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Abstract 
Few predictive studies have been reported on the efficacy of atorvastatin in reducing lipoprotein cholesterol to be qualified after 
1-month course of treatment in different individuals. A total of 14,180 community-based residents aged ≥ 65 received health 
checkup, 1013 of whom had low-density lipoprotein (LDL) higher than 2.6mmol/L so that they were put on 1-month course of 
treatment with atorvastatin. At its completion, lipoprotein cholesterol was measured again. With < 2.6 mmol/L considered as 
the treatment standard, 411 individuals were judged as the qualified group, and 602, and as the unqualified group. The basic 
sociodemographic features covered 57 items. The data were randomly divided into train sets and test ones. The recursive 
random-forest algorithm was applied to predicting the patients response to atorvastatin, the recursive feature elimination method, 
to screening all the physical indicators. The overall accuracy, sensitivity and specificity were calculated, respectively, and so were 
the receiver operator characteristic curve and the area under the curve of the test set. In the prediction model on the efficacy of 
1-month treatment of statins for LDL, the sensitivity, 86.86%; and the specificity, 94.83%. In the prediction model on the efficacy 
of the same treatment for triglyceride, the sensitivity, 71.21%; and the specificity, 73.46%. As to the prediction of total cholesterol, 
the sensitivity, 94.38%; and the specificity, 96.55%. And in the case of high-density lipoprotein (HDL), the sensitivity, 84.86%; 
and the specificity, 100%. recursive feature elimination analysis showed that total cholesterol was the most important feature of 
atorvastatin efficacy of reducing LDL; that HDL was the most important one of its efficacies of reducing triglycerides; that LDL 
was the most important one of its efficacies of reducing total cholesterol; and that triglyceride was the most important one of its 
efficacies of reducing HDL. Random-forest can help predict whether atorvastatin efficacy of reducing lipoprotein cholesterol to be 
qualified after 1-month course of treatment in different individuals.

Abbreviations: AUC = area under the curve, Aβ = Amyloid β, CVD = cerebrovascular disease, HDL = high-density lipoprotein, 
LDL = low-density lipoprotein, RFE = recursive feature elimination.
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1. Introduction
Cerebrovascular disease (CVD) and in particular stroke 
account for the largest proportions (47%–67%) of total dis-
ability-adjusted life-years and deaths among all the common 
neurological disorders worldwide.[1]CVD can induce cog-
nitive impairment, of which the prevalence of major post-
stroke dementia ranges from 7% to 67.3%, and currently no 
definitively proven pharmacologic therapies are available for 
recovery from poststroke cognitive impairment and vascular 
dementia.[2,3] Additionally, CVD can evoke poststroke epilepsy, 
which accounts for nearly 50% of newly diagnosed epilepsy in 
the patients aged > 60.[3,4] It is well recognized that, therefore, 

cerebrovascular disease is a serious disease that endangers 
human health.

Statins, such as atorvastatin, which have been convincingly 
proved to be associated with a reduction in the absolute risk of 
ischemic strokes and cardiovascular events, have modest differ-
ences in efficacy, signaling potential therapeutic equivalence.[5–9]It 
was confirmed that atorvastatin ameliorated the defects in senso-
rimotor behaviors and reduced microglia-mediated neuroinflam-
mation by inhibiting proinflammatory polarization of microglia 
in the peri-infarct cortex of the mice with permanent middle cere-
bral artery occlusion. Atorvastatin was once reported to effec-
tively reduce the expression of toll like receptor 4 and NF-κB 
in the brain tissue, having a certain protective effect on cerebral 
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nerve function, which could be expected to be the first thera-
peutic choice for a stroke, and it could reduce the incidence of 
epilepsy after a stroke by inhibiting inflammation.[10] Moreover, 
statins were thought to reverse microvascular dysfunction and 
reduce neuroinflammation during sepsis, preventing the develop-
ment of long-term cognitive decline.[8,11]Thus, it is important that 
atorvastatin therapy be administered to reduce blood lipids to a 
low risk level of vascular disease.

