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ABSTRACT

A consistent difference in average expression level,
often referred to as differential expression (DE), has
long been used to identify genes useful for classifica-
tion. However, recent cancer studies have shown that
when transcription factors or epigenetic signals be-
come deregulated, a change in expression variability
(DV) of target genes is frequently observed. This sug-
gests that assessing the importance of genes by ei-
ther differential expression or variability alone poten-
tially misses sets of important biomarkers that could
lead to improved predictions and treatments. Here,
we describe a new approach for assessing the impor-
tance of genes based on differential distribution (DD),
which combines information from differential expres-
sion and differential variability into a unified metric.
We show that feature ranking and selection stability
based on DD can perform two to three times better
than DE or DV alone, and that DD yields equivalent
error rates to DE and DV. Finally, assessing genes
via differential distribution produces a complemen-
tary set of selected genes to DE and DV, potentially
opening up new categories of biomarkers.

INTRODUCTION

A central theme in disease diagnosis using genomic data is
using the change in average expression as the main mea-
sure of differences between different classes. An example
of one of the earliest studies built a classifier for differ-
ent subtypes of leukaemia based on finding a set of genes
that are uniformly high in one class and low in the other
(1). Since then, a wide range of studies have been made to
determine important biomarkers (features), with applica-
tions to predicting survival outcomes (2,3), disease subtypes

(4,5), drug sensitivity (6,7) and even behavioural character-
istics (8). Apart from RNA expression, many studies have
utilised other kinds of biological data, such as protein (9)
and metabolite (10) data. Reviews of classification meth-
ods based on differences in average expression levels can be
found elsewhere (11–13).

Recently, variances of expression (differential variability)
have been found to differ in numerous gene expression data
sets (14,15). One biological interpretation for this is that in-
creased variability of the RNA level of a particular gene,
caused by the loss of precise regulation of its expression,
may follow disruption of transcription factors or epigenetic
signals by pathogenic processes, leading to greater variation
of the expression level between samples within the affected
class (16). The study by Ho et al. (14) found that highly vari-
able genes are highly co-expressed with many fewer genes
than are genes with lower variability in their expression.
Genes with higher variability are typically associated with
the disease state, although high variability per se may also
be evolutionarily conserved property of some gene systems
that serves a potentially beneficial purpose in some gene sys-
tems (17).

Motivated by these biological insights, two main statis-
tical approaches have been developed to assess the asso-
ciation of genes with important disease phenotypes, such
as natural history (prognosis), using differential variabil-
ity. In the earliest proposal, mixture models were utilised,
which can also measure differential expression (18). An-
other method, diffVar (19), which is based on testing ab-
solute deviations from class means in a linear modelling
framework, is limited to discovering changes in variability.
These methods were able to find genes with differential vari-
ability between conditions, but neither study developed a
corresponding metric for feature selection or investigated
its potential as a biomarker in a prognostic setting.

The potential of differential variability to aid in classi-
fication was recently demonstrated for the first time in a
comprehensive study of DNA methylation in a number of
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cervical cancer data sets (20). A differential variability clas-
sifier based on adaptive index models (21) outperformed a
differential methylation classifier for predicting early-stage
cancer, although there was no difference in classification
performance at later stages. This suggests that traditional
differential expression (DE) classifiers disregard important
differences which are present in real data sets.

Differential variability attempts to use the characteristics
of dysregulated networks to provide a new approach to as-
sessing the importance of genes. However, it omits useful in-
formation from changes in locations between classes. Here,
we propose a novel metric based on identifying genes with
differential distribution to simultaneously identify genes
that are differentially expressed, differentially variable or
both. As such, differential distribution (DD) aims to avoid
the need for ad-hoc DE and DV classifier aggregation al-
gorithms. Biologically, a change in distribution such as uni-
modality to multimodality suggests that a gene has an ex-
pression range which must be maintained for healthy cellu-
lar function. Increases in variability can be similarly inter-
preted. Furthermore, we extend such feature selection cri-
teria into a classification setting. To date, no research liter-
ature has examined this kind of classification for biological
problems. In other fields, such as engineering, DD classi-
fication by kernel density estimate voting has been shown
to perform slightly better than methods like LDA (22) on a
simulated data set and on low-dimensional data sets from
physics and chemistry, motivating its exploration in high-
dimensional biological data sets. This leads us to propose
using DD metrics as a type of discrimination measure for
identifying candidate genes of interest as well as using those
metrics in a novel classification scheme for omics data sets.
DV and DD are, for the first time, characterised in terms
of model stability, something which is known to be lack-
ing for DE feature selection (23). Additionally, we system-
atically examine the performance of all three classification
schemes based on their prognostic error rate and biological
relevance.

