

terquartile ranges, IQR, (25% and 75% percentiles). Comparisons among population groups were analyzed with generalized linear 
mixed-effects (GLME) models, for which the patient was used as a random factor [21]. Trends of the metrics with respect to the 
number of CCs were assessed with Jonckheere-Terpstra tests [15,22] for series between pauses. For both types of analyses, 𝑝-values 
smaller than 0.05 were considered significant. Statistical dependence of the metrics in relation to compression depth and rate were 
assessed using Pearson’s linear correlation coefficient per patient in absolute value, |𝑟|.

3. Results

3.1. Description of the database

Of all the CCs from the 616 original cases corresponding to adults, we discarded those with evidence of leaning (7.4% of all 
available CCs). Subsequently, we imposed the episode inclusion criteria of at least 1000 CCs with leaning removed, which left us 
with 453 patients for analyses. As a result, we analyzed a total of 982,340 CCs, with median 1957 (1408–2762) CCs per episode. The 
general characteristics of the database are reported in Table 1.

For this cohort of patients, the median age was 66 (53–75) years old, and 34% were female. Initial ECG rhythm was asystole 
in 46.3% of the episodes, shockable in 25.6%, and pulseless electrical activity in 26.3%. Return of spontaneous circulation (ROSC) 
was achieved in the field, at some point during the extended CPR procedures, in 32% of the patients. Among those with recorded 
disposition, death occurred in the field in 37.5% of the episodes, in the emergency department in 36.6% and after hospital admission 
in 19.7%; and 4.4% of the patients survived to hospital discharge. These are representative of patients with extended CPR, who are 
known to have less favorable outcomes [14].

Median compression depth was 51.8 (44.2–59.2) mm, and median compression rate was 112.6 (104.5–120.8) compressions per 
minute (cpm).

3.2. Characteristics of the metrics

In Table 2 we present overall statistics of CAI, RAI, DC, CII and RII. For reference, we also include information of IFc and IFr . 
4

Values of CAI, characterized by a median of 18.1%, are smaller than those of RAI, of median 26.0%, indicating greater impulsiveness 
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Table 2

Metrics characteristics given as median (25%–75% percentiles) for the CCs of patients categorized

according to the percentage of CCs complying with guidelines (50–60 mm & 100–120 cpm) and 
for all CCs (global). The values of IFc and IFr are also given for reference and completeness.

Metric
<25% 25-50% >50% Global

(n = 254) (n = 146) (n = 34) (n = 453)

CAI (%) 18.0 (15.8–20.0) 18.2 (16.2–20.0) 17.8 (16.0–19.4) 18.1 (16.0–20.0)

RAI (%) 25.9 (23.7–28.1) 26.2 (24.1–28.3) 26.1 (24.1–28.1) 26.0 (23.9–28.2)

DC (%) 39.9 (35.3–43.6) 40.6 (36.8–43.6) 40.5 (37.0–43.3) 40.2 (36.0–43.6)

CII 5.6 (5.0–6.3) 5.5 (5.0–6.2) 5.6 (5.1–6.2) 5.5 (5.0–6.3)

RII 3.9 (3.6–4.2) 3.8 (3.5–4.2) 3.78 (3.6–4.2) 3.8 (3.5–4.2)

IFc 2.2 (2.0–2.4) 2.2 (2.0–2.4) 2.2 (2.1–2.4) 2.2 (2.0–2.4)

IFr 2.3 (2.1–2.6) 2.2 (2.1–2.5) 2.3 (2.0–2.5) 2.3 (2.1–2.5)

Fig. 2. Boxplots of the variations of CAI and RAI with respect to DC and 1 −DC, quintilized within their full observed range (more specifically, from 30% to 50%, 
and from 50% to 70%, respectively).

of the compression phase. This is representative of our database, since it happens in 98% of all analyzed CCs. The same behavior is 
reflected by values of CII, with median 5.5, which are larger than those of RII, with median 3.8.

Fig. 2 shows boxplots of the variations of CAI and RAI with respect to DC and 1 − DC, quintilized from 30% to 50%, and from 
50% to 70%, respectively. Due to the linear case-wise relation with DC, the median values of CAI tend to increase with respect to DC 
(Fig. 2 (a)). A similar initial trend is seen in between RAI and 1 −DC, which ends ups plateauing (Fig. 2 (b)). Moreover, we observe 
that the variations of the metrics are not balanced; indeed, no matter the value of DC or 1 −DC, both CAI and RAI span almost their 
entire ranges of possible values. For instance, for DC constrained from 38% to 42%, CAI can take values from 13.30% to 23.42%, 
well beyond its 25% and 75% percentiles (see Table 2).