But idiosyncratic liver injury due to statins has been reported 
to affect the patients by 1.9% to 5.5% in the prospective series 
of drug-induced liver injury, and such a damage was associated 
with the dose and duration of treatment with satins.[12,13] The 
statin treatment induced approximately 1.5% to 5.0% of the 
patients who experienced adverse muscular symptoms.[14] Of 
note, a long-term high dose of atorvastatin administration could 
lead to a reduced rate in compliance.[15]Therefore, adequate 
atorvastatin treatment can reduce the chance of liver damage by 
bringing the lipid level up to standard as soon as possible, since 
the low dose of atorvastatin can be maintained for a long time. 
It is well known that the efficacy of statins depends on many 
factors[15]; however, few predictive studies have been reported on 
the efficacy of statins administered for a 1-month course of treat-
ment for lipid reduction in individuals. Our study was to predict, 
using supervised machine-learning, the lipid-lowering effect of 
atorvastatin in the 1-month course of treatment in individuals.

2. Materials and methods

2.1. Ethics statement

This study was approved by the Medical Ethics Committee of 
Shanghai Pudong New Area People’s Hospital, Shanghai, China 
(Prylz-2020-085). Written informed consent was obtained from 
all participants or their legally acceptable representatives.

2.2. Subject recruitment

From May 1, 2021 to December 31, 2021, for the study all 
subjects were chosen from the local community-based residents 
aged ≥ 65 without the clinical history of statins, for whom had 
been provided free health checkup as the welfare of the local 
government. Those were excluded who had taken statins, or 
who had abnormality in the function of the liver/kidney or in 
muscle enzyme, as indicated in Figure 1.

2.3. Lab examination

In the current study, the blood routine indexes were listed as 
follows: lymphocyte count, percentage of monocyte, percentage 
of basophils, eosinophil count, hemoglobin, hematocrit, platelet 
distribution width, red blood cells, percentage of neutrophils, 

Figure 1.  The flow chart of the individuals recruited and tested.
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mean corpuscular volume, and red cell distribution width and 
platelets. A routine analysis of blood tests was performed using 
Sysmex XT-4000i (Japan). The cut off value for red cell distri-
bution width was 39 to 46FL.

From all participants was collected whole blood after over-
night fasting using venipuncture, 4mL of blood collected into 
anticoagulant tube (BD vacutainer), which was to be kept 
for 1 hour at room temperature (RT), and before centrifuged 
at 1000g for 10 minutes at RT. The resultant supernatant 
(serum) was divided into 2 Eppendorf tubes (1mL each) to 
be temporarily stored at -80°C until examination. For this 
study 8 components were selected such as Amyloid β (Aβ)1-
40, Aβ1-42, P-tau, preprandial blood glucose, high-density 
lipoprotein (HDL), low-density lipoprotein (LDL) cholesterol 
and triglyceride.

The enzyme-linked immunosorbent assay-based techniques 
was used to assess serum Aβ1-40/Aβ1-42/P-tau. The serum lev-
els of Aβ1-40 (Cat. No: DAB140B; Sensitivity: 1.31–8.17pg/
mL), Aβ1-42 (Cat. No: DAB142; Sensitivity:0.762–4.73pg/
mL) were quantified using a commercial enzyme-linked 
immunosorbent assay kits (R&D Systems, MN) according to 
the manufacturer’s protocol. P-tau (Cat. No: CSB-E17929h; 
Sensitivity:<7.8pg/mL). The concentrations of serum HDL/
LDL/preprandial blood glucose were determined by a Cobas 
C501 automatic biochemistry analyzer using the enzymatic 
conversion method. The kit was supplied by Roche Diagnostics 
GmbH (Mannheim, Germany).

2.4. Collection of other clinic features

All subjects were registered or tested for the personal informa-
tion pertaining to age, gender, height, weight, education level 
and hypertension, smoking, drinking, liver ultrasound, heart 
rate, physical exercise, EEG, eyesight, etc, the total number of 
items reaching 57 (Table 1).

