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Aggressive behavior is widely present throughout the animal
kingdom and is crucial to ensure survival and reproduction.
Aggressive actions serve to acquire territory, food, or mates
and in defense against predators or rivals; while in some
species these behaviors are involved in establishing a social
hierarchy. Aggression is a complex behavior, influenced by a
broad range of genetic and environmental factors. Recent
studies in Drosophila provide insight into the genetic basis
and control of aggression. The state of the art on aggression in
Drosophila and the many opportunities provided by this
model organism to unravel the genetic and neurobiological
basis of aggression are reviewed.

Introduction

Aggressive behavior is widely present throughout the animal
kingdom and is crucial to ensure survival and reproduction.
Aggressive actions are used to acquire territory, food, or mates and
in defense of the individual or its progeny against predators or
conspecific rivals. Additionally, in some species these behaviors are
necessary to establish a social hierarchy. By contrast, excessive
aggression implies risky and energy consuming acts, which can be
evolutionary unfavorable.

Aggression is a complex behavior influenced by a broad range
of genetic and environmental factors. Many of these factors, such
as neurotransmitters, hormones, pheromones, sex and individual
anatomical differences, have been studied in a variety of
species.'"” These studies, however, often reported inconclusive
or contradictory results both within and between species.
Examples of divergent results within species include the role of
testosterone and cortisol in vertebrate aggression and the
differential effects of neurotransmitters on aggression in
Drosophila (see below for a detailed discussion).” An example of
a contradictory result between species is the opposite role for
between
brates.>*#1¢2° QOverall, these observations illustrate the complex

certain neurotransmitters crustaceans and verte-

regulatory mechanisms underlying this behavior.
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Recent studies in Drosophila provide insight into the genetic
basis and control of complex behaviors, including aggression, and
highlight the importance of interaction networks among many
pleiotropic loci with relatively small effect sizes.'"*'*> Thanks to
the availability of numerous genetic resources, the ease to perform
genetic manipulations and the possibility to control envir-
onmental influences as well as the genetic background,
Drosophila melanogaster offers the opportunity to integrate single
gene molecular genetics and whole genome quantitative genetics
and thus unravel the genetic complexity and the neurological basis
of this behavior.

Aggression in Drosophila

Agonistic behavior in general was first defined by Scott and
Fredericson in 1951 as a continuum of behaviors from threat to
aggression to submission.?® The term aggression, however, has
been much harder to define. In the context of social behaviors,
aggression can be defined as species-specific behaviors associated
with attack, and more broadly, threat.””*® This definition covers
the parameters used to study this behavior in Drosophila.

Aggressive behavior in Drosophila was first observed in 1915
by Sturtevant, who reported males to spread their wings, run at
each other, and apparently butt heads when courting the same
female. The first genetic study was the discovery of the
involvement of the ebony gene in aggressive behavior.”® In recent
years, the continuously expanding collection of genetic tools in
Drosophila has made it increasingly possible to study the genetic
and neurobiological basis of aggression.

Inter-male aggression in Drosophila has been well described
ethologically and shown to consist of behavioral modules which
include both threat and attack behaviors.”’®* In Drosophila
melanogaster, these modules include: approaching, where one fly
lowers his body and moves in the direction of the other; wing
threats, where one fly quickly raises his wings toward its
opponent; lunging, where one fly throws himself on his
opponent; boxing, where both flies raise up on their hind legs
and hit each other with their forelegs; tussling, where both flies
tumble over each other; fencing or kicking; chasing and holding
(see Table 1).%* These aggression modules can form a continuous
level of low aggression that can escalate to modules with high
aggression, but they can also happen as isolated events.'**> Most
of the fighting time is taken up by low intensity aggression such as
fencing, while high intensity events such as lunging, boxing and
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tussling have been reported to be rare in different Drosophila
species.”””” Most research mainly focused on males because they
display more aggression. However, female aggression has also been
described in detail and shown to differ from male aggression both
ethologically and motivationally. Part of the aggression behavioral
repertoire is shared between males and females but some sex-
specific behavioral modules occur (see Table 1).° Boxing and
tussling, for instance, have been reported to be male-specific.
Furthermore, while males fight both over food and females,
females fight mainly over food resources, especially if these
resources include yeast. It has been suggested that female
aggression in Drosophila melanogaster relates mostly to reproduct-
ive behaviors such as egg laying which is enhanced by yeast and its

metabolites.>?®

Table 1. Modules of aggressive behavior in male and female Drosophila

Male

Drosophila male aggressive behavioral modules have been used
to analyze two closely related social behaviors, dominance and
territoriality. Dominance can be defined as having a higher social
status than other individuals of the group and often implies
“priority acquired by past or present aggressive behavior.”
However, in other species it was shown that aggression is not
crucial to obtain and keep a dominant status. Dominance is a
male-specific behavior that is stable over a certain amount of
time.”**® Dominance is studied by analyzing the males that win or
lose subsequent fights and involves flies remembering their
previous opponents over a certain amount of time.**

Territoriality can be defined as occupancy of a defended area
that is used exclusively by the defending individual.>**"*>°