Table 2 further shows statistics of the metrics for the CCs of patients categorized according to the percentage of CCs complying 
with guidelines [2,23] (depth between 50 and 60 mm and rate between 100 and 120 cpm). Differences among categories were found 
to not be statistically significant for CAI (𝑝 = 0.35) or RAI (𝑝 = 0.27) but significant for DC (𝑝 = 0.01).

We also analyzed CAI, RAI and DC for different populations: patients grouped by age, sex, ROSC achieved or not and disposition. 
The results of such analysis are presented in Table 3, where median and IQRs for each metric and population are given, as well as 
the 𝑝-value of the grouping. Significant differences were found for CAI according to disposition (𝑝 = 0.01), for RAI regarding age 
(𝑝 ≪ 0.05) and sex (𝑝 ≪ 0.05), and for DC relative to age (𝑝 ≪ 0.05).

3.3. Relation with depth and rate

We present the distributions of |𝑟| for all episodes in Table 4. Note that, before computing values of |𝑟|, we normalized all metrics 
to their median over the first 100 compressions, in order to properly combine patients with differing statistics [14,15]. Specifically, 
CAI presents a median |𝑟| value with respect to depth of 0.16, RAI of 0.16 and DC of 0.22. Then, CAI presents a median |𝑟| value 
with respect to rate of 0.13, RAI of 0.10 and DC of 0.10. It is noteworthy that all correlations are very small, and that CAI and RAI 
5

were characterized by a median correlation comparable to that of DC for all considered scenarios.
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Table 3

Median (25%–75% percentiles) for each metric and population, and significance 𝑝-value of the 
grouping. The 𝑝-values are obtained from the fit of GLME models to each of the populations, with 
the group as fixed variable and the patient as random variable.

Characteristic CAI (%) RAI (%) DC (%)

Age, (y)

≤ 55 18.1 (16.0–19.9) 25.1 (23.2–27.1) 41.0 (36.8–44.2)

56–65 18.2 (16.1–20.3) 25.9 (23.7–28.1) 40.5 (36.5–43.9)

66–75 18.2 (16.1–20.1) 26.5 (24.4–28.5) 40.4 (36.3–43.7)

≥ 76 (15.6–19.8) 26.9 (24.6–29.1) 38.8 (34.4–42.2)

𝑝-value 0.35 ≪ 0.05 ≪ 0.05
Sex,

Female 18.2 (16.1–20.1) 26.7 (24.7–28.9) 40.3 (36.3–43.5)

Male 18.0 (15.9–20.0) 25.7 (23.5–27.8) 40.2 (35.9–43.6)

𝑝-value 0.74 ≪ 0.05 0.92

Any ROSC,

No 18.0 (15.9–20.0) 25.9 (23.7–28.1) 40.2 (35.9–43.7)

Yes 18.2 (16.2–20.1) 26.3 (24.2–28.4) 40.3 (36.4–43.4)

𝑝-value 0.18 0.13 0.77

Disposition,

Died in field 17.8 (15.7–19.7) 26.5 (24.4–28.7) 39.8 (35.6–43.3)

Died in emergency department 18.0 (15.9–20.0) 25.7 (23.5–27.9) 40.2 (35.9–43.7)

Died after hospital admission 18.4 (16.4–20.3) 26.2 (24.0–28.3) 40.5 (36.6–43.7)

Discharged alive 18.9 (17.1–20.6) 25.5 (23.6–27.2) 41.2 (38.0–43.7)

𝑝-value 0.01 0.24 0.32

Table 4

Median (IQR) values of Pearson’s correlation coef-

ficient in absolute value, |𝑟|, for each metric with 
respect to depth and rate.

Metric |𝑟| vs depth |𝑟| vs rate

CAI 0.16 (0.08–0.31) 0.13 (0.06–0.20)

RAI 0.16 (0.08–0.28) 0.10 (0.05–0.18)

DC 0.22 (0.11–0.35) 0.10 (0.05–0.18)

Table 5

Variations of CAI, RAI and DC in % after 20 sets of 10 CCs 
for populations according to age and sex, as well as overall.