2.5. Statistical analysis

The version 19.0 of Statistical Package for the Social Sciences 
(SPSS Inc., Chicago, IL) was applied to the current statistical 
analysis. Descriptive statistics was used to calculate by percent-
age the sociodemographic characteristics of the participants; 
the chi-square test, to assess the differences between different 
subgroups in terms of gender, smoking, hypertension history, 
rhythm, urine leukocyte, hematuria, urobilinogen, urine pro-
tein, urine microcreatinine, urine Vitamin C, nitrite; and t test, 
to assess the measurement data.

2.6. Random-forest algorithm

All data were randomly split into the training and test set 
based on the random-forest algorithm on Python (70% vs 
30%).Recursive random-forest algorithm was used for 
supervised machine-learning.[16,17] In the multivariate regres-
sion model to predict the patients response to atorvastatin, 
the basic features were screened out using recursive feature 
elimination (RFE), and a calculation was made of the overall 
accuracy, sensitivity and specificity, receiver operating char-
acteristic curves and areas under the curve (AUC) of the test 
set.

Based on the all features, we began to establish the predicting 
model so that we could predict the lipid-lowering effect of ator-
vastatin prescribed as a 1-month course of treatment. We judged 
the superiority of the model in terms of accuracy, sensitivity, 
specificity and AUC. Afterwards, and through RFE we made an 
analysis of the significant features. Random-forest algorithm 
was implemented based on Anaconda which is Python-based 
data science platform.

3. Results
A total of 1013 people aged ≥ 65 were assessed to meet the 
inclusion and exclusion criteria before accepting the prescrip-
tion of atorvastatin at 20mg QN. One month later, of 1013 
subjects, 411 and 602 fell under the qualified and unqualified 
group, respectively; and a list was made of their basic features 
(Table 1).

3.1. The predicting model for the efficacy of a 1-month 
course of statins treatment on lipoprotein cholesterol

As indicated in the predicting model on LDL, the training 
accuracy of random-forest was 100%; the correct rate of 
test, 91.80%; the sensitivity, 86.86%; and the specificity, and 
94.83%, with AUC = 0.97. According to the observation made 
on the importance of the basic line features as the variables 
of the predicting model on LDL, the random-forest algorithm 
sorted out an order, as indicated in Figure 2A, with the top 3 
factors affecting the rapid LDL-lowering effect of statins such as 
total cholesterol, triglyceride and blood platelet count.

From the predicting model on triglyceride, the training accu-
racy of random-forest was 100%; the correct rate of test, 71.7%; 
the sensitivity,71.21%; and the specificity, 73.46%, and with 
AUC = 0.80. This sorted our order, as indicated in Figure 2B, 
with the top 3 factors affecting the rapid triglyceride-lowering 
effect of statins such as HDL, LDL and total cholesterol.

In predicting total cholesterol, the training accuracy of ran-
dom-forest was 100%; the correct rate of test, 94.90%; the sen-
sitivity, 94.38%; and the specificity, 96.55%, and with AUC = 
0.98. As indicated in Figure 2C, an order was thus sorted out, 
with the top 3 factors affecting the rapid total cholesterol-low-
ering effect of statins such as LDL, triglyceride and HDL.

In predicting HDL, the training accuracy of random-forest 
was 100%; the correct rate of test, 86.04%; the sensitivity, 
84.86%; the specificity, 100%, and with (AUC = 0.87). From 
this, an order was sorted out, as indicated in Figure 2D, with the 
top 3 factors affecting the rapid HDL-lowering effect of statins 
such as triglyceride, weight and uric acid.

3.2. The specific correlation of the first fifteen features in 
different models

According to the linear regression analysis of the first fifteen 
features in different models (Table  2), it was discovered that 
LDL was positively associated with total cholesterol and blood 
platelet, but was negatively linked with HDL, triglyceride and 
red blood cell distribution width; that triglyceride was positively 
associated with total cholesterol and uric acid, but was nega-
tively linked with HDL and creatinine; that total cholesterol 
was positively associated with HDL; and that HDL was pos-
itively associated with hipline, but was negatively linked with 
weight (P < .05).