Different studies have described the ecological circumstances

Female

Retreat

Walking, flying or running away

Walking or flying away

Approach/turn toward

Walk toward the opponent while lowering body

Turn/walk toward the opponent

Wing threat

Raise both wings to a 45° angle toward opponent (> 1s)
Flicks wings at 45° angle while facing away from opponent

Raise one or both wings to a 45-90° angle toward opponent (< 1s)

Lunge

Rear up on hind legs and collapse on opponent

Rear up on hind legs and collapse on opponent

Shove

Not observed

Thrust the torso toward the opponent with both forelegs extended
without recoil

Thrust with a wing threat

Not observed

Thrust and lift one or both wings to a 45-90° angle (< 1s)

Head butt

Not observed

Thrust the torso toward the opponent and strike the opponent with the

head; usually followed by recoiling of the torso

Fencing

Fencing (low): extend one leg and tap opponent’s leg
Fencing (high): extend leg forward and
push opponent facing each other

Fencing (low): Extend leg and contact the opponent in a normal
standing posture
Fencing (high): Stand tall on the middle and rear legs and contact the

opponent with the forelegs (can be combined with a wing threat < 1s)

Fencing and feeding: Extend the middle or rear legs and contact
the opponent while feeding

Fencing threat: Extend the middle legs without contacting the opponent

Chasing

Run after opponent Not observed
Holding

Grasp opponent with forelegs and try to immobilize Not observed
Tussling

Tumble over each other, sometimes leaving food surface Not observed
Boxing

Rear both up on hind legs and strike the opponent with forelegs

Not observed

Ethogram describing the observed modules of aggressive behavior in male and female Drosophila. The listed modules include threat, attack and retreat
behaviors. Some of these modules are used by both sexes or show only subtle differences, while others are sex-specific.
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under which Drosophila species exhibit territoriality and the
evolutionary relevance of this behavior. In different Drosophila
species, territoriality in a natural habitat has been shown to be
closely linked with mating behavior. Males display territoriality in
order to ensure the control over a resource for breeding and
feeding. In highly territorial species, including the Hawaiian
Drosophila heteroneura and Drosophila silvestris, this behavior even
results in the aggregation of males in a lek in which these males
defend their own leaf or part of rotten fruit.”'>* Drosophila
melanogaster displays much less territorial behavior than its related
Hawaiian species. The few observations of Drosophila melanogaster
under field conditions show that defense of territory is rare and
that, contrary to Drosophila pseudoobscura, fighting in Drosophila
melanogaster might be unimportant to acquire a mating advantage
in the field.**>> The majority of the observations of melanogaster
territoriality have been made in the lab.***>*>® Under these
conditions, Drosophila  melanogaster territoriality has been
described as a conditional strategy, where flies would only invest
in the defense of an area under certain conditions where
territoriality could lead to a mating advantage. These would
include presence of females or males, attractive food, but also the
occurrence of only a small number of other males and only a
relatively small area of food to defend. It seems that only under
these conditions, the territorial males obtain a mating advantage.*
Remarkably, in Drosophila silvestris, the highly territorial and
aggressive Hawaiian species, mating success has not been linked
with territoriality in a lab environment.®'

These findings illustrate that although many characteristics of
the behavioral repertoire of different insects have been reproduced
in lab assays, the extrapolation to and the relevance of these data
for a natural habitat need to be made with caution. A recent study
of cricket behavior supports this notion. While dominant cricket
males in the lab are capable of monopolizing access to females, in
the wild these males seem to have many fewer mates than their
subordinate opponents.®> A number of factors that affect the
outcome of aggression assays with Drosophila melanogaster have
been identified. The observation of aggressive behaviors in a lab
setting shows that the different Drosophila species have the innate
capability to fight, but also illustrates that there are clear effects of
the environment on the initiation and sequence of aggressive
behaviors. It has been reported that the size of the arena in which
the experiment takes places can have a significant influence on the
behavior of the flies. Smaller arenas have been described to cause
an unconditioned reflex reaction which leads to increased activity

or arousal.®®

Furthermore, although these findings have not been
analyzed further, an optimal arena size and shape have been
proposed to induce aggression between Drosophila males while
the lack of possibility for the losing male to escape can enhance
aggression.'>>% These influences of the size of the available
territory on social strategy have also been described in other
species. The pupfish Cyprinodon variegates, for instance, estab-
lishes a territorial breeding system in large tanks while small tanks
lead to a dominance hierarchy, in which one male controls most
of the oviposition sites and mates with most females.®**

How to study aggression in Drosophila. In general, three main
setups have been described to analyze aggression in Drosophila
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(Fig. 1). All three assays allow the observation of the aggression
behavioral modules in males and females. Depending on the setup
dominance or territoriality can also be analyzed. The various
published studies are further distinguished by additional variables
at the social level, such as the number of flies tested in the arena,
their social experience and the presence or absence of females, or
at the level of different aggression modules being measured. In
some cases the focus was on actions that are exerted by a single fly,
while in others the focus was on dyadic behaviors.”*® Some
studies focus only on high intensity aggression modules which
have been reported to constitute only a small portion of the
fighting time but which lead to dominance. Other studies show
the benefit of analyzing all aggressive modules to decipher the
mechanisms underlying aggression. Different serotonin (5-HT)
receptors, for instance, have been shown to alter different parts of
the aggressive repertoire.'* Opposite effects on lunging, tussling
and chasing compared with wing threats were also observed upon
genetic manipulation of cholinergic neurons.*”

