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Abstract

Inferring past population dynamics over time from heterochronous molecular sequence data is often achieved using the
Bayesian Skygrid model, a nonparametric coalescent model that estimates the effective population size over time.
Available in BEAST, a cross-platform program for Bayesian analysis of molecular sequences using Markov chain
Monte Carlo, this coalescent model is often estimated in conjunction with a molecular clock model to produce time-
stamped phylogenetic trees. We here provide a practical guide to using BEAST and its accompanying applications for the
purpose of drawing inference under these models. We focus on best practices, potential pitfalls, and recommendations
that can be generalized to other software packages for Bayesian inference. This protocol shows how to use TempEst,
BEAUti, and BEAST 1.10 (http://beast.community/; last accessed July 29, 2019), LogCombiner as well as Tracer in a
complete workflow.
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Introduction

The Bayesian Evolutionary Analysis by Sampling Trees
(BEAST) software package (Suchard et al. 2018) allows the
estimation of time-stamped phylogenetic trees from genetic
data sampled at different time points using Markov chain
Monte Carlo (MCMC) integration. Such inferences can be
performed if the genetic sequences constitute a measurably
evolving population (MEP; Drummond et al. 2003; Biek et al.
2015), meaning that they have undergone measurable
amounts of evolutionary change between sampling times.
Importantly, MEPs are not restricted to RNA viruses, as the
field of ancient DNA research (see Supplementary Material
online) also allows the estimation of divergence times and
temporal changes in population size without additional cal-
ibrations (Drummond et al. 2003). When the assumptions of
an MEP are fulfilled, a coalescent demographic model with a
molecular clock model can be used in BEAST to estimate the
effective population size over time.

Here, we focus on estimating changes in effective popu-
lation size over time, which constitutes a frequently per-
formed analysis on fast-evolving pathogens, for example
for the reconstruction of early HIV-1 dynamics in the
Democratic Republic of Congo (Faria et al. 2014) and the
rise and decline of Ebola virus during the 2013–2016 West
African epidemic (Dudas et al. 2017). One of the most im-
portant parameters in population genetics, effective popu-
lation size translates the census size of a real population into
the size of an idealized population showing the same rate of
loss of genetic diversity as the real population under study
(Husemann et al. 2016). It is therefore an abstract quantity

which provides a measure of population size from genetic
diversity under an idealized reproductive model which,
when measured over time, provides an estimate of past
population dynamics (Gill et al. 2013).

Until two decades ago, only simple parametric coalescent
models—such as exponential growth and constant popula-
tion size models—were available, but their estimated demo-
graphic parameters are only considered meaningful if there is
a prior reason to believe that the sampled population fits the
specified demographic model (Pybus et al. 2000). Given that
this is usually not the case, flexible nonparametric coalescent
models have been developed that enable the estimation of a
varying effective population size over time, allowing accurate
estimation of population trajectories (see fig. 1).

The classic skyline (Pybus et al. 2000) was the first such
model, estimating the population size trajectory on a fixed
underlying phylogeny using maximum likelihood (ML). For a
data set of n sequences, the classic skyline considers all n�1
intercoalescent intervals (i.e. the intervals on a phylogeny that
separate the coalescence events), leading to potentially
“noisy” estimates for the population size trajectory when
the product of interval length and evolutionary rate is small
(e.g. hC3

in fig. 1). The generalized skyline (Strimmer and Pybus
2001) reduced this noise by allowing multiple coalescence
events (for which little divergence time information is avail-
able) to be grouped together (e.g. hC3

and hC4
in fig. 1), a

process that is governed through an automated model selec-
tion procedure. Drummond et al. (2005) in turn extended this
model to accommodate phylogenetic uncertainty in a
Bayesian framework, yielding credibility intervals for the esti-
mated effective population sizes.
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Using a Gaussian Markov random field smoothing prior,
the Skyride model (Minin et al. 2008) produces a temporal
smoothing along the population trajectory by considering
all coalescent events and sampling times (hR1

–hR9
in fig. 1).

The Skygrid (Gill et al. 2013) improves upon the Skyride by
allowing the effective population size hSi

to change at user-
defined points in real time, in addition to yielding improved
root height estimation and allowing for estimation based on
multilocus data. This model balances complexity with the
ability to estimate a population size for each meaningful
time interval, such as an epidemiological week during an
outbreak. The Skygrid’s parameterization also paves the way
for further extensions, such as the inclusion of external
covariates /ij (Gill et al. 2016), enabling the examination
of the impact of nongenetic factors on effective population
size estimates.

In this protocol, we focus on the Skygrid model and pro-
vide a complete workflow (see fig. S1, Supplementary Material
online) for estimating effective population sizes over time
using this model in BEAST v1.10.4. We will be using other
applications typically associated with the BEAST software
package such as BEAUti (Bayesian Evolutionary Analysis
Utility), TempEst (Temporal Exploration of Sequences and
Trees) v1.5.3 (Rambaut et al. 2016), BEAGLE v3.1.0 (Ayres
et al. 2019), LogCombiner, and Tracer v1.7.1 (Rambaut et al.
2018). All of these packages can be downloaded from the
BEAST website (https://beast.community; last accessed July
29, 2019). We refer to Supplementary Material online for de-
tailed information on aspects of this protocol not directly
related to the Skygrid model, along with larger versions of
the figures presented here.

We assume some prior knowledge of molecular phyloge-
netics and Bayesian inference when attempting this protocol.
An intuitive explanation of the major concepts and features
of Bayesian phylogenetic inference is provided by
Huelsenbeck et al. (2001) and Nascimento et al. (2017), which
also includes a discussion on prior specification, model choice,
and data partitioning. We also recommend Volz et al. (2013)
for a primer on molecular phylogenetics with specific refer-
ence to viruses, including a discussion of the main features of
phylogenies that are important for identifying epidemiologi-
cal, immunological, and evolutionary processes which influ-
ence patterns of genetic variation.

Data Set Description
We construct a data set containing the first 200 Ebola virus
sequences from Sierra Leone during the 2013–2016 West
African Ebola virus epidemic. These sequences were sampled
between June 26, 2014 and August 25, 2014 and have been
previously published in Bell et al. (2015); Carroll et al. (2015);
van Vuren et al. (2019); Gire et al. (2014) and Park et al. (2015).
In collating the sequence data, we make sure that the se-
quence labels are all in the same format—with different fields
separated by the same prefix, in this case the pipe/bar symbol
j —and contain the sampling times using a consistent date
format, here year–month–day, which simplifies the various
steps in this protocol. We align the collected data using
MAFFT (Nakamura et al. 2018), which we manually postpro-
cess in Geneious 11.0.5 (https://www.geneious.com; last
accessed July 29, 2019; see Supplementary Material online).
Geneious is a commercial application but other alignment

FIG. 1. Conceptual representation of various nonparametric coalescent models on a phylogeny of n¼ 7 heterochronous sequences. The classic
skyline (Pybus et al. 2000) and its extension, the generalized skyline (Strimmer and Pybus 2001), were the first among a still increasing collection of
nonparametric coalescent models. Initially estimated using maximum likelihood inference on a fixed phylogeny, these models have been extended
for use in Bayesian framework while accommodating phylogenetic uncertainty (Drummond et al. 2005). Recent developments include the Skyride
(Minin et al. 2008), the Skygrid (Gill et al. 2013), and its extension to incorporate covariates (Gill et al. 2016), which all employ smoothing priors.
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editors are freely available, such as MEGA (Kumar et al. 2012)
and AliView (Larsson 2014).

We accommodate the specific features of our alignment
by creating a FASTA file specifying the four data partitions
(codon positions 1–3 and aggregated intergenic regions), to
be consistent with our later Bayesian inference setup. In order
to easily specify the partition information later on in BEAUti,
we also create two FASTA files: one for the coding partition
and another for the intergenic regions.

Protocol

Step 1: Assessing the Temporal Signal in the Data
Using TempEst
Reliably estimating population size dynamics over time is
dependent on having sufficiently strong temporal signal in
the sequence data. In addition to assessing temporal signal,
sequences that have accumulated significantly more or fewer
than expected mutations given their sampling time, caused
by issues such as laboratory contamination or mislabeling,
need to be identified. Therefore a preliminary analysis in
TempEst, an exploratory graphical application for examining
temporal signal in time-stamped sequences (Rambaut et al.
2016), to identify these outliers should be routine procedure
before committing to a potentially time-consuming analysis.

As its input, TempEst requires a ‘nonclock’ phylogenetic
tree (i.e. with branch lengths scaled as genetic distances rather
than temporal distances), which can be estimated using
neighbor-joining, ML or Bayesian inference (Rambaut et al.
2016). This tree can be obtained using a variety of freely
available software packages, and we here use IQ-TREE
(Nguyen et al. 2015) to build an ML tree using our previously
constructed FASTA file. We here specify partitions according
to codon position for the coding region of our data set in
order to allow different evolutionary rates across codon posi-
tions (Chernomor et al. 2016), as specified in the previous
section. For each partition, we assume an HKY substitution
model (Hasegawa et al. 1985) and accommodate among-site
rate heterogeneity (Yang 1994, 1996). This estimation took
�20 min to run on a standard computer.

Starting the TempEST application will open a file chooser
to select a ‘nonclock’ phylogenetic tree. Select the .treefile
generated by IQ-TREE—which contains the ML tree in
Newick format—and click Open. Once the tree has been
loaded into TempEst, click on the Sample Dates tab at the
top of the screen. Click on the Parse Dates button to bring
up a window (fig. 2a) that allows to provide a sampling time
for each sequence in the alignment.

It is considered good practice to have the sequence labels
contain the sampling times, which enables TempEst to ex-
tract these sampling times from the sequence labels after
providing the date format. Note that IQ-TREE has separated
the different fields in the sequence labels using an underscore
symbol ‘_’ in the .treefile. To parse the dates in the sequence
labels, we select Defined by a prefix and its order, select last
from the Order drop-down menu and input ‘_’ (without the
quotes) in the box by Prefix. This informs TempEst that the
date is the last element in the label, preceded by an

underscore. Select Parse as a calendar date and ensure
that the Date format box is set correctly to yyyy–MM–dd
(fig. 2a).

The tree is visualized in the Tree panel of TempEst, but of
primary interest are the Root-to-tip (fig. 2b) and the
Residuals panels (fig. 2c). In the Root-to-tip panel, we see
the plot of a regression analysis of genetic divergence from the
root of the tree against time of sampling, with each dot
representing a time-stamped sequence. Initially, the tree is
rooted arbitrarily, so we select the Best-fitting root button
in the top left to select a root which minimizes the mean of
the squares of the residuals. A linear trend with small residual
variance indicates that evolution will be adequately repre-
sented by a strict molecular clock, and the same trend with
greater scatter from the regression line suggests a relaxed
molecular clock model may be most appropriate (Rambaut
et al. 2016). Additionally, an objective but informal measure of
the temporal signal is given by the correlation coefficient R2,
but this should not be used to test the statistical significance
of the regression. We conclude here that the Ebola virus
phylogeny exhibits a moderate association between genetic
distances and sampling dates (R2 ¼ 0:55) and is hence suit-
able for phylogenetic molecular clock analysis in BEAST
(Suchard et al. 2018).

The slope of the regression line provides an estimate of the
rate of evolution in substitutions per site per year, and the
intercept with the time-axis constitutes an estimate of the
age of the root. In this case, the rate estimate amounts to 1:12
�10�3 substitutions per site per year and the origin is ap-
proximately March 2014, which both match previous esti-
mates for Ebola virus in Sierra Leone (Dudas and Rambaut
2014; Dudas et al. 2017).

Importantly, both the plot in the Root-to-tip panel and
the plot in the Residuals tab (fig. 2c) allow us to identify
four sequences whose sampling date is incongruent with
their genetic divergence (see also supplementary figs. S14
and S15, Supplementary Material online). These points can
be manually selected, after which the corresponding
sequences will be highlighted in every TempEst panel.
Return to the Tree tab to see the labels of the problematic
sequences and their position in the tree (supplementary fig.
S3, Supplementary Material online). The four selected
sequences in our data set—with accession numbers
KR105291, MH607891, KR105296, and KR105286—all lie
above the regression line, and therefore are more genetically
divergent than we would have expected based on their
sampling times. This may be due to a number of reasons,
such as errors in the sequence assembly or an alignment
error in part of the sequence (see Rambaut et al. 2016 for a
more in-depth explanation). For example, upon inspecting
our multiple sequence alignment, we notice that KR105296
has a large amount of missing data, which may result in the
long branch leading up to it in the tree. Regardless of the
underlying explanation, it is common practice to exclude
such sequences from the multiple sequence alignment for
the remainder of the analysis. For further discussion of these
four sequences and why we remove them, see
Supplementary Material online.
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Step 2: Using BEAUti to Set up the BEAST Analysis
Now that we have established that there is a strong enough
temporal signal to perform a BEAST analysis and the prob-
lematic sequence data have been removed, we can import
our two FASTA files (containing the coding regions and the
intergenic regions, respectively) into BEAUti, a graphical user
interface (GUI) designed for creating XML files for input into
BEAST (Suchard et al. 2018). Start the BEAUti application and
drag-and-drop each FASTA file onto the Partitions panel.
Alternatively, one FASTA file at a time can be imported using
Import Data. . . from the File menu. You will see two entries
show up in the Partitions panel, corresponding to the coding
and intergenic regions (fig. 3a). Select both data partitions
and tick the Unlink Subst. Models box, indicating that we
will provide different substitution model choices for each data
partition. Note that, we only discuss those panels in BEAUti in
which settings have to be modified for the purpose of this
protocol.

We now move on to the Tips panel, which is very similar in
functionality to the Parse Dates panel in TempEst. We there-
fore obtain the sampling times of the sequences in the same
manner by selecting Parse Dates and ensuring that last is
selected and the prefix is set to ‘j’. First, select Use tip dates in
the top left hand corner of the window. Then, click on the
Parse Dates button just underneath this tickbox. Select Parse
as a calendar date and ensure the correct format is entered,
i.e. yyyy–MM–dd. It can be useful at this point to keep track
of the youngest sampling date, which can easily be deter-
mined by sorting the table with the tip dates by clicking
the Date column header.

The Sites panel allows selecting a nucleotide substitution
model for each data partition. Notice that the data partitions
can be selected in the left-hand panel, as we have previously
unlinked their substitution models. First, select the coding
(“196_CDS”) partition and choose ‘HKY’ from the first
drop-down menu. Leave Base frequencies unchanged, select
‘Gamma’ from the Site Heterogeneity Model drop-down

FIG. 2. Using TempEst to determine whether our data set has sufficiently strong temporal signal and to identify outliers. (a) Dialog box showing
how to extract sampling times from the sequence labels, (b) root-to-tip plot showing regression of genetic distance against time, and (c) residuals
plot. In (b) and (c), four outliers can be identified and are indicated by the red box (for illustration purposes only, i.e. not a feature of TempEst).
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menu, and keep the default of four gamma categories. Finally,
select ‘3 partitions: positions 1, 2, 3’ from the Partition into
codon positions drop-down menu, and ensure that all three
check boxes are ticked. This will allow different HKY models
with among-site rate heterogeneity to be estimated for each
codon position in the coding region of the alignment. Click
on the ‘intergenic’ partition in the left-hand panel, and select
all the same options, except for the Partition into codon
positions which should be left as ‘Off’, as there are no codons
in the intergenic regions. This selection of nucleotide substi-
tution models is a popular option and corresponds to a fairly
standard choice for analyzing Ebola virus sequences (Dudas
et al. 2017).

Next, proceed to the Clocks panel and select the
‘Uncorrelated relaxed clock’ from the Clock Type dropdown
menu. This allows each branch of the tree to have its own
unique evolutionary rate, independent of the rate of its neigh-
boring branches (Drummond et al. 2006). The Relaxed

Distribution drop-down menu allows you to specify which
probability distribution to draw these rates from. A lognormal
distribution provides a proper trade-off between perfor-
mance and complexity, and so we stick with this default
option here.

In the Trees tab, click on the Tree Prior drop-down
menu and select ‘Coalescent: Bayesian SkyGrid’ (fig. 3b). In
the Time at last transition point section, we put 1.0 to
signify that we wish to bound the estimation of the popu-
lation size dynamics to at most 1 year before the most
recently sampled sequence, which is a sensible choice given
what we know by now concerning the 2013–2016 West
African Ebola virus epidemic. A general guideline for this
cutoff value is that it should be sufficiently greater than
the anticipated root height of the tree, in order to capture
as much information about the population dynamics as the
data allow. If no prior information is available to set this
value, a preliminary analysis can be performed to determine

FIG. 3. Setting up the Skygrid coalescent model in BEAUti. (a) Shows the data partitions we have imported using two different FASTA files for
coding and intergenic regions. (b) Shows the “Trees” panel for setting up a Skygrid coalescent model to infer past population dynamics.
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the estimated root height in order to set this value properly
(Gill et al. 2013) (see Supplementary Material online). The
Number of parameters option defines how often you allow
the effective population size to change over the course of
the time frame we have just imposed. We here estimate 52
population sizes across our 1-year interval, allowing a differ-
ent population size to be estimated for every week. Finally,
we keep the default option of a Random starting tree to
start the inference process.

As the last step in BEAUti, select the MCMC panel which
allows the specification of the computational settings and the
output files that will be generated when running BEAST. In
the Length of chain field, we need to put a number that is
large enough to ensure we obtain a good effective sample size
(ESS; the number of effectively independent draws from the
posterior distribution that the Markov chain is equivalent to)
for each parameter of interest. As there are a lot of parameters
to be estimated, we will run this analysis for 100 million
iterations.

In general, it is worth starting with an analysis of—for
example—10 million iterations and then examining the out-
put to have some idea of how long the actual analysis should
run for (see Tracer section). This allows you to gauge how
many iterations the analysis will require, and to assess how
long it should run in real time which will help in securing
appropriate computational resources.

In order to make a proper summary of the output of the
BEAST analysis, we suggest aiming for 10,000 posterior sam-
ples in your final output file, for all parameters (including the
trees) that will be sampled. Hence, in order to decide the
appropriate value for the Log parameters every box, divide
the MCMC chain length by 10,000 which in our case means
logging every 10,000 states. Finally, the File name stem entry
determines the file names of the various output files that will
be generated and adjusting this file name stem then auto-
matically modifies the Log file name, Trees file name, and
Operator analysis file name text fields.

Once all these required settings have been specified, click
on Generate BEAST file in the bottom right-hand corner to
save the XML file containing all the provided information.
This will generate a screen reminding you to review any priors
which you have not changed, but as the default priors are
proper and uninformative we can proceed by clicking
Continue. Choose where to save your new XML file and click
Save. This file is now ready to use as input for BEAST.

Step 3: Performing the Analysis in BEAST
BEAST (Suchard et al. 2018) is a cross-platform program for
Bayesian analysis of molecular sequences using MCMC and
will perform the required estimation to ultimately determine
the population size dynamics over time.

Start BEAST to bring up its GUI. In order to run analyses as
efficiently as possible, BEAST requires the use of BEAGLE, a
high-performance library which exploits multicore processors
such as those in graphics processing units and standard (mul-
ticore) server processors found in all modern computers
(Ayres et al. 2019). BEAGLE must be installed separately to
BEAST, and is available from the BEAST website (http://beast.

community/; last accessed July 29, 2019). To identify which
resources your computer has available, select the Show list of
available BEAGLE resources and Quit button in the BEAST
GUI (see Supplementary Material online for further informa-
tion). The default option for most machines will be to use the
CPU, while other machines come equipped with one or more
graphics processing units which are often more efficient at
performing the core calculations required in phylogenetic in-
ference. Instructions on how to optimize BEAST analyses are
beyond the scope of this article, and further instructions may
be found on the BEAST website (https://beast.community/
performance; last accessed July 29, 2019).

After identifying the appropriate resource to run the
BEAST analysis on your computer, restart BEAST and select
the XML file that was generated using BEAUti. Click Run to
start the analysis. After listing useful citations for the various
models specified for the BEAST analysis, estimates for certain
model components will appear, as well as (after 10,000 iter-
ations) an estimate of the computational performance of the
analysis, allowing you to gauge how long the analysis will take
to finish. As an indication, this analysis took �16 h to com-
plete on a high-performance CPU.

To ensure convergence to the same posterior distribution,
we advise running at least two independent replicates by
providing different starting seeds in the BEAST GUI (see
Supplementary Material online for further discussion). For
the purpose of this protocol, we ran the XML twice with
different starting seeds.

After the BEAST analysis has finished, a summary table of
the operators is shown on screen with information such as
the attained acceptance probability of each operator. This
information has also been written to the .ops output file,
to go with the .log and .trees files that contain estimates
for all the parameters and the sampled (time-stamped) phy-
logenetic trees, respectively.

Step 4: Assessing Convergence and Mixing Using
Tracer
Now that our two independent BEAST analyses have run to
completion, we will use Tracer (Rambaut et al. 2018) to ex-
amine their output. Tracer is a graphical tool to visualize and
diagnose issues in the output files generated during an
MCMC analysis, and can be used with most Bayesian phylo-
genetics software packages. To begin, launch Tracer, click on
Open in the menu bar, and select the .log files from your
BEAST runs. Alternatively, drag and drop one or more .log
files into the Tracer window (outcome shown in fig. 4a).

In Tracer, the panel on the left is split up into two sub-
panels, where the upper-left panel contains the names of the
files that have been loaded along with the length of the anal-
ysis in number of iterations and an initial burn-in of 10%. The
burn-in percentage can be manually adjusted here so that a
portion of the parameter and density samples—
corresponding to that part of the Markov chain that has
not converged yet to the stationary distribution—is not taken
into account when computing the summary statistics (see
Rambaut et al. 2018 for more details). This percentage is im-
portant when one is interested in constructing a maximum
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clade credibility tree from the .trees file, which is beyond the
scope of this protocol.

In figure 4a, we show the Trace panel containing the two
traces of a single (log) population size parameter of the
Skygrid coalescent model, showing that our two independent
replicates (shown in red and blue) have converged to the
same posterior values, and that for this parameter a default
10% burn-in is sufficient. We note here that all parameters
and densities of interest should be examined for their con-
vergence to the same posterior distribution as well as properly
inspected to determine an appropriate overall burn-in value.
The lower-left panel contains the names of all the parameters
and densities that the log file contains, along with their mean
values and their associated ESS values. If multiple files corre-
sponding to independent analyses from the same XML file
have been loaded into Tracer, a combined trace will appear
below the loaded files, effectively aggregating the samples
from those files for each density and parameter. In effect,
this also results in all statistics—such as the mean and ESS
value—being computed on the aggregated sample collection.

As we are interested in reconstructing past population
dynamics, we focus on ESS values for all parameters of the
Skygrid coalescent model, as well as statistics related to im-
portant aspects of tree estimation, such as the root height.
The ESS of a parameter equals the chain length (without
burn-in) divided by the autocorrelation time, i.e. the number
of states in the chain that must separate two samples in order
for them to no longer be correlated. Simply put, the larger the
reported ESS value the better, but in practice a minimum
value of 200 for all parameters of interest is used to determine
if an analysis has run for long enough. Tracer flags up any ESS
values <100 in red and <200 in yellow. Low ESS values are
usually the result of an insufficient number of iterations in the
analysis and are most easily increased by running the analysis
for a larger number of iterations (see https://beast.commu-
nity/ess_tutorial; last accessed July 29, 2019 for more infor-
mation). Note that the cutoff value of the Skygrid model is a
constant value and hence its ESS value is of no importance.

The ESS values will correspond to the behavior you see in
the Trace panel, where line plots connect the sequential

FIG. 4. (a) The Tracer panel on the left shows the parameters logged during the run. Note that both runs are selected and as such, the panel on the
right shows both traces in different colors. (b) Shows the options for the Skygrid reconstruction based on this analysis. (c) Shows past population
dynamics visualized using the Skygrid model. The shaded portion is the 95% Bayesian credibility interval (obtained by clicking the “Solid interval”
checkbox in the lower left-hand corner of the visualization window), and the solid line is the posterior median. The vertical lines represent the best
estimate for the time of the root of the tree, and the upper highest posterior density, respectively.
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samples of one or more selected parameters against iteration
number. These trace plots are typically used to assess con-
vergence, determine a corresponding burn-in, and to assess
proper mixing. Ideally they should look similar to the ones in
figure 4a, i.e. a reasonably short burn-in sequence followed
by a stable trace that does not show any trends. In
Supplementary Material online, we provide examples of
analyses that can be identified using Tracer as being
problematic.

Now that we have assessed that our two independent
replicates have converged to the same posterior distribution
for all parameters and densities, we can exploit having two
collections of samples at our disposal. We note that this is an
optional step in this particular protocol, as the ESS values for
all parameters of interest are sufficiently high for each indi-
vidual replicate. The BEAST package contains the
LogCombiner application, which allows aggregation of the
.log and .trees output files from independent BEAST repli-
cates. Aggregating these files will increase the number of in-
dependent samples from the posterior distribution.

Start the LogCombiner application and a dialog box will
appear. In the File Type menu you can specify whether you
are combining .log or .trees files. For the purpose of this
protocol, we will be combining the .log files of our two inde-
pendent replicates and use the resulting file to visualize the
population size dynamics over time. Hence, in the File type
dropdown menu, select Log files and add the two .log files
using the ‘1’ button. For each .log file, we manually set the
burn-in to 10% of the number of iterations performed, i.e. 10
million. As a final step, specify the name of the output file that
needs to be created by entering it manually after clicking
Choose File. . . and click Run to generate the combined file.

Step 5: Visualizing the Skygrid with Tracer
Tracer also allows the visualization of demographic recon-
structions of various coalescent models. To perform these
reconstructions, it is important to combine each analysis
performed with the appropriate demographic reconstruction
option in Tracer. From the Analysis menu, we here select the
Skygrid Reconstruction option.

By default, the Skygrid Analysis dialog box only requires
the Age of youngest tip to be provided in order to provide a
visualization corresponding to real time (fig. 4b), as all the
other fields are inferred automatically from the log file. The
Age of youngest tip corresponds to the most recently sam-
pled tip, 2014.65 for our data set, which corresponds to the
26th of August 2014 in decimal format. If this value is left as 0,
the Skygrid visualization will be shown going backwards in
time.

The Skygrid plot will pop-up almost immediately (fig. 4c),
with the solid (blue) line the posterior median of the popu-
lation size over time, and the upper and lower lines represent-
ing the corresponding 95% highest posterior density (HPD)
interval. For additional clarity, check the box Solid interval to
convert this to a shaded area. The vertical dotted line to
the left of the 2014.3 mark is the mean estimate of the root
age, and the two dotted lines to the left (overlapping with
the Y axis here) and right correspond to its 95% HPD

interval. In general, as we go back in time, we see an increased
uncertainty in the estimated population sizes, as well as a
flattening of the overall curve, as fewer data are available to
inform this part of the model. From this visualization, we
conclude that the effective population size was fairly static
until the end of May 2014 (2014.4), after which it increased
rapidly until forming a fairly stable plateau with minor fluc-
tuations. In the Supplementary Material online, we relate
these population size dynamics over time to reported case
counts.

Concluding Remarks
In this protocol article, we have presented a complete work-
flow for estimating past population dynamics using BEAST
and its accompanying applications. To this end, we have es-
timated the Skygrid coalescent model in combination with an
uncorrelated relaxed clock model (Drummond et al. 2006), a
popular model combination for data exploration. Although
the relaxed clock model is able to accommodate many dif-
ferent scenarios of rate variation across the branches of the
tree, alternative clock models—such as the random local
clock (Drummond and Suchard 2010) and host-specific local
clock (Worobey et al. 2014) models—may be better suited for
your own data.

Coalescent models have come a long way in relaxing their
initial assumptions and, as shown in this protocol, allow the
accommodation of variable population size and serially sam-
pled data to generate genealogies arising from a forward-time
population model (such as the Wright-Fisher model).
However, we caution against overinterpreting the outcome
of such a reconstruction, as even flexible nonparametric co-
alescent models such as the Skygrid are subject to a number
of assumptions, which will have their impact on the esti-
mated effective population size of the virus (see Gill et al.
2013 for more information).

Additionally, if the true underlying model would be a sim-
ple parametric model—such as a constant population size
model—then the Skygrid model will be overparameterized
and yield large 95% HPD intervals. In those cases, switching
to simpler models will be advantageous to reduce
the uncertainty of the reconstructed population size(s)
and allow for more easily interpretable results, better
convergence, and mixing which in turn lead to reduced com-
putation times.

We hope that this protocol provides a useful set of prac-
tices and guidelines to become familiar with BEAST and its
accompanying applications. Importantly, most of the con-
cepts and guidelines discussed here are not exclusive to
BEAST, and other Bayesian inference programs can perform
similar analyses, for example RevBayes (Huelsenbeck et al.
2016), MrBayes (Ronquist et al. 2012), and BEAST 2.5
(Bouckaert et al. 2014).

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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