MATERIALS AND METHODS

Data sets

Three experimental data sets were used for comparison
of selection and classification performance; two measuring
RNA expression on microarrays and one utilising RNA-
seq. All values from microarrays were transformed to the
log2 scale. Cases in each data set were partitioned into a
good prognosis class and a poor prognosis class. One in-
dependent validation melanoma data set was utilised for
cross-study validation. An external database (MalaCards)
was used for evaluation of feature selection in terms of pre-
viously disease-associated genes.

Melanoma. The raw microarray expression and clinical
data are available from GEO as GSE54467. The samples
were assayed on the Illumina Human WG-6 BeadChip mi-
croarray, version 3. Previously defined classes for this data
set (3) of poor prognosis as death less than one year from
metastasis (n = 22) and good prognosis as survival of more
than four years with no signs of recurrence (n = 25) are con-
sidered. Raw data were NEQC normalised (24) and probes

which had less than ten samples with a detection P-value of
< 0.01 were removed from further analysis.

Serous ovarian cancer. Processed microarray data gener-
ated by the study GSE13876 were obtained from the Bio-
conductor package curatedOvarianData (25). Gene expres-
sion was measured with Operon Human (version 3) mi-
croarrays developed by the Netherlands Cancer Institute.
Based on a density plot of survival times for all samples, we
defined poor prognosis as death within two years (n = 22)
and good prognosis as survival of five or more years (n =
25).

Lung Adenocarcinoma. The processed data were obtained
from TCGA Data Portal on 16 May 2014. Poor prognosis
cases were defined as those who died less than one year from
diagnosis and good prognosis cases as those who lived for
over four years, with no signs of recurrence. This resulted in
a total of 18 poor prognosis and 18 good prognosis samples.
Sequencing was performed on an Illumina HiSeq 2000 in-
strument. Normalised gene count values were used. Genes
that had fewer than 10 counts in fewer than 10 samples were
removed from further consideration.

Melanoma validation. The raw microarray expression and
clinical data are available from GEO as GSE65904. The
samples were assayed on the Illumina HumanHT-12 Bead-
Chip microarray, version 4. Good and poor classes had
the same definition used in the previously introduced
melanoma data set. This resulted in a total of 22 poor prog-
nosis and 25 good prognosis samples.

The follow-up time densities using all samples from each
data set show that the TCGA lung cancer data set has rel-
atively few cases with long follow-up times, while the other
data sets have a greater variety of times (Supplementary
Figure S1).

MalaCards. Cards for melanoma, ovarian cancer and
lung cancer were downloaded from the MalaCards web-
site (http://www.malacards.org) on 25 March 2014. These
are gene lists for particular diseases with scores for each
gene proportional to that gene’s association to the disease in
the published literature (26). In the ovarian cancer data set,
some features were annotated with multiple RefSeq sym-
bols. For those genes, the maximum MalaCard score of
matching symbols was chosen.

Feature selection and classification

All analyses were carried out using the Bioconductor pack-
age ClassifyR (27), developed by the authors of this study.
ClassifyR is a framework that allows users to carry out
classification using several resampling methods (includ-
ing cross-validation), and calculate several different per-
formance measures, such as classification error rates and
variable inclusion frequencies. Parallel processing is imple-
mented and a flexible framework for including user-defined
feature selection and classification functions is available.
This allows new kinds of classifiers to be systematically
tested, once they become available.

Each classification type was performed in a similar way.
We used a 5-fold cross-validation scheme where the samples

http://www.malacards.org
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have been repeatedly resampled with replacement 100 times
to create 100 versions of each data set. For each iteration of
cross-validation:

(i) The training data were first processed by a feature selection
function. In each case, the feature selection function chose
the set of features by testing each gene individually, rank-
ing them by a score and calculating resubstitution error
rates for the top x ranked features. Values of x considered
ranged from 10 to 150 in increments of 10. The value of x
which obtained the lowest balanced error rate determined
the size of the set of top features selected.