The first reported assays are variations on the same setup and
make use of an arena with a centrally placed food cup to which
yeast paste or a virgin female can be added.>”'*'>*7! Whereas in
the original assay six males were used, in a simpler variant,
aggressive encounters between two flies are recorded, usually
during a 20-30 min period. This setup is compatible with
CADABRA software, an application which allows the automated
scoring of lunging, tussling, wing threats and chasing of eight
pairs of flies simultaneously.”” Next, an arena chamber was
described that consists of a thick plexiglass plate with 35 evenly
spaced cells, allowing the simultaneous recording of 35 arenas
during a 15 min period.”””* Each arena contains two flies, but no
food or virgin is introduced. Finally, a very simple assay, first used
to describe altered aggression in fruitless (fru) mutant males, was
described that allows the analysis of the aggressive encounters
between groups of eight flies over a two-minute period.>'>*>7
This assay encompasses the instant scoring of the behavior, i.c.,
counting of all aggressive interactions among all eight males, with-
out the need of analyzing recordings after the test period. This
assay makes use of a standard food vial with a small drop of food.

Neurotransmitters and Aggression

Multiple neurotransmitters as well as the neuroactive peptide NPF
have been shown to play a role in the processing of sensory
information relevant to aggression and the generation of an
appropriate aggressive response.'”?!31>¢7% The effects of these
neurotransmitters are often ambiguous and are likely to depend
on multiple factors including the receptor subtypes involved, the
necessity of intermediate levels of the neurotransmitter or the
spatio-temporal activation pattern of the pathways (Fig.2).
Furthermore, some of the observed discrepancies could be due
to the different assays or arenas used, the differences in the genetic
background of the flies, the different ways of scoring aggressive
behavior and the use of flies with different social experience.
Octopamine-tyramine. In the context of aggressive behavior,
tyramine (TA) and octopamine (OA) have been the most
extensively studied. Tyramine-B-hydroxylase (TBH), the enzyme
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Figure 1. Different set-ups to study aggression in Drosophila. (A) Arena with a centrally placed food cup that can contain yeast paste or a virgin female,
allowing the videotaping of aggressive behavior.®® (B) Set-up allowing the simultaneous recording of 35 arenas, usually during a 15 min period.”

(C) Scheme of a set-up compatible with CADABRA software allowing automated scoring of lunging, tussling, wing threats and chasing of two pairs of flies
simultaneously. This set-up can be expanded to analyze eight pairs of flies simultaneously.®” (D) Set-up allowing the instant analysis of the aggressive

encounters between groups of eight flies over a 2 min period.®'#7?

responsible for the conversion of TA to OA, was one of the first
enzymes shown to be involved in aggression in Drosophila.
TBH"™® null mutants have undetectable levels of octopamine and
a 10-fold increase in tyramine levels. 7BH"'® males display
decreased aggressive behavior, reduced transitions to aggressive
behavior and decreased lunging, while females show prolonged
fighting latency and reduced head butting. The magnitude of the
effect seems to depend on the genetic background of the
flies.”'>">“Interestingly, 7BH"""® has also been associated with
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an increase in courtship behavior in socially naive males, which
could suggest a switch in behavioral choice between aggression or
courtship.”* However, this change in behavior could not be
replicated. "

The changes in aggression in 7H-null mutants can in
principle be due either to the decreases in OA or to the increase
in TA. Flies have two tyrosine decarboxylase genes that convert
tyrosine to TA, the non-neuronally expressed 7dcl and the
neuronally expressed 7dc2. Male flies mutant for 7dc2 (Tdc2*"%)
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have no detectable levels of TA or OA in the brain and are less
aggressive compared with controls.”” Thus, it is the loss of OA
that is responsible for the observed aggression phenotype.

The aggression modulating effect of OA has been further
analyzed using pharmacological or genetic techniques.
Pharmacological stimulation of OA signaling has been shown to
enhance male aggression, but this effect is only present in socially
experienced flies."”"” Two explanations for this observation have
been proposed. First, OA might be important in the regulation of
social experience, hence resetting aggression after social experi-
ence. Second, it might be impossible to detect higher aggression
levels in already highly aggressive socially naive flies.'> However, it
also cannot be excluded that the different results are due to
experimental variations such as different arenas or differences in
scored parameters.

Genetically induced changes in OA signaling were also shown
to alter aggression. Ubiquitous 7BH expression can induce
elevated aggression in socially experienced wild-type flies but
not in socially naive flies.”> However, it does seem to partially
rescue the aggression phenotype of socially naive TBH™'® null
mutants."

Neuronal activation of OA neurons in adults leads to the same
phenotype of elevated aggression in socially experienced flies while
acute silencing results in the opposite effect in socially naive flies,
indicating that the aggression phenotype in 78H mutants is not
due to developmental defects.'”'” Activation of OA neurons in
socially naive flies, however, does not affect aggressive beha-
vior.'*”*

In the Drosophila adult brain, there are approximately 100
octopaminergic neurons. An important question is then whether
it is only specific subsets of these neurons that are required for
aggressive behavior. Expression of TBH selectively in the Tdc2
circuit rescues the aggression phenotypes in both male and female
hypoaggressive 7pH-null mutants, thereby demonstrating the
% Further
dissection of this circuit narrowed the relevant neurons down to
a distinct subset of octopaminergic neurons in the subesophageal
ganglion (SOG). In the SOG, a second subset of octopaminergic

neuronal requirement of OA in the phenotype.

neurons in which OA colocalizes with FRU, another gene
affecting aggression, have been proposed to play a role in the
decision-making network that controls the shift between
aggressive and courtship behavior.”*”

Serotonin. Initially, pharmacological studies reported that 5-
HT does not have an influence on aggression in Drosophila.’
More recently, it has been shown that drug-induced increases of
5-HT and overexpression of Tryptophan hydroxylase (Trh), the rate
limiting enzyme in 5-HT synthesis increases aggression.*
Consistent with this, selective activation of serotonergic neurons
in the brain by means of 77/ -gal4 results in increased aggression
with flies that escalate fights faster and with increased intensity.’
By contrast, Dierick and Greenspan (2007) showed that
pharmacological inhibition or silencing of 5-HT neurons has no
effect on aggression. However, Alekseyenko et al. (2010) found
that flies with acutely inhibited 5-HT neurons fight but do not
escalate.” Overall, these results indicate that the effects of 5-HT
are complex. The different effects of 5-HT might depend on the
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differential regulation of the behavior by different receptor types.'*
Drosophila expresses three types of 5-HT receptors; 5-HT2Dro,
5-HT1A-like and 5-HT7.'" Using specific pharmacological
modulation of these receptors, Johnson et al. showed that 5-
HT?2 and 5-HT1A-like receptors differentially regulate aggression
in Drosophila. While activation of 5-HT2 receptors decreases
overall aggression, activation of 5-HT1A-like receptors induces
the opposite effect.'* Both receptors influence different aspects of
the behavior: 5-HT2 receptor manipulation primarily alters
lunging and boxing, whereas 5-HT1A-like receptor manipulation
primarily affects wing threats and fencing.'*

Dopamine. Pharmacological alteration of DA levels in
Drosophila suggests that the effects of DA on aggressive behavior
are complex.” Spatiotemporal inactivation of neurons expressing
Dopa decarboxylase (Ddk), the enzyme responsible for the final
common step in 5-HT and DA biosynthesis, eliminated mid- and
high-level aggression.” However, neither silencing serotonergic
nor dopaminergic neurons individually mimics the phenotypes
seen when both circuits are silenced simultaneously, suggesting
that the interplay between both circuits is required for the
regulation of aggression.” Recently, it has been shown that there
are at least eight types of dopaminergic neurons.”® This
observation raises the possibility that there may be dopaminergic
neuron subtype-specific effects on aggression.

Acetylcholine. In Drosophila, most sensory neurons and many
central neurons are cholinergic. The effect of these neurons on
aggressive behavior in Drosophila has not been extensively studied
and the direct effects of alterations in neurotransmitter levels have
not been investigated. Two independent publications report the
effects of feminizing these neurons using Choline acetyltransferase
(Cha)-gal4 and UAS-transformer and show that this leads to an
increase in specific aggressive actions such as lunging, boxing and
chasing, whereas others such as wing threats are reportedly
decreased."®” The overall level of aggression, however, remains
normal.' Although alterations in genes of the sex determination
hierarchy have been reported to induce female fighting patterns in
males and vice versa, feminized Choline acetyltransferase (Cha)-
gal4 5 UAS-transformer males show no changes in male fighting
patterns. Instead, they show an increase in male-male courting
behavior and an absence of male-female courting.'****” The
reported effects seem to be due to a developmental effect with the
phenocritical period in late larval to early pupal stages." Given the
large number of cholinergic neurons in the nervous system, it is
unclear which subset(s) could be responsible for the observed
behavioral changes and whether these differences in aggressive
behavior relate to inappropriate sensory input arriving in the CNS
or to changes within the CNS circuits themselves." It has been
argued that male specific cholinergic neurons, which express the
male forms of fruitless or doublesex and represent 10% of the
total number of cholinergic neurons, could play a major role, but
this has not been investigated further.'

Neuronal Circuits Involved in Aggressive Behavior
Integration of sensory input. Aggressive behavior requires

reception of sensory input followed by the interpretation and
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Figure 2 (See opposite page). (A-C) Schematic representation of adult central brain cells reported to be serotonergic, dopaminergic or octopaminergic.
Cholinergic cells were reported to be widespread throughout the entire brain making it difficult to present a schematic overview.'**'** PB, protocerebral
bridge; FB, fan-shaped body; EB, ellipsoid body; NO, noduli; MB, mushroom bodies; P, mushroom body peduncle; CA, mushroom body calyx; AL, antennal
lobe; SOG, subesophageal ganglion; LC, lobula complex; ME, medulla; LA, lamina. (A) Serotonergic cells. LLP1, posterior lateral protocerebrum; LP2a,
between the medulla and the lateral protocerebrum; LP2b, between the medulla and the lateral protocerebrum; DP, dorsal protocerebrum; SP1,
posterior to superior median protocerebrum; SP2, posterior median protocerebrum; IP, posterior inferior median protocerebrum; PLP, posterior lateral
protocerebrum; SLP, superior lateral protocerebrum; AMP, anterior median protocerebrum; ALP, anterior lateral protocerebrum; AVP, anterior ventral
protocerebrum; PAL, posterior to antennal lobe; DLS, dorsal lateral subesophageal ganglion; AS, anterior subesophageal ganglion; SE1, lateral
subesophageal ganglion; SE2, anterior lateral subesophageal ganglion; SE3, most ventral subesophageal ganglion.'*'* (B) Dopaminergic cells. PAM,