Characteristic ΔCAI (%) ΔRAI (%) ΔDC (%)

Global +2.16 +3.66 -1.34

Age, (y)

≤ 55 +2.19 +3.70 -1.38

56–65 +2.10 +3.19 -1.12

66–75 +2.30 +3.35 -1.37

≥ 76 +2.03 +4.33 -1.43

Sex,

Female +2.22 +4.24 -1.94

Male +2.13 +3.36 -1.03

3.4. Evolution of the metrics

In order to analyze the time evolution of the different metrics, we obtained their variations within series for sets of 10 successive 
CCs, after normalizing each set to the first set of the series. A total of 5,440 series of median (IQR) length 190 (119–222) CCs were 
used. Fig. 3 shows how median (solid line) and 25% and 75% percentiles (dashed line) of CAI and RAI increased within series, and 
of DC decreased when every patient was considered. We found statistical significance with regard to tendency of variation for all 
metrics (𝑝trend values ≪ 0.05).

In Table 5 we also present the total variation of each metric after 20 sets of 10 CCs for populations according to age and sex, as 
well as overall. The tendencies are the same globally as the are for each population, i.e. increasing for CAI and RAI and decreasing 
for DC. Variations are also very similar in absolute value, except for RAI for patients over 76 years of age and for females, which are 
6

substantially higher, and for DC for females, which is lower.
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Fig. 3. Time evolution of CAI, RAI and DC within series, grouping CCs in sets of 10 successive CCs and normalizing each set to the first set of the series. Solid lines 
indicate median values of the metrics every 10 CCs for series lasting around 200 CCs.

4. Discussion

In modern CPR, simple application of the maneuver is just not enough, and resuscitation guidelines [1,2] include optimal ranges 
for rate, depth and complete release and hands-on time, among others, based on careful analysis of available evidence. Nevertheless, 
non-conclusive associations between individual CC quality parameters and favorable neurological outcomes have been reported [3], 
which opens up opportunities for improving the maneuver of CC.

One area that warrants attention [24] is relative to HI-CC techniques. These were first studied by Maier et al. in a classical 
study [4] in which researchers considered the effects of varying manual compression rate, force and duration in intact chronically 
instrumented dogs. This practice resulted in augmented cardiac blood flow and better cardiac outcomes when CCs of “brief” duration 
were applied with “moderate force”. Swart et al. [5] then proposed a controlled porcine model, based on a mechanical CPR method, 
where compression rate, duration and ventilation rate were fixed, while the duty cycle was allowed to vary. They found significantly 
better haemodynamic measurements when shorter compression durations were used. More recently [25,26], release velocity (RV) 
has also been proposed as a potential CPR quality parameter, but the association between RV and survival remains unclear [27].

Despite compressive waveform types having been considered in the literature [8,10,28,29], over the last 20 years studies have 
mainly focused on the duty cycle of the CC, associating shorter DCs (less than 50%, and as low as 20% [5]) to greater impul-

siveness [6–8,12,24,30]. However, DC is a metric inherited from machinery applications, and only makes straightforward sense in 
scenarios with mechanical CC devices, employing rectangular force waveforms. Therefore, it is not a sufficient descriptor of manual 
CC methods, since it fails to take the compression signal shape into consideration and, furthermore, completely omits quantification 
of the dynamics of chest recoil.

In order to properly describe the impulsiveness of CCs, in this paper we present new metrics of impulsiveness capable of account-

ing for the duration and the shape of CCs, as well as of differentiating the compression and decompression phases of the CC cycle. 
These are CAI, RAI, CII and RII). Table 2 shows that both DC and IF vary substantially across the patients from our database. This 
information can only be captured by metrics such as CAI and RAI, or their inverses, because they are formed as linear combinations 
of DC and IF. In the same table we observe that CAI and RAI are very different from each other, confirmed by CAI being smaller than 
RAI for 98% of the CCs of our database. This is a consequence of a greater impulsiveness of the compression phase, which may reflect 
that CAI is more related to characteristics of the rescuer and RAI to the biomechanical characteristics of the of the patient’s chest. Ta-

ble 3 further shows that CAI was significantly different for groups according to disposition (𝑝 = 0.01), whereas RAI was significantly 
different with regards to age (𝑝 ≪ 0.05) and sex (𝑝 ≪ 0.05). This is not surprising, since it is well known that the characteristics of 
the chest differ according to patient type and over the course of resuscitation [21]. These findings are relevant, but they should be 
contrasted with further retrospective or prospective studies in order to establish the precise relationships to such populations.