(ii) For our proposed DV method, we performed a transfor-
mation of expression values. For each feature, all samples’
expression levels were subtracted from the median expres-
sion level of the training set, and absolute values taken.
This transforms the data into a form that allows a classi-
fier with linear decision boundaries to be applied.

(iii) The samples assigned to the training set in the current iter-
ation were used for model building.

(iv) The samples assigned to the test set in the current iteration
had their classes predicted.

Note that the choice of using the resubstitution error for
feature selection is a pragmatic one. Ideally, a nested cross-
validation could be used. However, we found this approach
was not feasible in practice and used resubstitution error
instead. A summary of the various feature characteristics
and classifiers for them is presented in Figure 1.

The particular feature selection methods and classifier
utilised are distinct for each type of change.

DE and classification. (i) For microarray data, genes were
ranked on their moderated t-statistics using the implemen-
tation in limma (28). Training and prediction for the mi-
croarray data sets was performed using diagonal linear dis-
criminant analysis (DLDA). (ii) For RNA-seq data, genes
were ranked based on a likelihood ratio test statistic of neg-
ative binomial generalised linear models using the imple-
mentation in edgeR (29). Poisson linear discriminant analy-
sis (PLDA) was used to determine a decision boundary and
make predictions, as it been demonstrated that DLDA finds
suboptimal boundaries for count data, whereas PLDA finds
the correct boundary (30). A power transformation was ap-
plied to eliminate overdispersion, making PLDA applicable
to RNA-seq count data.

DV and classification. For microarray data, the nor-
malised values were directly used. For RNA-seq data, the
mean-variance trend was removed by using the regularised
logarithm transformation (31) of DESeq2, to avoid detect-
ing DV features simply caused by DE. Features were then
ranked based on either their Bartlett statistic or their Levene
statistic and selection was applied. The Bartlett test tends to
choose features with a small number of outliers, whereas the
Levene statistic is robust to outliers. Before training and pre-
diction, feature values were calculated as the absolute value
of the difference of each measurement with the median of
all samples in the training set. Thus, if the values originally
came from a normal distribution the transformed values
would follow a half-normal distribution. Fisher’s linear dis-
criminant analysis (FLDA) was used for classification.

DD and classification. We considered four approaches for
assessing the differences between two different distributions
(class 1 and class 2). These are the differences of medians
and deviations, the Kolmogorov–Smirnov distance, the log-
likelihood ratio and simply combining the results of indi-
vidual DE and DV selections. Motivated by the success of
finding DE genes by considering the absolute differences in
medians for the melanoma data set (3), the differences of
medians and deviations (DMD) is defined as

DMD = |median1 − median2| + ∣∣Qn1 − Qn2

∣∣

where median1 and median2 represent the median expres-
sion values of class 1 and 2, respectively. The values Qn1 and
Qn2 represent the robust scale estimator (32) for class 1 and
2, respectively. The Kolmogorov–Smirnov (KS) distance is
simply defined as the greatest distance between the empir-
ical cumulative distribution functions of the two classes.
Thirdly, we used a log-likelihood ratio statistic with robust
estimates of the location and scale:

LLR = −2(
s1 ,s2∑

i=1
loge f (xi |μ = median, σ 2 = Q2

n )−
s1∑

i=1
loge f (xi |μ=median1, σ

2=Q2
n1

)−loge f (xi |μ =median2, σ
2=Q2

n2
))

where subscript i denotes membership of class i, si denotes
the number of samples in class i and f is the probability den-
sity function of the normal distribution. Note that LLR is
the log of the likelihood ratio statistic for testing whether
the two classes come from the same normal distribution or
two different normal distributions where robust estimators
of the mean and standard deviation are used in place of the
maximum likelihood estimators. Terms without subscripts
use values from samples in both classes. Finally, we con-
sider ensemble feature selection by combining the selections
which use the limma moderated t-test and Bartlett test by a
simple union of sets. This is a naı̈ve way to jointly capture
features that are changing means and also those that are
changing variances.