4. Discussion
In our study, we chose random-forest algorithm to predict the 
efficacy of atorvastatin in reducing lipid to be qualified after 
1-month course of treatment in different individuals, from 
which we found the prediction model was effective. In the pre-
dicting model to predict the efficacy on LDL, the important fac-
tors were observed to be total cholesterol, and triglyceride and 
blood platelet count. A previous study found that platelet count 
was correlated with plasma-LDL cholesterol, that platelets 
stored and released PCSK9 (pltPCSK9) upon activation, which 
was enhanced in the presence of LDL.[18] In the current predict-
ing model to predict the efficacy on triglyceride, the important 
factors were referred to as HDL, LDL and total cholesterol. It 
was previously reported the triglyceride and HDL were closely 
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entangled.[19] By comparison, the important factors were tri-
glyceride, weight and uric acid, as sorted out in the current pre-
dicting model. Additionally, body weight appeared to play a role 
in the decreased HDL-C levels and uric acid impacted the role of 
HDL-C on carotid atherosclerosis.[20,21]

In fact, the random-forest algorithm has been widely used to 
diagnose different diseases and predict the outcome of disease, 
such as machine-learning that was considered to play a role in 

the prediction of pathological diagnosis of ovarian cancer from 
preoperative examinations[22]; a CVD prediction model that was 
applied to 3-year risk assessment of CVD to find that its AUC 
evaluated the predicting ability to be 0.78[23]; the prostate cancer 
prediction based on the random-forest algorithm to take into 
account the transrectal ultrasound findings, ages, and serum 
levels of prostate-specific antigen[24]; COVID-19 predicting 
model that used the patients’ geographical, traveling, physical 

Table 1

The basic line features of 2 groups.

