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Abstract 

All important developmental milestones are accomplished during the fetal stage, and nutrient 
fluctuation during this stage produces lasting effects on offspring health, so called fetal pro-
gramming or developmental programming. The fetal stage is critical for skeletal muscle de-
velopment, as well as adipose and connective tissue development. Maternal under-nutrition at 
this stage affects the proliferation of myogenic precursor cells and reduces the number of 
muscle fibers formed. Maternal over-nutrition results in impaired myogenesis and elevated 
adipogenesis. Because myocytes, adipocytes and fibrocytes are all derived from mesenchymal 
stem cells, molecular events which regulate the commitment of stem cells to different lineages 
directly impact fetal muscle and adipose tissue development. Recent studies indicate that 
microRNA is intensively involved in myogenic and adipogenic differentiation from mesen-
chymal stem cells, and epigenetic changes such as DNA methylation are expected to alter cell 
lineage commitment during fetal muscle and adipose tissue development. 
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Introduction 
Obesity has become an epidemic. In the United 

States, more than one third of the population age 20 or 
older are obese (2007-2008) [1]. Data from Centers for 
Disease Control and Prevention shows that the overall 
obesity rate in 1989 was less than 15%, ten year later in 
1999, the obesity rate was about 25%, and in 2009 it 
was 34%, showing that obesity is increasing rapidly in 
recent decades. Associated with the overall trend of 
increased obesity, obesity in non-pregnant women of 
child bearing age (between 20 to 39 yr old) is also be-
coming more and more prevalent, and has reached 
more than 30% [1]. Furthermore, nearly 17% of chil-
dren and teenagers from 2-19 yr old were found to be 

obese [2]. Maternal obesity affects fetal development 
[3, 4], which is associated with obesity in offspring [5, 
6]. 

In addition to maternal obesity, maternal nutri-
ent deficiency results in insufficient nutrient supply to 
the fetus, negatively affecting fetal development [7]. 
Fetal nutrient deficiency results from many conditions 
in pregnancy, including maternal malnutrition, re-
duced placenta efficiency, adolescence pregnancy, 
and closely spaced pregnancy. Compared to brain 
and heart, skeletal muscle and fat have a lower prior-
ity for nutrition repartitioning, which makes the de-
velopment of skeletal muscle and adipose tissue es-
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pecially vulnerable to nutritional deficiency [8]. In this 
review, we focus our discussion on the effect of ma-
ternal nutrition on fetal skeletal muscle and adipose 
tissue development, and how fetal developmental 
programming might regulate the differentiation of 
myocytes, adipocytes and fibrocytes, as well as their 
impacts on postnatal body composition.  

Skeletal Muscle, Adipose and Connective 
Tissue Development 
Skeletal muscle development  

Muscle fibers or myofibers are the structural 
units of skeletal muscle [9]. The formation of new 
muscle fibers is termed myogenesis, a differentiation 
process where multipotent stem cells are converted 
into committed muscle cells. In livestock, all muscle 
fibers are formed during the prenatal stage. Conse-
quently, understanding the prenatal development of 
skeletal muscle is important, because events occurring 
at this stage have dramatic impact on postnatal de-
velopment and growth (Dauncey and Harrison 1996).  

Prenatal myogenesis can be divided into prima-
ry myogenesis and secondary myogenesis. Primary 
myogenesis mainly occurs during the embryonic 
stage, when primary muscle fibers arise; secondary 
myogenesis occurs during the fetal stage, and leads to 
the formation of secondary muscle fibers. Only a 
small number of primary muscle fibers develop dur-
ing the embryonic period, which will serve as tem-
plates for the formation of secondary muscle fibers 
during the fetal stage. Both primary and secondary 
muscle fibers are derived from a pool of cells termed 
mesenchymal stem cells [10], which can be committed 
to a myogenic linage as well as other cell types such as 
adipocytes and chondrocytes. However, the commit-
ted cells, termed myogenic progenitor cells, are not 
yet muscle cells. Prenatal myogenesis is under the 
control of a panel of regulatory proteins, including 
Wingless and Int (Wnt), paired box gene (Pax) 3 and 
Pax 7 [11, 12]. Wnt signaling is very important for 
activating myogenesis [13]. The expression of Pax 3 
and Pax 7 in mesechymal stem cells induces the ex-
pression of myogenic regulatory factors (MRFs) [10], 
which leads to myogenic differentiation [14]. Cur-
rently identified MRFs include myogenin, MRF-4, 
Myo-D and Myf-5 [15]. MRF-4 is mainly expressed at 
the very early stage of myogenesis, followed by the 
expression of MyoD and Myf-5, which converts pre-
cursor cells into myoblasts [15]. Myogenin is neces-
sary for the fusion of myoblasts into myotubes [16] 
and is expressed later and maintained throughout the 
fetal stage. MRF-4 is also expressed later and becomes 
the dominant MRF in postnatal muscle. MyoD and 

Myf-5 function compensatively to induce the differ-
entiation of multipotent myogenic precursor cells into 
myoblasts [17].  