For the chosen features, a kernel density estimate was
built for each of the two classes using a Gaussian smoothing
kernel and bandwidth calculated by Silverman’s rule, which
are the default settings of the density function in R. For the
RNA-seq data set, counts were transformed by the regu-
larised log method, to prevent feature selection being biased
towards differentially expressed genes, because of overdis-
persion of count data. To predict a sample from the test set,
a naı̈ve Bayes classifier was used for each feature. Two vari-
ants of the classifier were considered. Firstly, each feature
votes for the class that has the maximum a posteriori esti-
mate. This is referred to as unweighted voting. Also, the dif-
ferences between class densities, the distances from an ob-
servation to the nearest non-zero crossover point of the two
densities, and the sums of those two weights were calculated
and summed over all features, with the sign of the sum deter-
mining the class prediction. This is termed weighted voting.
Intuitively, the crossover distance weighting captures how
far away a measurement is from the nearest substantial ob-
servation of the class with lower density at the measurement
point.

The novel DD classification approach is summarised by
a flowchart (Figure 2).
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Figure 1. Summary of feature types and classifiers. For each of differential expression, differential variability and differential distribution, a representative
gene profile is given, and an illustration of the classification process given. In the left column, the dashed vertical lines represent the means of the class
distributions. In the right column, the variables x and y denote two different genes in a data set. The bottom right panel illustrates that each gene from the
selected gene set votes independently in differential distribution classification.

Data simulation

(i) Background expression: To estimate a realistic set of expres-
sion values of unchanged features, we resampled from the
Melanoma data set after we excluded all features that had
any potential changes. To define ‘changed’ features, we ap-
plied six methods to rank features in terms of DE, DV or
DD, from largest to smallest. These were based on mod-
erated t-statistic, a Bartlett statistic, a Levene statistic, a
DMD distance, a KS test statistic and a likelihood ratio
statistic. Features that appeared in the top 20% of any of
the six lists were excluded from the unchanged feature set.
This gave 9453 unchanged features, and 300 of these fea-
tures were randomly chosen to be changed to create seven
simulated data sets.

(ii) Features of interest: Seven simulated data sets were gen-
erated, with varying proportions of features of interest.
These included DE, DV, differentially skewed (DS) and
differentially modal (DM) features. For each data set, the
changing features and their magnitudes were chosen by
randomly choosing a class and a direction of change, with
both the classes and directions being equally likely. To
add noise for DE features, 10% to 30% of randomly cho-
sen samples in the unchanged class were also changed by
the sampled amount of change. The random sampling of
change magnitude was repeated for each feature. The sam-

ples of the unchanged class that were changed were con-
stant for all features. Additionally,

(a) The DE features amount of change was sampled from a
log-normal distribution with mean 1 and standard devi-
ation 1. The change was applied by adding or subtracting
the change value from the measurements.

(b) Two varieties of DV features were simulated; consistent
and outlier. Each variety was equally as likely to be ap-
plied to a feature.
Consistent: For a particular feature, the standard devia-
tion of the chosen samples were increased or decreased
by a number sampled from a log-normal distribution
with mean 1 and standard deviation 1. This enlarges or
shrinks the spread of data symmetrically. Lastly, the val-
ues were shifted to keep the original mean.
Outlier: Between 10% and 30% of samples in a randomly
chosen class had their expression values increased or de-
creased by an amount sampled from a Uni f orm(2, 5)
distribution. This simulates another frequently observed
pattern of DV in biological data sets.

(c) For DS features, the median expression value of the
change class was calculated and either the values lower
or higher than this value were chosen to be shifted by
a value calculated from multiplying their distance from
the median value by a skewing factor. The skewing factor



PAGE 5 OF 13 Nucleic Acids Research, 2016, Vol. 44, No. 13 e119

Figure 2. Flowchart of differential distribution classification. A single fold of 5-fold cross-validation is shown. Features are ranked and chosen based on
the resubstitution error rate. For each sample in the test set, its class is predicted based on votes made by each of the selected features, based on the class
densities fitted during the training process.

used came from independent samples from a log-normal
distribution with mean 1 and standard deviation 1.

(d) DM features were created by calculating the mean of the
change class and sampling two mean changes from a
log-normal distribution with mean 1 and standard de-
viation 1. One change is the distance to the simulated
lower mode’s mean and the other is the distance to the
simulated higher mode’s mean. Additionally, two stan-
dard deviation values were sampled from a log-normal
distribution with mean 1 and standard deviation 1

2 . Once
the changed means and standard deviations were found,
random samples (of the same number originally above
and below the median value) were drawn from the nor-
mal distribution with the mean and standard deviation
of each mode. This creates a bimodal distribution.