Features Qualified group (N = 411) Unqualified group (N = 602) F/χ2 P 

Education 4.06 ± 3.01 4.08 ± 2.88 9.08 .92
Age 73.76 ± 6.10 73.15 ± 5.91 0.85 .11
weight 63.04 ± 11.52 62.66 ± 10.99 1.20 .59
Systolic pressure 151.32 ± 19.40 154.71 ± 19.48 0.01 .07
Diastolic pressure 84.13 ± 10.55 87.20 ± 10.50 0.00 <.001
Daily alcohol consumption 22.02 ± 7.32 17.03 ± 6.80 4.58 .26
LDL 3.78 ± 1.66 3.79 ± 5.82 0.73 .70
Triglyceride 2.32 ± 0.80 2.83 ± 0.88 15.46 <.001
HDL 2.57 ± 0.39 2.54 ± 0.35 5.04 .21
Total cholesterol 4.16 ± 0.60 5.68 ± 0.75 23.06 <.001
Carcinoembryonic antigen 2.48 ± 1.66 2.59 ± 5.82 0.71 .72
Red blood cell distribution width 46.91 ± 3.72 45.65 ± 2.84 15.44 <.001
Red blood cell 4.29 ± 0.47 4.40 ± 0.42 3.78 <.001
Hematokrit 0.39 ± 0.03 0.40 ± 0.03 2.82 .008
Lymphocyte ratio 31.80 ± 7.81 34.00 ± 8.08 0.01 <.001
Uric Acid 317.92 ± 89.85 317.86 ± 92.64 0.11 .99
Blood platelet 169.50 ± 56.48 193.25 ± 54.52 0.14 <.001
Mean corpuscular volume 93.25 ± 4.59 92.33 ± 3.64 11.27 <.001
Height 160.85 ± 8.35 159.28 ± 8.31 0.01 .003
Mean hemoglobin 31.91 ± 1.84 31.57 ± 1.52 9.02 .002
Diastolic pressure 84.13 ± 10.55 87.20 ± 10.50 0.00 <.001
Creatinine 74.71 ± 18.76 71.54 ± 18.69 0.75 .008
Carcinoembryonic antigen 2.48 ± 1.66 2.59 ± 5.82 0.71 .72
Urine specific gravity 1.01 ± 0.004 1.01 ± 0.002 0.62 .72
Large platelet ratio 31.72 ± 10.28 29.07 ± 8.57 8.30 <.001
Glutamic-pyruvic transaminase 22.61 ± 19.32 24.07 ± 18.03 0.51 .22
Mean corpuscular volume 83.25 ± 4.59 92.33 ± 3.64 11.27 <.001
Creatinine 74.71 ± 18.76 71.54 ± 18.69 0.75 .008
Lymphocyte ratio 31.980 ± 7.81 34.00 ± 8.08 0.01 <.001
Lymphocyte count 1.89 ± 0.62 2.09 ± 0.65 0.02 <.001
Urine creatinine 143.05 ± 83.25 141.30 ± 80.40 0.99 .74
Urea 6.05 ± 1.71 5.97 ± 1.71 0.03 .46
Urinary microalbumin 67.03 ± 56.31 70.53 ± 56.19 0.05 .34
Mean hemoglobin 31.91 ± 1.84 31.57 ± 1.52 9.02 .002
Mean hemoglobin concentration 342.10 ± 9.07 341.10 ± 9.07 0.18 .76
Mean platelet volume 10.85 ± 1.36 10.45 ± 1.10 12.12 .76
Power of hydrogen 6.15 ± 0.66 6.18 ± 0.67 0.40 .54
Hipline 91.72 ± 7.64 92.09 ± 7.69 0.31 .45
Heart rate 74.36 ± 12.88 74.63 ± 11.89 0.42 .73
Hemoglobin 136.74 ± 13.86 138.82 ± 12.89 1.86 .01
Blood platelet 169.50 ± 56.48 193.51 ± 4.52 0.14 <.001
Platelet distribution width 14.42 ± 3.37 13.58 ± 2.57 15.50 <.001
Waistline 83.99 ± 9.64 83.54 ± 9.39 0.45 .45
Neutral cell ratio 58.14 ± 8.70 56.41 ± 8.62 0.11 .002
Neutral cell number 3.56 ± 1.20 3.55 ± 1.15 2.53 .84
Median cell ratio 10.04 ± 3.02 9.56 ± 2.77 1.68 .008
Median cell count 0.59 ± 0.20 0.58 ± 0.21 0.15 .63
Fasting blood glucose 6.08 ± 1.88 6.01 ± 1.67 3.18 .55
Smoking 73 (18.0%) 87 (14.5%) 2.12 .08
Hypertension 278 (68.1%) 422 (70.6%) 0.67 .22
Rhythm 27 (6.6%) 17 (2.8%) 8.17 <.01
Urine leukocyte 81 (19.7%) 135 (22.4%) 1.07 .31
Hematuria 32 (7.8%) 64 (10.6%) 2.26 .15
Urobilinogen 29 (7.6%) 47 (8.2%) 0.15 .71
Urine protein 77 (20.1%) 119 (20.9%) 0.09 .8
Urine microcreatinine 19 (4.9%) 28 (4.9%) 2.68 .26
Nitrite 22 (5.7%) 25 (4.4%) 0.87 .36
Vitamin C 21 (5.5%) 36 (6.3%) 0.30 .67

HDL = high-density lipoprotein, LDL = low-density lipoprotein.
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and demographic data to predict the severity of the case and 
its possible outcome, recovery or death, the accuracy of which 
was 94%[25]; the machine-learning algorithms that improved the 
prediction of long-term outcomes in ischemic stroke patients[26]; 
and the random-forest approach to predict therapeutic efficacy 
from the data of the failed clinical drug trials so that they could 
reevaluate the efficacy of the drug.[27]As suggested from the lit-
erature, machine-learning has a unique advantage in diagnosis 
and prediction. In our study, similarly, we found that the pre-
dicting ability of this model was relatively high, as indicated in 
the model to predict the efficacy of 1-month course of statins 
treatment on LDL, triglyceride, and total cholesterol and HDL.

In our study, we found that triglyceride was positively asso-
ciated with total cholesterol and uric acid, but negatively linked 
with HDL and creatinine. Such a finding was consistent with 
those reported by some other studies,[12,28–31] but not in 1 study 
where HDL was found to be positively correlated with total 
triglycerides.[32]

Additionally, we found that HDL was positively associated 
with total cholesterol and hipline, but negatively associated with 

body weight, which was not echoed by the evidence that the cor-
relation between HDL and total cholesterol was not significant 
in Japan and South Korea.[33] In a previously reported study, 
HDL and hipline were found to be reduced with acupuncture, 
which indirectly reflected the positively correlation of HDL with 
hipline,[34] and in another study, increased body weight would 
impair the protective functions of HDL,[35] and which supported 
our finding that HDL was negatively associated with body 
weight.

In the clinic, the treatment of the patients who have acute 
cerebral infarction needs strong lipid-lowering effect to reach 
the target of 1.8mmol/L.[36] In our clinic, however, we found 
that statins did not produce an ideal effect on some patients, 
and thereby attaching much importance to the pursuit of the 
influencing factors which affect their rapid lipid-lowering effect. 
According to our literature review, there has been a dearth of 
such relevant studies previously reported. As demonstrated 
by our findings, there were 4 model-based sets of top 3 fac-
tors which can affect the rapid LDL-lowering effect of statins: 
total cholesterol, triglyceride and blood platelet count; HDL, 

Figure 2.  The priority order of features in each predicting model.

Table 2

The linear regression analysis of the first 15 features in different models.

Models Features B Beta t P 

LDL Total cholesterol 0.72 1.04 188.80 <.001
HDL −0.57 −0.30 −50.80 <.001
Triglyceride −0.04 −0.05 −9.94 <.001
Blood platelet 0.0001 0.01 2.69 .007
Red blood cell distribution width −0.002 −0.01 −2.07 .038

Triglyceride HDL −1.29 −0.54 −19.67 <.001
Total cholesterol 0.32 0.37 14.10 <.001
Lymphocyte count 0.04 0.03 1.37 .169
Uric Acid 0.001 0.11 3.76 <.001
Creatinine −.006 −0.11 −4.04 <.001

Total cholesterol LDH 1.33 0.92 193.90 <.001
HDL 0.81 0.29 58.50 <.001
Triglyceride 0.07 0.06 12.00 <.001

HDL Triglyceride −0.11 −0.27 −18.95 <.001
Total cholesterol 0.91 2.512 53.99 <.001
LDH −1.20 −2.29 −48.71 <.001
weight −0.004 −0.10 −5.32 <.001
hipline 0.003 0.05 3.16 .002
Uric Acid −0.03 −0.04 −2.89 .004

HDL = high-density lipoprotein, LDL = low-density lipoprotein.
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LDL and total cholesterol; LDL, triglyceride and HDL; and tri-
glyceride, weight and uric acid. With an understanding of the 
4 categories of influencing factors, we can better recommend 
corresponding medications for the patients to ensure the lip-
id-lowering effect of statins.

5. Conclusions
Random-forest algorithm can help predict whether the effi-
cacy of atorvastatin is qualified in reducing lipid after 1-month 
course of treatment in different individuals, including the effi-
cacy of reducing LDL and triglycerides and total cholesterol and 
HDL. RFE of the random-forest algorithm analysis can help list 
the order of all contributing features to the model construction, 
which can be explained in terms of their respective correlation 
in the clinic.

6. Limitation
Although our prediction model was verified to be effective in 
terms of the main predictive factors detected, the specific cutoff 
values of some predictive factors were not very exact, such as 
the HDL value, which surely needs to be further investigated 
with bigger sample sizes.
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