dorsomedial anterior protocerebral; PAL, dorsolateral anterior protocerebral; PPM, dorsomedial posterior protocerebral; PPL1, dorsolateral posterior
protocerebral; PPL2, lateral posterior protocerebral; PPD, protocerebral posterial dorsal; T1, tritocerebrum; VUM, ventral unpaired medial neurons.”®'47:14¢
(C) Octopaminergic cells (nomenclature according to Sinakevitch and Strausfeld, 2006; nomenclature between brackets according to Monastirioti et al.,
1995). Cluster GOa, Cluster GOb (LP, lateral protocerebrum cell), Cluster G1 (DMC, dorsal medial cluster), Cluster G2a (~DAC, dorsal anterior cluster?),
Cluster G2b (~DAC, dorsal anterior cluster?), Cluster G3a (AL, antennal lobe cluster), Cluster G3b, Cluster G4a (DPC, dorsal posterior cluster), Cluster G4b
(DPC, dorsal posterior cluster), Cluster G5a, Cluster G5b,c, Cluster G6, VUM, Ventral unpaired median neurons 1-3 (SM, subesophageal medial). (D-F)
Diagrams representing the biosynthetic pathways of acetylcholine and the monoaminergic neurotransmitters: serotonin, dopamine and octopamine.
(D) Serotonin synthesis. TPH, Tryptophan hydroxylase; DDC, DOPA decarboxylase. (E) Dopamine/octopamine synthesis. TH, Tyrosine hydroxylase;
TDC, Tyrosine decarboxylase; DDC, DOPA decarboxylase; TBH, Dopamine 3 hydroxylase (F) Acetylcholine synthesis. ChAT, Choline acetyltransferase

integration of these cues and the generation of an appropriate
response. Differences in the development or function of the
neuroanatomical structures mediating these processes can lead to
the generation of an abnormal aggressive response to a certain cue
(Fig. 3).

The generation of an aggressive response to external stimuli is
influenced by many factors. One of these is the social history of
the individual fly. Social experience influences aggression with
socially naive males being more aggressive.'**””””% About 200
genes have been shown to be differentially expressed between
socially naive and experienced flies.”” Interestingly, one of these
genes, Cyp6a20, is associated with pheromone sensing, suggesting
that sensitivity to these pheromones provides a manner in which
social experience modulates aggressive behavior.”” In addition,
memory of previous fights seemed to induce alterations in the
fighting intensity among familiar male opponents.”

Pheromone signaling is the best studied sensory input system in
the context of aggressive behavior.'®”7%%* Volatile pheromones
are detected by the olfactory system, while non-volatile cuticular
hydrocarbon pheromones signal via the gustatory system. Both
have been reported to modulate aggressive behavior. The volatile
pheromone c¢VA promotes aggression among males via Or67d
expressing olfactory receptor neurons.'® This pheromone also
seems to mediate the aggression suppressing effect of group
housing via Or65a expressing olfactory receptor neurons.®!

The non-volatile sex-specific cuticular hydrocarbons produced
by the oenocytes, play an important role in sex recognition and
thus the appropriate behavioral response of males toward other
males or females.” Masculinization of female oenocytes for
instance elicits an aggressive response of males toward those
females. The aggression promoting effect of cuticular hydro-
carbons was further supported by the reduced levels of aggression
between oenocyte- depleted males.*” One of the most prominent
cuticular hydrocarbons, (z)-7-tricosene, plays an important role in
this aggression regulatory mechanism. This pheromone acts in a
hierarchical manner with cVA through the activation of the Gr32a
gustatory receptor where (z)-7-tricosene is required for the
aggression promoting effect of cVA, but not vice versa.** Aside
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from pheromones, auditory and visual sensory systems have been
reported in the context of aggression.'>%

Blind #norpA and motion blind homozygous ninaE males
perform significantly fewer lunges thereby implicating visual
information in aggression.'> The white gene is another gene that
has been investigated in the context of vision and aggression.
Mutations in this gene lead to visual abnormalities, especially at
high light intensities, but these flies are not blind. They have
normal phototactive responses and show responses to light stimuli
on ERG that are stronger due to the lack of light buffering by
pigmentation.**®>  White mutants show different behavioral
abnormalities, but these could also be due to effects of this
ABC-transporter in central brain structures. Indeed, for some
behaviors it has been described that the effects in central brain
structures can be independent from the effects on eye
pigmentation, possibly due to alterations in different monoamine
levels in the brain.***° The effect on aggression of the w'**® allele,
a null allele of white with a deletion at the 5' of the gene that
includes exon 1, has been examined in different assays by different
groups. One report did not show a significant alteration in
aggression in these mutants, whereas other groups showed a
significant reduction in lunging as well as other high intensity
fighting and an fighting latency.”'>'>71%2
Furthermore, an eye specific RNAi knockdown of the white gene

increase in

using GMR-gal4 has also been shown to cause a significant

reduction in lunging.'” However, the effect of w'’*®

on lunging
does not seem to be solely due to the effects in the eye."”
Overexpression of white in the eye using GMR-gal4 in a w''*®
mutant only partially rescues the lunging phenotype and white
RNAI using various drivers expressed throughout the brain lead to
significant decreases in this behavior." In summary, the possible
role of the white gene in aggression seems complex and not fully
understood.

Auditory signals have been proposed to play a role in the
recognition of an opponent in Drosophila melanogaster males.*
Sound production during aggression seems to be a male specific
trait.*” Males produce acoustic signals during aggressive encoun-
ters that differ from courtship sounds. These signals mainly occur
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upon tapping by an opponent and seem to be a recognition
reaction by the tapped male when he finds out that his opponent
is also a male, thus inducing an aggressive reaction. Further
observations supporting the aggressive nature of these sounds are
that they are capable of inducing retreat of the opponent and that
they are only produced in certain situations. Retreat of the
opponent, for instance, is solely accompanied by silent wing
movements.

Neural circuits and aggression. Different central brain
structures and neuronal populations play a role in the integration
and interpretation of stimuli and in the generation of a behavioral
response. However, only a subset of these structures has been
more closely investigated in the context of aggressive behavior.

Olfactory information is transmitted along olfactory sensory
neurons toward the glomeruli of the antennal lobe. In the
antennal lobe, peripheral olfactory receptor neurons are inter-
connected by local interneurons involved in the local processing of
olfactory information. This interconnectivity has been suggested
to modulate the interplay between cVA signaling via the
aggression promoting Or67d receptor and the aggression
suppressing Or65a receptor.’’ The ORNs also connect to
projection neurons which forward information toward the
mushroom bodies and the lateral horn. The latter mediates

innate behavioral responses to odors.”>**

The projection neurons
that transmit the information of the male-specific, aggression-
mediating pheromone cVA toward the lateral horn are FRU
positive and show sexual dimorphism, suggesting that these
neurons may modulate aggressive behavior.”

Gustatory receptor information on the other hand is primarily
transmitted via gustatory receptor neurons toward the subeso-
phageal ganglion. How this information is further processed in the
brain is less well understood, but subesophageal ganglion neurons
project toward multiple regions in the brain, including the
antennal lobe, the lateral horn and the mushroom bodies, which
could present a way to relay gustatory and contact pheromone
sensory data to different higher processing centers in the brain.”**

Visual information passes through multiple well-studied layers
in the optic lobes. The central integration of this information,
however, is less well known. The mushroom bodies and the
ellipsoid body as well as different neurons in the lateral
protocerebrum have been implicated in certain forms of visual
learning.”””’

Auditory information is transmitted by neurons of the
Johnston’s organ that innervate the antennal mechanosensory
and motor center of the brain, a neuropil lateral to the
subesophageal ganglion and antennal lobes.'® It is unknown
how this information is further integrated in the brain.

One of the main higher integration sites in the brain, the
mushroom bodies, are involved in the integration of many of the
aforementioned sensory cues. Mushroom bodies have been shown
to play a key role in multiple behaviors such as olfactory
information processing,
control of locomotion,
information.”'*"""*The
implicated in aggression.®”'""'> Blocking their synaptic output
7 Many

memory formation, sleep, the higher
and the processing of visual context
mushroom bodies have also been

results in the abolishment of aggressive behavior.
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pleiotropic genes influencing aggression also function in mush-
room body development suggesting a relation between brain
development and aggressive behavior in adult flies.*'"'> The
length of the o lobes of the mushroom bodies has been correlated
with aggressive behavior in viable P-element insertion mutants."'
The significance of this observation is unclear. However, a
relationship between mushroom body volume and aggression has
also been described in two paperwasp species, Polistes instabilis and
Mischocyttarus mastigophorus, suggesting there could be conserved
roles involving mushroom body structure and its plasticity in
insect aggression.'*>!%

Finally, the fruitless (fru) circuit has been shown to play an
important role in the regulation of sexually dimorphic responses
to sensory cues. fru, known for its prominent role in male
courtship behavior undergoes sex-specific splicing, and it is
involved in the sex determination hierarchy. Alterations in
splicing of this gene are sufficient to elicit female fighting patterns
in males and vice versa.”** Subgroups of fr« neurons are involved
in the control of these sexually dimorphic patterns.'”” Specific fru-
positive octopaminergic neurons in the subesophageal ganglion,
for example, have been implicated in the decision between
aggressive or courtship behavior.”” The subesophageal ganglion
plays a role in pheromone recognition in addition to its better-
known function in taste processing. The role of the subesophageal
ganglion in aggression is further supported by the presence therein
of other, non-fru-positive, octopaminergic neurons that also
modulate aggression.'’

Due to the complexity of aggressive behavior and the vast
connectivity pattern throughout the brain of the neuropils known
to be involved in aggression, it is expected that many more
neuronal populations will exert an influence on this behavior.

Pleiotropic Networks of Many Interacting Genes

In the 1990s, the first attempts to map human loci involved in
complex behavioral traits using the available genome-wide
markers identified a limited number of loci with a large effect
size.'”®'"* However, novel high resolution mapping in model
organisms and genome wide association studies in patients
suffering from disorders of which aggression represents an
endophenotype, revealed that the genetic effect sizes for common
variation are a lot smaller than previously expected.'®®''*'"* These
studies showed the involvement of a large number of genes and
the potentially high importance of rare variants in the control of
these complex behaviors.

In Drosophila, quantitative analyses demonstrated that investi-
gating genes involved in biologically likely pathways only partly
identify the genetic network and the neuronal populations that
regulate this behavior.'"'**¥73115 In effect, currently available
evidence reveals that aggressive behavior in Drosophila is
controlled by (a) complex genetic network(s) involving a large
number of pleiotropic and epistatically interacting genes. The
existence of such an elaborate network controlling aggression is
not surprising given the genetic architecture of other complex
traits in Drosophila and other organisms and given the number of
neurobiological processes that have been shown to influence
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Figure 3. Scheme representing the flow of information provided by external stimuli to integration centers in the central brain. This central integration
results in interpretation and integration of the different inputs and the generation of an appropriate response. The role of stimuli or neuronal structures
marked with an asterisk (¥) in aggression has been more closely analyzed. Visual information is received by the retinal ommatidia and travels through the
different layers of the optic lobes, lamina, medulla and lobula complexes, to the central brain.'*® The described higher integration centers of this visual
information include the mushroom bodies, the central complex and different neurons in the lateral protocerebrum.””*%'*° Olfactory information is sensed
by olfactory neurons expressing olfactory receptors located on the third antennal segments and the maxillary palps. Odorant cues travel via these
neurons to the glomeruli in the antennal lobe from where projection neurons send this information to higher integration centers, including the
mushroom bodies and the lateral horn.®*'*'"'>*> Gustatory signals are sensed by gustatory receptors expressing gustatory receptors located on the
proboscis, wings, legs and vaginal plate. These neurons all project to the SOG. The SOG has been shown to project toward multiple other brain regions
including the antennal lobe, the lateral horn and the mushroom bodies.”*'*>'** Mechanosensory information is sensed by a variety of receptors, located
all over the body, which can be subdivided into a ciliated and a non-ciliated group. Non-ciliated mechanosensory receptors include nociceptors and
muscle and visceral stretch receptors. Ciliated mechanosensory receptors include: bristles responsible for touch perception, campaniform sensilla on
wings and haltere providing info on flight parameters and chordotonal organs including scolopidial organs providing proprioceptive and gravireceptive
information.'>”'>® The fly's largest chordotonal organ, Johnston’s organ, is located in the second antennal segment and represents the flies ear. Part of
these neurons have been shown to innervate the antennal mechanosensory and motor center of the brain, a neuropil lateral to the SOG and the
antennal lobes, further higher integration is mainly unknown.'?%7:1%8

aggression in Drosophila itself.?""'**!'¢'2 Furthermore, it also
makes sense from an evolutionary and biological point of view. As
previously discussed, complex behaviors rely on the perception
and integration of many layers of information as well as the
capability to execute the behavior. Thus they depend on a vast
number of biological processes, each characterized by their own
(sub)network of genes and each under different evolutionary
pressures.

Two independent studies that investigated the effects of
artificial selection for aggressive behavior on transcript abundance
provided a first insight into the overall genetic network underlying
this trait. Dierick et al. identified 80 differentially expressed
transcripts, while Edwards et al. found 1,539 altered tran-

scripts.”””? Both experiments illustrate the possible role in

www.landesbioscience.com

aggression of transcripts involved in a wide variety of biological
processes and molecular functions. A possible explanation for the
difference in gene numbers between both groups is that genetic
variation in the fly stocks (laboratory stock vs. recently derived
from nature) that were used to initiate the selection experiments
was different.

It is important to consider that transcriptional alterations do
not provide information about the causality of the identified genes
for the behavioral trait. However, for many of the transcripts it has
been shown that these genes affect aggressive behavior. A screen of
P/GTI] insertion lines, which was enriched for candidate
aggression genes identified by the selection experiment of
Edwards et al. (2006), showed direct effects on this behavior of
mutations in 59 genes. Mutations in Cyp6420, a gene identified
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by Dierick et al. directly alters aggression levels.””'*! Interestingly,
this gene is involved in the regulation of behavioral differences
between socially naive and experienced flies.”

These studies also illustrate the extensive pleiotropy of the
identified genes. Many of these genes show clear effects on other
behaviors such as resistance to starvation stress, sleep and olfactory
216120122 Ochers play a role in the
correct development of sensory bristles and neuropils, such as the
mushroom bodies and the central complex.*'>'* A detailed
analysis of the neuralized gene revealed that alternative splicing

and locomotion behavior.

can provide a molecular mechanism which forms the functional
basis of the phenotypic pleiotropy.°

Analyses of the genetic networks underlying other complex
behaviors such as olfactory avoidance behavior and startle induced
locomotion showed that the corresponding genes often interact in
a non-additive manner.?"'*® Therefore, it is not unexpected that
epistasis would also be present among the genes that form the
genetic basis of aggression. A first indication came from the
mapping of aggression QTLs which are characterized by
epistasis.'"> Furthermore, the analysis of the variation in aggressive
behavior among 40 wild-derived inbred lines provided more
evidence for the presence of non-additive interactions among the
genes involved.” Recently, the analysis of the epistatic interac-
tions between a set of ten hyperaggressive P/GT1] insertion lines
provided the first insights into the complex nature of these
interactions and their widespread influences on transcript
abundance."!

Further analysis of the transcriptional network underlying
aggression in the 40 wild-derived inbred lines identified networks
of coregulated genes that are involved in this behavior.” In this
analysis, the genetic network associated with natural variation in
aggressive behavior was mapped by investigating the associations
between aggression and quantitative trait transcripts (QTT) and
single feature polymorphisms (SFP) and subsequently grouping
the associated transcripts into genetically correlated modules. Two
hundred sixty-six candidate aggression genes were identified.
While mutations in some of the identified genes were shown to
have a clear effect on aggression or have been shown to have an
important role in this behavior, e.g., members of the Cytochrome
P450 gene family, the identified genes showed only a small
overlap with previously identified genes. However, they were part
of nine distinct modules of genetically intercorrelated transcripts
enriched for gene ontology categories previously implicated in
aggressive behavior, such as neurodevelopment, visual perception
and metabolic functions and male-biased transcripts.

The difference between the genes identified by the selection
experiments, the QTL mapping and the transcriptional analysis of
the inbred lines as well as the absence of some of the previously
identified genes involved in aggressive behavior could be
attributed to multiple factors.”**””>!"> First of all, as these experi-
ments, with exception of the QTL mapping, are all based on
expression analyses, the candidate aggression genes would not be
identified if they are not genetically variable at the transcript level
or if their transcripts do not vary or are only expressed at low levels
during the analyzed developmental stage.”>*””® As the genome
sequence of the 40 inbred lines will be available in the near future,
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it will be interesting to see whether polymorphisms at the DNA
level linked with aggression will identify these previously known
aggression genes. Furthermore, all of the described whole genome
analyses, i.e., both selection experiments, the QTL mapping
experiment and the transcript analysis of the 40 inbred lines, use
different parental lines as a starting point.***/>''> As we already
pointed out, epistasis plays an important role in controlling
behaviors, thus a different genetic context, resulting from the
different  parental could have a major influence.
Furthermore, it could be that the genetic variation captured in

lines

each sample was different, as would happen, for example, if the
genetic basis of natural variation in aggressive behavior involves
many different rare alleles with small effects. Finally, the known
candidate genes, such as fru, are often involved in other important
processes. This could make them subject to strong purifying
selection and thus might not allow functional variation.”

The transcript analyses of the 40 inbred lines provides the first
attempt to generate an overview of transcriptional modules that
control aggression and could form the starting point for a systems
genetics analysis of natural variation in this behavior. Such an
approach aims to integrate the different layers of biological
information between DNA and observed phenotype, consisting of
RNA, proteins and metabolites.””* In the near future, the
availability of genome sequences of these 40 lines, and of in total
192 lines will give the opportunity to fill in another layer of this
network, creating the possibility to directly link polymorphism to
alterations in the coexpression network that result in behavioral
changes.”*'*

Perspectives

The genetic architecture of behaviors, such as aggression, is
shaped by many interacting genes with pleiotropic effects.
Quantitative genetic whole genome analyses enable more insight
into the overall genetic networks and the molecular context that
are at the basis of these behaviors. However, it is the combination
of complex quantitative analyses with single gene molecular
genetics that will allow the definition of the exact molecular
functions of subsets of genes in this network.

The study of aggression in Drosophila using such integrative
approach will lead to a better understanding of its genetic and
neurobiological basis and the identification and characterization of
neural networks that mediate or influence this behavior. We
surmise that these insights will contribute to our understanding of
the evolution of aggressive behavior and of the genetic basis of
aggression in other species, including humans.

In Drosophila, territorial aggression has been observed in
different species. Drosophila hawaiensis males, for instance, have
been shown to vigorously defend their mating territory.'>*'*
Analysis of differences in the genetic background between closely
related species could help to understand the evolutionary forces
leading to divergent aggressive behavior. In addition, the analysis
of sequence variation and its functional consequences for genes
involved in aggressive behavior in Drosophila melanogaster
represents another avenue to study the genetics and evolution of
aggression in other species. Supporting this contention, many
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factors involved in the control of aggression seem to be conserved
among insects. Experience and chemical cues influence this
behavior, while neurotransmitters implicated in Drosophila
aggression also mediate this behavior in ants and crickets.
Furthermore, QTL mapping revealed, besides neurodevelopmen-
tal genes and GPCRs, the metabotropic GABA-B-R1 receptor as a
candidate aggression gene in honey bees."””!?®
neurotransmitters and receptors appear to play comparable roles
in insect aggression, but also the same brain structures mediate
aggressive behavior. Similar to Drosophila, the mushroom bodies
have been implicated in aggression in two paperwasp species,
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