Performance evaluation

Feature ranking stability was assessed by considering the
feature rankings of every cross-validation iteration of a par-
ticular classification. The top t ranked features were con-
sidered for each iteration, and every possible pair-wise in-
tersection was done. The average size of the intersections

was converted to a percentage by dividing by t. A range of t
values between 10 and 100 were assessed. To assess feature
selection stability, overlap percentages between all pairs of
selected feature sets were calculated as

overla pi, j =
∣∣ f eaturesi ∩ f eatures j

∣∣
∣∣ f eaturesi ∪ f eatures j

∣∣ × 100.

The indices i and j are for different iterations of the cross-
validation loop of a particular classification. Feature rank-
ing commonality and feature selection commonality are
similarly defined, except that the feature set comparison was
between two kinds of classification, rather than within a
classification.

Balanced error rate is one performance measure of pre-
diction we considered, and can be thought of as the average
error rate for the two classes, denoted positive and negative.
This is defined as

BER =
( F P

P + F N
N

)

2

where FP denotes the number of false positives and P de-
notes the number of samples in the positive class. Similarly,
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FN and N represent the number of false negative and N
the number of samples in the negative class.Source code to
reproduce all of the following results is provided as three
supplementary PDF files.

RESULTS

Differential variability classification has inefficient feature
selection but good error rate under simulation

Both DV feature selection methods selected an undesirably
large proportion of features from the background feature
set; typically about 50% of selections (Figure 3A). As ex-
pected, features simulated as DE were rarely selected. DV
features comprised almost all of the features that were se-
lected. DM features were chosen in similar proportions to
their presence in each simulated data set.

The Bartlett statistic had a consistently better median
BER than feature selection by the Levene statistic (Figure
3B). The BERs were higher for data sets in which the sim-
ulated DV proportion is smaller. The interquartile range of
BERs for these data sets was also moderately larger. There-
fore, feature selection based on the Bartlett statistic is used
for biological data set comparisons.

Differential distribution classification performs well under
simulation

Varieties of DD were examined that incorporate different
choices of how distance between classes is measured to com-
pare weighted and unweighted voting schemes. DD classifi-
cation was found to perform well across a range of possible
simulation settings.

Firstly, we investigated whether the four different selec-
tion methods selected differing proportions of simulated
changed features. The features chosen by DMD mirrored
the pattern of simulated changes most closely (Figure 4A).
The KS statistic selected no DV features for most simula-
tions. Regardless of how common they were, it favoured the
selection of features that were simulated to be DE. The like-
lihood ratio selection chose features in proportions similar
to which they were simulated in, but always chose more un-
changed features than the DMD method did. About half
of the features chosen were those that had been simulated
to be unchanged. In terms of BER (Figure 4B), the DMD
selection statistic with crossover distance weighted classifi-
cation had the lowest error rate for most of the simulated
data sets. Likelihood ratio and naı̈ve ensemble selection had
quite variable balanced error rates between data sets, par-
ticularly for the height and sum of differences weightings.
Because it selected features in the desired proportions and
has good error rates across all seven data sets, the DMD
statistic combined with crossover distance weighted voting
is used for biological data set comparisons.

Differential distribution classification has similar accuracy to
existing methods in cancer data sets

DE, DV and DD classification all had a similar error pro-
file. Figure 5A shows the balanced error rates for all three
data sets classified by all three types of classification. For

melanoma, the median balanced error rate for the resam-
pling and folding validation was 23%, 26% and 24% for DE,
DV and DD, respectively. A similar pattern was observable
for the other two cancers. Ovarian cancer was always the
most difficult to classify whereas lung cancer had the lowest
error rate of each classification type. The spread of the BER
values was large. For example, each of the BER distribu-
tions had values as low as 5% or as high as 50%, depending
on the iteration of the cross-validation. By chance, it would
be expected to obtain BERs of 50%, so all three classifica-
tions almost always performed much better than classifica-
tion at random. DD classification had the largest increase of
its BER in an independent data set, however (Supplemen-
tary Figure S2).

The error rates of individual patients were also similar
between methods. That is, some samples were systemati-
cally classified poorly for all three gene assessment types,
while others were typically classified correctly. The per-
centage of misclassifications of every sample was calcu-
lated for every method and plotted as an error map (Fig-
ure 5B). Each heatmap compares the error rate for each
sample when classified with each of the three classifica-
tion types. