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Abstract: To realize a machine learning (ML) model to estimate the dose of low molecular weight
heparin to be administered, preventing thromboembolism events in COVID-19 patients with active
cancer. Methods: We used a dataset comprising 131 patients with active cancer and COVID-19. We
considered five ML models: logistic regression, decision tree, random forest, support vector machine
and Gaussian naive Bayes. We decided to implement the logistic regression model for our study. A
model with 19 variables was analyzed. Data were randomly split into training (70%) and testing
(30%) sets. Model performance was assessed by confusion matrix metrics on the testing data for each
model as positive predictive value, sensitivity and F1-score. Results: We showed that the five selected
models outperformed classical statistical methods of predictive validity and logistic regression was
the most effective, being able to classify with an accuracy of 81%. The most relevant result was finding
a patient-proof where python function was able to obtain the exact dose of low weight molecular
heparin to be administered and thereby to prevent the occurrence of VTE. Conclusions: The world of
machine learning and artificial intelligence is constantly developing. The identification of a specific
LMWH dose for preventing VTE in very high-risk populations, such as the COVID-19 and active
cancer population, might improve with the use of new training ML-based algorithms. Larger studies
are needed to confirm our exploratory results.

Keywords: machine-learning; artificial intelligence; SARS-CoV-2; heparin; anticoagulation

1. Introduction

COVID-19 is an acute, systemic complex disorder induced by SARS-CoV-2 infec-
tion, with heterogeneous manifestations ranging from paucisymptomatic course to life-
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threatening severe presentation characterized by bilateral interstitial pneumonia and acute
respiratory distress syndrome [1]. It has been associated with a hypercoagulable state and
thrombotic complications, mainly in its critical form [2]. Although the American College of
Chest Physicians guidelines emphasize treatment of an acute pulmonary embolism as soon
as possible, using parenteral anticoagulants, such as subcutaneous low-molecular-weight
heparin (LMWH) [3], the exact therapeutic dose and side effects monitoring remain uncer-
tain [4]. COVID-19 have severely impacted care services of fragile groups, and in particular
cancer patients, with a significant reduction in the intensity and quality of care [5–7] and
also a reduced life expectancy if infected by SARS-CoV2 [8]. Neoplastic patients have
a state of basic hypercoagulability which exposes them to greater risk of deep venous
thrombosis (DVT) and pulmonary embolism (PE) [9–11], even if not immediately mani-
fested. At the basis of this are numerous components: the triad of Virchow (the alteration
of the vessel wall, the hematic stasis, and the hemostasis), quantitative and qualitative
alterations of the platelets and the leukocytes, prothrombotic activity of the same tumor
cells, compressive tumor mass stasis, onset of infections, and forced bed rest [12]. SARS-
CoV2 pneumonia increases mortality in patients with thoracic tumors [13] and in patients
with chemotherapy treatment. Robin Park et al. [14] in a meta-analysis of 16 retrospective
and prospective studies, with 3558 patients, show an increased mortality in patients under
active chemotherapy treatment, compared to not active chemotherapy. For this reason, a
correct evaluation of antithrombotic therapy is essential in oncologic patients, and able to
reduce mortality, especially when the appropriate dosage of low molecular weight heparin
(LMWH) is administered [15,16]. Therefore, we employed an approach based on machine
learning (ML), a branch of computer science that can be considered a close relative of
artificial intelligence, to achieve, through an algorithm, the correct anticoagulant therapy
to be administered in primary prevention to COVID-19 patients with active cancer. There
are different mechanisms that allow an intelligent machine to improve its capabilities and
performance over time. The machine will be able to learn to perform certain tasks by
improving, through experience, its skills, responses and functions. At the basis of machine
learning there is a series of different algorithms which, starting from primitive notions,
will be able to make a specific decision rather than another or carry out actions learned
over time. Machine learning techniques, compared with traditional statistical models,
have many advantages including high power and accuracy, the ability to model non-linear
effects, the interpretation of large genomic data sets, robustness to parameter assumptions,
and the ability to dispense with a normal distribution test [17].

2. Patients and Methods

We included 140 patients with active cancer (defined as diagnosis or treatment in
the last 6 months, recurrence or malignant tumor locally advanced or with metastasis, or
haematological tumour not in complete remission [18], who were hospitalized in the COVID
Hospital of the University Policlinic of Messina, from March 2020 to February 2021. Data
were collected from computerized medical charts. The diagnosis of COVID-19 infection was
undertaken with a SARS-CoV-2 nasopharyngeal swab by reverse transcription-polymerase
chain reaction (RT-PCR). The outcome of interest was the occurrence of a VTE during
hospitalization while patients with a known diagnosis of pulmonary embolism or venous
thrombosis at admission were excluded. We also excluded from the study patients who did
not require low molecular weight heparin prophylaxis or who were already being treated
with VKA/DOACs, and patients with a known diagnosis of pulmonary embolism or
venous thrombosis. All patients included in the study underwent LMWH at a prophylactic
dosage according to the International Guidelines and Medenox Samama trial [19]. The
study was approved by the local Ethics Committee and all patients or healthcare decision-
makers provided written or oral consent to their participation in the registry. The original
dataset with 140 patients and 36 characteristics is presented in Figure S1 and Table S1;
nine patients were not considered in the study because they had many missing values,
so the final number of patients was reduced to 131. Additionally, we have eliminated
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redundant and unnecessary features for our study; in this way we obtained the final
dataset, used to train the model. In the final dataset we considered 19 variables (see
Table S2), all collected at the time of hospitalization, before patients began therapy with
LMWH: age, sex, body mass index (BMI), d-dimer levels, platelet count, fibrinogen levels,
daily dose of heparin, creatinine, NT-proBNP, mechanical ventilation, fraction of inspired
oxygen (FiO2), total bilirubin, Glasgow Coma Scale, systolic blood pressure, history of
hypertension and/or coronary heart disease, use of ACE inhibitors or angiotensin receptor
blockers and thromboembolic events (VTE). Cancer characteristics are shown in Figure 1.
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Figure 1. Different types of cancer in 131 enrolled patients.

2.1. Model Development

In the machine learning approach, the development of the model is divided into three
different interconnected phases: target definition, data preparation, and model selection.

The dependent variable y, that is, the target variable, is the “VTE” characteristic, a
dichotomous variable that associates the value 1 to patients who have experienced venous
thromboembolism and the value 0 to those who did not present this condition. It is a binary
classification task, as the machine learning algorithm learns a set of rules, with the aim of
distinguishing between two exclusive possible classes: the occurrence and non-occurrence
of venous thromboembolism.

Data preparation is one of the most delicate phases of the process, as making a mistake
at this stage could compromise the entire work. In this sense, we performed intermediate
steps to model and make them usable. It was necessary to manage the missing data as our
database had samples with some unspecified values. Assuming that certain fields have
been neglected in the detection and considering that most computational tools are not able
to handle missing values, as they would produce unpredictable results if we decided to
ignore them, it was essential to deal with them before proceeding with the analysis. We
then located the missing values as placeholder strings from the Not a Number (NaN) value.
Once this was done, the easiest way to manage such data would have been to delete the
feature or sample that had such gaps directly from the database. However, we decided
not to consider this solution because of the small size of our dataset, as we could delete
information useful for the entire process, as well as further reducing its size. One of the
most common alternatives is to use interpolation techniques, useful for replacing missing
values based on the other samples in the dataset. In our case we chose to use the “mode
value” of the relevant column. Finally, before proceeding with the model selection phase, it
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was necessary to use scaling techniques such as normalization. The goal of normalization is
to change the values of the numeric columns in the dataset to use a common scale, without
compromising differences between ranges of values or loss of information. We carried out
data normalization using the MinMaxScaler class of the scikit-learn pre-processing module
(scikit-learn is an important python library in machine learning as it provides a wide range
of supervised and unsupervised learning algorithms).

After completing the data preparation steps, we defined the best performing models
to be used in our project. We must take into account that each classification algorithm
has its inherent flaws and no model can boast absolute superiority; the performance of a
classifier, its computational power and its predictive capacity, depend to a large extent on
the data that are available for learning. Therefore, it is highly recommended to compare a
number of different algorithms, in order to train them and then select the model that offers
the best performance.

2.2. Limitations of the Study

We worked with a dataset with a limited number of samples and a large amount of
characteristics; however, we decided to not reduce further the characteristics considered
important for the study, taking into account that we wanted to create a starting model that
can be used as a basis for a possible repopulation of the dataset. In this work we compared
five of the best known classification models related to supervised learning, with the aim
to identifying the best one; these were: logistic regression, decision tree, random forest,
support vector machine and Gaussian naive Bayes.

2.3. Performance Evaluation

We divided our dataset into two new sets, which were used respectively as a training
set to inform and optimize the machine learning model, and as a test set to evaluate
its performance (see Figure 2). This was crucial to test whether the learning algorithm
performed well on the training dataset and on any new data. We avoided including
resampling techniques such as bootstrapping or cross-validation as they did not bring
any benefit in terms of preventing overfitting. This problem was inherent in the nature
of the data available to us; the size of the dataset in terms of samples and characteristics
considered as well as the non-homogeneity of the reference target made this problem
inevitable without increasing the number of samples available.
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k-times. After this training, pattern discrimination is then tested in a different subset of patients (test
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improving. The results presented in this study are obtained from the evaluation of this subset.
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Using a scikit-learn function, we divided the X, representing the features, and Y the
target in a random way, with a ratio of 30% for the test data and 70% for the training data.
Next, we created a dictionary of models, containing the name of the classifiers as keys and
an instance of the latter as values.

We defined a method, which would take the X and Y matrices of the train and test set
as input and apply to them all the classifiers defined in the dictionary.

We created a table containing the accuracy values of the various models and we
implemented what could potentially have been the most suitable model for our needs.

We created a matrix to understand whether some features were redundant with each
other, evaluating the existence of a possible correlation between the various features, using
a function of the seaborne library.

It was also necessary to create a graph showing the correlation coefficients between
the characteristics and the target, in order to assess if a characteristic had a greater impact
on the desired result. Using a confusion matrix, we could verify the answers provided by
the system to establish their reliability.

To prove the validity of our model, we created a particular function in python. We
started from a patient that the machine had predicted to have VTE = 1; after that we created
a cycle that at each iteration lowered all parameters by 1/20, except the parameters of the
binary characteristics that were set before; for example, the sex characteristic was set to 1
and so on. Then we varied the heparin dose starting from a value of 0.1 (10 mg), observing
changes in the VTE. The cycle was interrupted when a patient was found in which the VTE
characteristic passed from 1 to 0 for a certain dose of heparin.

3. Results

We included 131 patients, whose general baseline characteristics are described in detail
in Tables 1 and 2. VTE occurred in 30 patients (23%); among these, 15 patients were female
(50%), and 63% had hypertension. The clinical characteristics that have shown statistical
significance in patients who developed VTE were: age, creatinine, Glasgow Coma Scale
and NT-proBNP. A more detailed description is shown in Tables 3 and 4. Among all the
characteristics showing a greater impact on the model, ’NT-proBNP’ was the most relevant.
(Figure 3).

Table 1. Characteristics of COVID-19 study population. BMI = Body Mass Index; FiO2 = fraction of
inspired oxygen; GCS. = Glasgow Coma Scale; SBP = Systolic Blood Pressure.

All Patients n = 131 Mean SD Min Max

Age (years) 71 15 18 100

BMI (kg/m2) 24.35 3.09 16.53 33.3

D-dimer (ng/mL) 1.89 1.71 0.27 9.3

Platelet count (mm3) 251.28 104.51 31 490

Fibrinogen (mg/dL) 494.59 149.88 152 991

Daily dose 0.5 0.29 0.3 3.2

Creatinine (mg/dL) 0.97 0.56 0.3 3.1

FiO2 (%) 34.9 17.81 21 80

Bilirubin (mg/dL) 0.58 0.26 0.16 1.31

GCS. 12.91 2.53 3 15

SBP (mmHg) 122.56 16.16 68 160

NT-ProBNP 1541.87 4489.72 17 33,873
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Table 2. Baseline characteristics of COVID-19 patients. ARBs = Angiotensin Receptors Blockers.

All Patients (n = 131)

Mechanical Ventilation

Yes 40 (31%)

No 91 (69%)

Hypertension

Yes 75 (57%)

No 56 (43%)

Coronary Artery Disease

Yes 15 (11%)

No 116 (89%)

Ace Inhibitors

Yes 21 (16%)

No 110 (84%)

Arbs

Yes 37 (29%)

No 94 (71%)

Sex Female

Yes 65 (49%)

No 66 (51%)

Table 3. Characteristics of patients who developed VTE and who not. BMI = Body Mass Index;
FiO2 = fraction of inspired oxygen; GCS = Glasgow Coma Scale; SBP = Systolic Blood Pressure.

All Patients n = 131 VTE (n = 30) Not VTE (n = 101)

Mean Median DS Mean Median DS Test t

Age (years) 78 82 13.3 68 68 14.9 0.001711

BMI (kg/m2) 23.9 23.28 3.58 24.42 24.77 2.98 0.498998

D-dimer (ng/mL) 1.74 1.1 1.31 1.95 1.27 1.82 0.551463

Platelet count (mm3) 241.41 240 92.24 252.94 225 108 0.60452

Fibrinogen(mg/dL) 503.4 470 198.08 493 476 133.78 0.745607

LMWH Daily dose 0.5 0.4 0.18 0.47 0.4 0.16 0.353239

Creatinine(mg/dL) 1.24 1 0.81 0.89 0.8 0.43 0.00275

FiO2 (%) 38.3 35 17.21 33.8 21 17.99 0.228329

Bilirubin (mg/dL) 0.56 0.53 0.21 0.58 0.54 0.26 0.792944

GCS 11.8 12.5 2.57 13.2 15 2.44 0.007232

SBP (mmHg) 125.3 127.5 20.77 121.66 120 14.59 0.278259

NT-ProBNP(ng/L) 4608.43 876.5 8345.56 581.97 187.5 1131.78 0.00002
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Table 4. Dichotomous characteristics of COVID-19 patients according to VTE development.

VTE (n = 30) Not VTE (n = 101)

Sex (female) 15 (50%) 48 (47%)

Mechanical ventilation 8 (27%) 32 (32%)

Hypertension 19 (63%) 17 (17%)

Coronary heart disease 4 (13%) 10 (10%)

Ace inhibitors 4 (13%) 17 (17%)

ARBs 10 (33%) 28 (28%)
ARBs = Angiotensin Receptors Blockers.
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The performance of the ML methods, working with 19 variables (“reduced model”) in
the subgroup of patients randomly selected for testing and validation, is shown in Table 5.
A good first evaluation metric is the accuracy of the test score. In this sense, we can observe
how the accuracy of these methods varied from 67% to 81%. Specifically, we obtained a
test score value equal to 81.39% with logistic regression, 79.06% with naive Bayes, 76.74%
with random forest, 72.09% with linear SVM”, and 67.44% with decision tree. The “logistic
regression” appeared therefore the most efficient; this algorithm was able to predict all
events almost without errors.
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Table 5. Accuracy of five classifiers. The test score values represent the performance of the various
models. The model with the highest test score is to be considered the best performing.

Classifier Train Score Test Score Train Time

1 Logistic Regression 0.862069 0.813953 0.046875

2 Naive Bayes 0.816092 0.790698 0.000000

3 Random Forest 1.000000 0.767442 2.093750

4 Linear SVM 0.793103 0.720930 0.000000

5 Decision Tree 1.000000 0.674419 0.000000

Once the best performing model was chosen, this was implemented separately. Equa-
tions used to measure the performance is shown in Figure S2, while in Table S3 we reported
the values obtained from the responses evaluated in terms ofpositive predictive value,
sensitivity and F1-Score. For the answer 0, we obtained as values of that metric respectively:
81%, 100%, 89%, having a support as 29 sample; for the answer 1, instead we obtained val-
ues of: 100%, 30%, 46%, in this case considering a support as 10 samples. We have created
a confusion matrix (Figure 4) to make the answers obtained clearer. On the main diagonal
the predictions correctly made by the machine are reported, so this was able to answer
correctly “0” 29 times and “1” three times, while it made an error seven times by answering
“0” when the correct answer was “1”. The ratio of the sum of the elements of the diagonal
to all the elements of the confusion matrix is called “Accuracy”. However, we believe it is
appropriate to specify that sometimes accuracy can be misleading, especially in scenarios
such as ours in which there is a large class imbalance. A model can predict the value of the
majority class for all predictions and achieve a high classification accuracy. However, this
model is not useful. Additional measures to Accuracy are required to evaluate a classifier,
for this reason we included positive predictive value, sensitivity and F1-Score.
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Using the function described in the previous paragraph, we could provide the case of
a patient as proof of concept, for which the machine returns the exact dose of heparin to be
administered, so that it does not manifest venous thromboembolism. The patient character-
istics are reported in Table 6. About this patient, the machine predicts the development of
venous thrombosis with a dose of heparin <99 mg (VTE = 1), while he does not develop
this pathology for a dose ≥99 mg (VTE = 0).

Table 6. Characteristics of the patient-proof. BMI = Body Mass Index; FiO2 = fraction of inspired
oxygen; GCS = Glasgow Coma Scale; ARBS= Angiotensin Receptor Blockers.

Patient Proof Characteristics

Age (Years) 71
Sex (male/female) 1

BMI (kg/m2) 20.16
D-Dimer Levels (peak) 0.42
Platelet Count (mm3) 111

Fibrinogen Levels (mg/dL) 298
Daily Dose (mg) 99

Creatinine (mg/dL) 1.7
Mechanical ventilation (yes/no) 1

FiO2 (%) 26
Bilirubin (mg/dL) 0.59

Glasgow Coma Scale 11
Systolic blood pressure 135
Hypertension (yes/no) 1

Coronary arterydisease (yes/no) 0
Ace inhibitors (yes/no) 0

ARBs (yes/no) 0
NT-proBNP (ng/L) 24,904

The reduced number of samples in the dataset used represents the only limit of the
machine learning training phase.

4. Discussion

To date, the application of artificial intelligence has allowed satisfactory results to be
achieved in the world of medicine, and a growing body of data is emerging [20–23], includ-
ing COVID-19 research. [24,25]. Indeed, in our study we aimed at exploring the application
of ML in predicting the appropriate dose of LMWH in a specific fragile population with
COVID-19 in order to assess the risk of VTE development.

Of note, according to Samama et al., prophylactic treatment with 40 mg per day
of enoxaparin subcutaneously safely reduces the risk of venous thromboembolism in
patients with acute medical illnesses [26]. Despite being an acute disease, COVID-19
seems to require a different therapeutic approach. In our study population, treated with
the prophylactic dosage of LMWH, as suggested by Samama et al., 23% developed VTE.
The question is: are there any specific predictive factors or laboratory parameters of high
thromboembolic risk in patients with COVID-19? From a pathophysiological point of view,
the prothrombotic state observed in COVID-19 seems to start from the dysfunction of
endothelial cells induced by infection, resulting in an excess of thrombin generation and
fibrinolysis shutdown; furthermore, the hypoxia found in severe COVID-19 can further
stimulate thrombosis through not only increasing blood viscosity, but also a hypoxia-
inducible transcription factor-dependent signaling pathway. For this reason, occlusion and
micro thrombosis formation in pulmonary small vessels of critical patients with COVID-19
has been reported in several cases, according to a recent lung organ dissection study [27].
Furthermore, the correlation between hypercoagulability status and active cancer has
long been documented [28], varying according to the types of cancer. In particular, it has
been demonstrated that patients with cancer of mesothelium/soft tissues are more likely
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to develop thromboembolic events and, in turn, a poor prognosis [29]. This can be, at
least partly, explained by the direct release of prothrombotic molecules by the tumor cells
and also by an aberrant activation of the coagulation cascade by endothelial and platelet
cells [30].

Indeed, one of the first reported features of COVID-19 was its association between the
hypercoagulable state (elevated D-dimer levels, fibrin degradation products, and prolonged
PT and aPTT) and mortality [31].

In our study NT-proBNP has taken on an important aspect, which is significantly
high in patients who have developed VTE compared to those who have not. Many data in
the literature confirm our results, showing how patients with severe COVID-19 and heart
failure had not only higher levels of cardiac biomarkers, as one might expect, but also a
poorer prognosis, worse outcome and higher mortality [32–34]. As a sign of myocardial
stress, NT-proBNP increase could be due to a cytokine storm in response to the infection
trigger and to the direct action of the virus on the heart walls [35,36]. More accurately, NT-
proBNP appears as the best representative prognosis biomarker in COVID-19 disease [37].

Due to the observation of high incidence of VTE in our COVID-19 study population,
treated with standard dosages of LMWH, we tried to create a system capable of providing
a tool to obtain the dose of LMWH to be administered in patients affected by COVID-19
considering their high risk of thromboembolic events.

Once the dataset was arranged, it was divided into two sections, using one part of the
data to carry out the machine training operations, and the other part to carry out tests, to
query the machine on unknown data and, therefore, to obtain the benefits of the latter.

Tests have been carried out to verify which of the various machine learning algorithms
offered the best performance. In this sense, the logistic regression algorithm has been
identified as the best performing. Focusing on the implementation of the latter, we carried
out targeted tests, interrogating the machine with patient data not used in training, in
order to understand its behavior. The results obtained showed how our system succeeds in
its intent: in one patient the machine predicts venous thrombosis with a dose of heparin
<99 mg (VTE = 1), while this condition does not occur for a dose ≥99 mg (VTE = 0). The
possibility of predicting the correct dose of anticoagulant treatment in a patient at high-risk
of VTE would allow the therapeutic strategy to be optimized in the shortest time possible
and to ensure a better quality of life, possibly reducing one of the most frequent causes of
death in this class of patient.

These results may provide a prediction regarding the dose of heparin to be adminis-
tered in frail patients at high risk of developing VTE due to active cancer and with ongoing
COVID-19.

The identification of the minimum effective dose of LMWH for a patient with COVID-
19 and active cancer could improve with similar analyses with larger datasets, as required
also by the machine learning itself; working with a larger number of samples, in fact, may
reduce the recorded overfitting level.

5. Conclusions

The world of machine learning and, even more generally, of artificial intelligence is
constantly developing. The continuous growth of demand means that new techniques
are being developed or refined. In this sense, we aim to refine our system, using new
training algorithms in order to observe if their performance might improve the outcome in
very high-risk patients, as represented by subjects with concurrent COVID-19 and active
cancer, two clinical diseases associated per se with an increased rate of VTE and fatal
VTE. These preliminary results might prove useful as the first step towards possible future
developments. A larger dataset may be useful for confirming our results and improving
current knowledge in order to refine the model.
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