Both myogenic precursor cells and myoblasts 
proliferate to increase their numbers. When there are 
pertinent environmental signals, myoblasts align with 
each other, fuse and differentiate into immature mus-
cle fibers known as myotubes [18]. The exact process 
regulating myoblast fusion is not well understood. 
Because myogenic cells are derived from myogenic 
progenitor cells, increasing the proliferation of pro-
genitor cells increases the number of myogenic cells 
which will form more primary myofibers. Due to the 
fact that only a very limited number of primary myo-
fibers are formed during the embryonic stage, the 
impact of primary myogenesis on subsequent size and 
number of muscle fibers formed in the offspring is 
relatively minor [19].  

Secondary myogenesis forms the majority of 
muscle fibers. Therefore, the fetal stage, when sec-
ondary myogenesis is ongoing, is critical for skeletal 
muscle development [18, 20]. Since the number of 
muscle fibers formed during the fetal stage is de-
pendent on the number of available myogenic pro-
genitor cells and their proliferation is highly sensitive 
to nutrients, maternal nutrition dramatically affects 
skeletal muscle development during this stage [7, 
21-23].  

The postnatal skeletal muscle development is 
mainly due to the increase in muscle fiber size, with 
no net formation of new muscle fibers [24]. New 
muscle fibers generated during the adult stage are 
only to replace injured muscle fibers [19].  

The increase in muscle fiber size at the adult 
stage mainly relies on muscle satellite cells. Satellite 
cells are a population of postnatal myogenic stem cells 
located between the sarcolemma and basal lamina 
[25]. Satellite cells are dormant mononucleated cells, 
which are at the G0 phase of the cell cycle. Although 
the specific population dynamics of the cells are un-
known, numerous subpopulations of these cells are 
found in skeletal muscle. After activation by various 
environmental stimuli related to growth, satellite cells 
undergo asymmetric proliferation with a portion of 
daughter cells replenishing the original pool and the 
remaining differentiating into myoblasts. These newly 
generated myoblasts fuse with existing muscle fibers 
to increase the muscle fiber size, as well as the number 
of nuclei in muscle fibers. Indeed, the majority of nu-
clei in an adult muscle fiber come from satellite cells 
[26]. However, recent studies indicate that a portion of 
satellite cells are also capable of differentiation into 
other cell types in addition to muscle cells, such as 
adipocytes and fibroblasts [27]. Physiological factors 
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and mechanisms controlling the differentiation of 
those multipotent cells are a current research focus. 
Adipocyte and connective tissue development 

In addition to energy storage, adipose tissue is a 
very important organ for secretion of many endocrine 
and paracrine factors [28-33]. Adipose tissue plays a 
critical role in the regulation of whole body metabo-
lism and homeostasis [28, 34]. At the molecular level, 
the development of adipose tissue relies on preadi-
pocyte hyperplasia, switching from proliferation to 
lipid assimilation, adipocyte hypertrophy and angio-
genesis. Adipogenesis is the de novo development of 
adipocytes. Similar to myogenesis, however, adipo-
genesis can be briefly divided into two steps: deter-
mination and differentiation.  

Key transcription factors regulating adipogene-
sis include the peroxisome proliferator-activated re-
ceptor (PPAR) γ and CCAAT/enhancer-binding pro-
teins (C/EBPs) [31]. PPARγ is highly expressed and 
plays an indispensible role in the differentiation of 
adipocytes [35]. C/EBPβ/δ, which are induced in the 
early phases of adipogenesis, trigger the expression of 
PPARγ [36]. Bone morphogenetic proteins (BMPs), 
which belong to the transforming growth factors β 
(TGFβ) superfamily, exert important roles in the adi-
pogenic determination from multipotent stem cells 
[37]. The Wnt signaling pathway inhibits adipogene-
sis [38]. 

Fibrogenesis refers to the formation of connec-
tive tissue. Fibrosis is characterized by the enhanced 
deposition of extracellular matrix (ECM) proteins in 
basement membrane and interstitial tissue of muscle 
[39]. A number of cytokines and growth factors are 
associated with the development of fibrosis, among 
which TGFβ has been recognized as the most power-
ful and widely expressed profibrogenic cytokine [39]. 
There are currently three TGFβ isoforms identified, 
including TGFβ1, TGFβ2 and TGFβ3; TGFβ1 is mainly 
expressed in endothelial cells, fibroblasts, hemato-
poietic cells and smooth muscle cells, TGFβ2 is pri-
marily expressed in epithelial cells and neurons, and 
TGFβ3 is specifically expressed in mesenchymal cells 
[40]. However, the three isoforms of TGFβ transduce 
the signals through the same serine-threonine kinase 
cell surface receptors, including type I and type II 
receptors [41, 42]. Activation of TGFβ receptors in-
duces the Smad signaling pathway [43] and the ex-
pression of target genes possessing Smad-specific 
elements in their promoters [44], leading to the syn-
thesis of collagens [45, 46] and accumulation of ex-
tracellular matrix [47]. 

Myogenesis, adipogenesis and fibrogenesis are 
competitive processes  

Fetal and neonatal skeletal muscle development 
occur in the same microenvironment and involve 
myogenesis, adipogenesis and fibrogenesis [19], all of 
which are derived mainly from mesenchymal stem 
cells. Therefore, the commitment of mesenchymal 
stem cells to myogenic, adipogenic or fibrogenic lin-
eages can be considered a competitive process, and is 
"shaped" by numerous inductive regulators. Switch-
ing the commitment of stem cells from myogenesis to 
adipogenesis will increase intramuscular fat, an event 
associated with skeletal muscle insulin resistance due 
to the paracrine effect of intramuscular adipocytes 
[48-50], and switching to fibrogenesis leads to im-
pairment of muscle function including oxidative ca-
pacity [51]. In addition, attenuation of myogenesis 
will reduce the muscle fiber density [22], exerting 
permanent negative effect on offspring muscle 
strength [52]. During aging, a progressive loss of 
muscle mass occurs accompanied by increased adi-
posity and fibrosis [51, 53], resulting in the decline in 
muscle structural integrity and functional capacity 
[54]. Thus, proper differentiation of mesenchymal 
stem cells during fetal development is crucial for the 
long-term health of offspring.  

Maternal Nutrition and Fetal Programming  
Fetal programming 

Fetal programming, also known as develop-
mental programming or the Barker hypothesis, per-
tains to the fetal origins of adult diseases. This hy-
pothesis is based on epidemiological data that show 
that low birth weight due to maternal malnutrition 
has long-term effects on adult health [55]. The fetal 
programming hypothesis suggests that the alteration 
in the uterine environment as a result of nutritional 
stress at certain stages of conceptus growth and de-
velopment might permanently change tissue structure 
and function [56]. The offspring of malnourished 
mothers have a higher chance of developing coronary 
heart diseases, stroke, diabetes and hypertension [57]. 
The prevalence of type-II diabetes (T2D) increases 3 
fold for men who weighed 5.5 lb at birth when com-
pared to those who had birth weight of 9.5 lb [58]. The 
correlation between human maternal nutrition and 
offspring birth weight and the subsequent develop-
ment of hypertension, insulin resistance, T2D and 
cardiovascular diseases has been well studied by 
many researchers [8, 21, 23, 59-64]. 
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Maternal undernutrition of skeletal muscle de-
velopment  

Maternal nutrition affects fetal development, 
especially fetal skeletal muscle development [7]. Ma-
ternal nutrition during the embryonic stage has rela-
tively minor effects on skeletal muscle development, 
because only a very small number of myofibers are 
formed during this stage. Beef cattle receiving 30% 
nutrient restriction during 30 to 120 d of gestation had 
no effect on fetal body weight and carcass weight [65]. 
In a sheep study, 50% nutrient restriction from 18 
days before until 6 d after conception decreased the 
number of muscle fibers, though fetal body weight at 
mid-gestation was not affected [66]. 

The critical stage for fetal skeletal muscle de-
velopment is early to mid-gestation in the cattle and 
sheep, and mid to late gestation in pigs. A 50% de-
crease of nutrient availability in sheep from d 28 to 78 
of gestation reduced the formation of secondary my-
ofibers, and the ratio of secondary to primary myofi-
bers [7]. It is also known that reducing skeletal muscle 
mass during fetal development have long-lasting, 
irreversible negative physiological consequences for 
offspring [67, 68]. So it is not surprising that the 8 m 
old offspring lambs born to nutrient-restricted moth-
ers have fewer muscle fibers than control lambs [8]. 
Similar results were also observed in new born pigs 
[69], as well as in guinea pigs [70] with in-utero un-
der-nutrition. 

For the late gestation stage, maternal nutrient 
restriction does not have major impacts on the num-
ber of muscle fibers in cattle and sheep because skel-
etal muscle has matured [18]. Skeletal muscle matures 
in about d 105 of gestation in sheep (term about 150 d) 
and d 210 of gestation in cattle (term about 285 d) [18]. 
Maternal restriction at this time, however, does re-
duce muscle fiber size [71]. These results were also 
confirmed in a sheep study, when the growth of skel-
etal muscle was compared in single with twin preg-
nancies, only the hypertrophy but not the hyperplasia 
of skeletal muscle was affected [72]. In summary, 
maternal under-nutrition during early to 
mid-gestation reduces muscle fiber numbers and 
during late-gestation decreases muscle fiber sizes in 
sheep and cattle; in rodents and pigs, the mid to late 
gestation are important for muscle fiber formation. 
Maternal over-nutrition and fetal skeletal muscle 
development  

Besides maternal nutrient deficiency, maternal 
over-nutrition also affects fetal skeletal muscle de-
velopment, mainly enhancing intramuscular adipo-
genesis and fibrogenesis. In ruminant animals and 
humans, adipogenesis begins around mid-gestation, 

which overlaps with myogenesis [18, 19, 30]. During 
fetal skeletal muscle development, a small portion of 
the progenitor cells differentiate into adipocytes, 
which form intramuscular fat and marbling in off-
spring [22]. Enhanced intramuscular fat accumulation 
is detrimental for health because increased intra-
muscular fat leads to skeletal muscle insulin re-
sistance due to the paracrine effect of intramuscular 
adipocytes [48-50], pre-disposing to Type 2 diabetes. 
However, in animal production, enhancement of in-
tramuscular fat accumulation or marbling improves 
meat quality; the amount of marbling is crucial for the 
flavor and juiciness of meat [73], and is determined by 
the number and size of intramuscular adipocytes [18]. 
Maternal over-nutrition elevates the expression of 
adipogenesis markers in skeletal muscle of 
mid-gestation fetuses [27]. A subsequent study also 
demonstrated that maternal over-nutrition resulted in 
increased number and size of adipocytes inside skel-
etal muscle of fetal sheep at late-gestation [23]. Post-
natally, the increased adipocytes and total triglyceride 
content were also observed in offspring sheep of 
over-nourished mothers [4].  

Besides myofibers and adipocytes, mesodermal 
progenitor cells can also differentiate into fibroblasts. 
These cells synthesize connective tissue which forms 
endomysium, perimysium and epimysium in fetal 
skeletal muscle during late gestation [19]. Maternal 
over-nutrition increases the collagen content and 
cross-linking of skeletal muscle, heart and large intes-
tine of fetuses, suggesting an important role of ma-
ternal nutrition during pregnancy in fetal fibrogenesis 
[74-76]. Similar increase in collagen and cross-linking 
was also observed in skeletal muscle of offspring with 
maternal over-nutrition [4].  

In summary, maternal over-nutrition enhances 
intramuscular adipogenesis and fibrogenesis, in-
creasing intramuscular fat and connective tissue con-
tent in offspring muscle.  

Mechanisms Associated with Fetal Pro-
gramming of Skeletal Muscle and Adipose 
Tissue Development 
MicroRNAs 

MicroRNAs (miRNAs) introduction: MiRNAs are 
single-strand RNA molecules of 21-23 nucleotides in 
length [77], which play a crucial role in developmental 
processes by regulating the expression of target 
mRNA [78]. The target mRNA transcripts of miRNAs 
include genes which play important roles in prolifer-
ation and differentiation [79]. So far, thousands of 
miRNAs have been discovered; thus, miRNAs have 
become one of the most abundant categories of gene 
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regulatory molecules in multicellular organisms [80]. 
It is estimated that about 30% of all protein-coding 
genes are regulated by miRNAs [81]. 

MiRNA and skeletal muscle development: In 2006, 
miR-206 was the first miRNA shown to play an im-
portant role in skeletal muscle development by regu-
lating the expression of connexin43, a gap junction 
protein required for skeletal myoblast fusion [82]. 
MiR-206, as well as miR-1 and miR-133, are muscle 
specific miRNAs [83-85]. MyoD induces the tran-
scription of miR-206 [86], which promotes myogenic 
differentiation [87, 88]. BMP-2, which is known to 
inhibit myogenesis, represses the expression of 
miR-206 by inhibiting its maturation process [89]. 
Besides miR-206, miR-1 also promotes myogenic dif-
ferentiation [90]. Overexpression of miR-1 increases 
the expression of α-actin, sarcomeric myosin and cre-
atine kinase [90]. MicroR-181, a miRNA up-regulated 
during muscle differentiation, is likewise very im-
portant in muscle development [91]. MiR-133 induces 
myoblast proliferation [92]. MEF2 transcription factor, 
a critical regulator of myogenesis, induces the ex-
pression of miR-1 and miR-133 [93]. MiR-133 also 
regulates connective tissue growth factor, a key me-
diator of fibrosis [94]. MiR-1 and miR-133 in zebrafish 
control the expression of muscle genes and regulate 
sarcomeric actin organization [95]. The expression of 
miR-133 increases during myogenic differentiation of 
C2C12 cells, as visualized by a GFP-related retroviral 
vector system [96]. In addition, miR-181 promotes 
myogenesis by down-regulating the homeobox pro-
tein Hox-A11, an inhibitor of muscle differentiation 
[91]. MiR-27b regulates Pax3 protein level and ensures 
myogenic differentiation [97]. MiR-322/424 and 
miR-503 are induced during muscle differentiation 
and arrest the cell cycle by down-regulating Cdc25A 
[98]. MiR-486 has also been shown to induce myoblast 
differentiation by down-regulating Pax7 [99]. Repres-
sion of miR-214 expression inhibits proliferation and 
differentiation of C2C12 cells [100]. Fibroblast growth 
factors, which inhibit myogenic differentiation of 
C2C12 cells and interfere with the activity of MRFs, 
repress the expression of miR-206, miR-1 and miR-133 
[101]. 

MiRNA and adipocyte differentiation: MiRNAs are 
involved in the regulation of adipogenesis. In 2004, 
miR-143 was determined to promote adipocyte dif-
ferentiation [102]. Then, an in vitro study reported that 
21 of the 100 miRNAs were differentially expressed 
before and after differentiation of 3T3-L1 preadipo-
cytes [103]. Another study also demonstrated that 
miR-17-92 promotes adipogenic differentiation [104]. 
Moreover, miR-200 family promotes adipogenesis by 
inhibiting the Wnt signaling which is a negative reg-

ulator of adipogenesis [105]. Later studies also 
showed the role of miR-27 and let-7 in the regulation 
of adipogenesis [106, 107]. Over-expression of miR-27 
prior to induction of adipogenesis inhibited adipo-
genesis by prevention of the expression of PPARγ and 
C/EBPα [106]. A recent study also demonstrated that 
miR-130 represses adipogenesis by inhibiting the ex-
pression of PPARγ [108]. 

MiRNA and stem cell proliferation and differentia-
tion: MiRNAs are likely candidates for the mainte-
nance of stem cell identity, which includes 
self-renewal and cell destiny decision, because miR-
NAs have the ability to control the expression of many 
targets simultaneously and provide a means for co-
ordinated regulation of gene action [109]. The first 
study about miRNAs in stem cells reported several 
embryonic stem cell-specific miRNAs [110]. Subse-
quently, a number of studies indicated that miRNA 
are key regulators in stem cell functions [111]. 

MiRNAs are essential regulators of stem cell 
self-renewal and proliferation [109]. There are miR-
NAs only expressed in pluripotent embryonic stem 
(ES) cells but not in adult cells, which might play roles 
in stem cell self-renewal [112]. Stem cell division in 
Drosophila is regulated by a miRNA pathway, and 
germline stem cells with a mutation in Dicer1 are 
normal in identity but defective in cell cycle control 
[113]. Other studies have also shown that Dicer1 mu-
tation leads to developmental arrest in zebrafish [114], 
embryonic lethality in mouse [115] and lower prolif-
eration of ES cells [116]. The expression of miRNAs 
differs in undifferentiated and differentiated ES cells 
[117, 118], as well as in multipotent mesenchymal 
stromal cells [119, 120], indicating the involvement of 
miRNA in the regulation of stem cell phenotypes. 
Epigenetics and its possible roles in fetal pro-
gramming of skeletal muscle development 

Epigenetics describes heritable changes in gene 
function without changes in gene sequence [121]. Ep-
igenetic changes can pass from one cell generation to 
the next (mitotic inheritance), as well as from one 
generation of a species to the next (meiotic inher-
itance) [122]. Epigenetic modifications include DNA 
methylation, histone modification and microRNAs, 
which explain cell differentiation into different cell 
types with various phenotypes despite the same DNA 
sequence [122]. Interestingly, epigenetic status can be 
influenced by environmental factors [123], suggesting 
that pathogenic physiological conditions, such as 
low-grade inflammation associated with obesity, may 
induce epigenetic modifications and thus alter cell 
differentiation and lineage commitments. 

DNA methylation: DNA methylation occurs on 
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cytosine residues of CG dinucleotides (also called 
CpG sites), which normally results in transcriptional 
silencing [124]. A typical example of DNA methyla-
tion could be the inactivation of one of the X chro-
mosomes in female genome [125]. DNA methylation 
silences genes through several mechanisms: 1) re-
cruitment of histone deacetylases, which removes 
histone acetylations inhibiting gene expression; 2) 
DNA methylation can interfere the binding of tran-
scription factors; and 3) DNA methylation leads to 
formation of inactive chromatin structures [126]. 

DNA methylation is regulated by the DNA cy-
tosine methyltransferases (DNMT), which include 
DNMT1, DNMT3a and DNMT3b in vertebrates [127]. 
DNMT1 is the maintenance DNA methytransferase, 
which functions on hemimethylated DNA during 
mitosis [128]. DNMT3 is also called the de novo me-
thyltransferase, which works on unmodified DNA 
and has very important roles in cell differentiation 
and commitment during embryogenesis [129]. 

Histone modifications: In eukaryotic cells, genomic 
DNA binds with histones, together called chromatin. 
There are four core histones (H2A, H2B, H3, H4), 
usually densely packed, with their N-terminal tails 
unstructured and could be modified by enzymes, 
leading to acetylation, methylation, phosphorytion, 
sumoylation, ubiquitylation and other modifications 
[130]. DNA methylation could further recruit histone 
deacetyltransfereases (HDACs), which lead to histone 
deacetylation and chromatin condensation [131].  

Polycomb group proteins (PcG) and trithorax 
(trxG) group proteins regulate histone methylation, 
which leads to other epigenetic modifications during 
cell differentiation [132]. PcG and trxG regulate the 
methylation of histone H3 through binding to PcG 
and trxG genomic response elements. PcG group 
proteins possesses H3K27-specific trimethylase activ-
ity which mediates gene expression repression, 
whereas trxG complexes have H3K4 trimethylase ac-
tivity which mediates activation [133]. The PcG pro-
tein EZH2 (enhancer of Zeste homolog 2) serves as a 
recruitment platform for DNMTs, thus converting 
plastic histone modifications to stable DNA methyla-
tions [134]. Cell differentiation is associated with his-
tone modifications and DNA methylations. Currently, 
there are no data available linking maternal nutrition 
to PcG and trxG protein functions during fetal muscle 
and adipose tissue development but inflammation, a 
condition associated with obesity, leads to alterations 
in PcG protein groups [135]. Because maternal obesity 
leads to inflammation in fetal muscle [23], this indirect 
evidence supports the role of epigenetic modification 
in developmental programming of skeletal muscle in 
offspring, which needs to be confirmed. Epigenetic 

changes in fetal muscle and adipose tissue due to 
maternal nutrition and other physiological conditions 
should be the focus for future research. 

Summary 
 The embryo-fetal stage is crucial for skeletal 

muscle development, as well as for adipose and con-
nective tissue development. Maternal nutrition affects 
the proliferation of myogenic precursor cells and, 
thus, the subsequent number of muscle fibers formed. 
Alternatively, maternal over-nutrition during 
mid-gestation results in impaired myogenesis and 
elevated adipogenesis. The underlying mechanisms 
for the changes observed in fetal skeletal muscle in the 
setting of maternal obesity remain largely unknown. 
In addition to alteration of inductive regulators, it is 
likely that miRNA may be involved in the regulation 
of myogenesis and adipogenesis during fetal muscle 
development, which warrants further studies. In ad-
dition, epigenetic changes such as DNA methylation 
are expected to alter cell lineage commitment during 
fetal muscle and adipose tissue development, a ques-
tion not yet examined in the framework of develop-
mental programming of skeletal muscle. 
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