The variations of the metrics of impulsiveness are not aligned, since no matter the value of DC (or 1 −DC), both CAI and RAI span 
almost their entire possible ranges (see Fig. 2). For instance, for DC constrained from 38% to 42%, CAI can take values as distant as 
13.30% and 23.42%, due to the shapes of the manual waveforms, well beyond its global 25% and 75% IQR (see Table 2). This can 
be better understood with a series of examples comparing specific CCs extracted from our database. The first example corresponds 
to the comparison between Fig. 1 (a) and (b). While the two waveforms have very similar maximum depths, total durations and DC 
(less than 5% difference, from 51.1% to 52.7%), they vary much more significantly in CAI (more than 20%, from 24.3% to 20%). 
Our metric correctly captures their difference in impulsiveness, by a change in IFc of 25% from 2.1% to 2.6%. The second example 
7

corresponds to the comparison between Fig. 1 (c) and (d). In this case, the two waveforms have comparable maximum depths, total 
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durations and values of CAI (less than 5% variation, from 20.6% to 21.5%) but present very different DC (more than 20% variation, 
from 42.7% to 53.1% DC). Due to a 19% variation of IFc from 2.07% to 2.47%, our metric correctly characterizes the CCs with 
similar impulsiveness.

Nowadays, impulsiveness is not an indicator of CPR quality, and performing chest compressions in an impulsive way is not 
encouraged, taught or monitored. This is clearly reflected by Tables 2 and 4. In the former, metrics were calculated for the CCs of 
patients categorized according to the percentage of CCs adhering to guidelines. Differences among categories were found to not be 
statistically significant for CAI (𝑝 = 0.35) or RAI (𝑝 = 0.27). In the latter, the same idea is reinforced, and supports the independence 
of all considered metrics with respect to depth and rate. These make them possible candidates to be incorporated as additional 
indicators of CPR quality, that could be adapted into training and real time feedback.

Our metrics also show significant variations within series of CCs in between pauses, with median CAI and RAI increasing by 
2.16% and 3.66% respectively for 200 consecutive CCs, which translates into reduced impulsiveness of both phases of the CC cycle. 
We believe that the decrease of impulsiveness in the compression phase might be more directly related to rescuer fatigue, and that 
of the recoil phase to alterations in chest stiffness, or other physiological and biomechanical characteristics of patients. Furthermore, 
variations are more pronounced for patients over 76 years of age and females, which once again may be reflective of the properties 
of their chests [21].

Last of all, even if we have derived and applied our metrics to depth signals, nothing prevents their use with force signals. 
However, one should keep in mind that force is much less often available and, not only that, it does not correctly capture the chest 
response to the force applied by the rescuer. In fact, within decompression, the force follows how rescuers release when lifting their 
hands, whereas the depth shows the combined effects of release and chest dynamics (recoil) [15].

4.1. Limitations

We analyzed recordings from a single EMS agency database. Compression depth and rate showed little dispersion among episodes 
and during resuscitation efforts, likely due to real-time feedback. Consequently, our results may not be generalizable to other agencies 
or settings where feedback is not present, even though we found no statistical differences when guidelines were not fully complied 
with. In addition, our episode inclusion criteria may be a form of selection bias that needs to be acknowledged.

5. Conclusions

A thorough review of the literature on modern CPR has evidenced a lack of continuity and applicability of HI-CC techniques and, 
in general, the absence of a proper definition of CC impulsiveness. Even though a metric, DC, has recently resurfaced as a candidate 
for such analysis, we have concluded that it cannot accurately characterize the wide disparity of signal shapes derived from manual 
CPR compressions. Motivated by this fact, we propose new metrics of impulsiveness, CAI and RAI, capable of including the concept 
of duration as DC, that also account for the essential contribution of the CC shape via the impulse factor, IF. We derive the metrics 
and apply them to the depth waveform, since it is often available and because it shows the joint effect of force and chest response in 
a single signal. Moreover, their inverses, CII and RII, properly account for direct measure of impulsiveness.

Our metrics correctly and completely describe CC waveforms, are uncorrelated to depth and rate and allow to differentiate the 
compressive and recoil parts of the CC cycle, reflecting influences of the rescuer and of the patient’s biomechanical properties of 
the chest. In consequence, we believe they could contribute to conducting studies aimed at better understanding CPR dynamics and, 
eventually, to enhanced quality of CPR practice as additional indicators of proper manual CC technique.
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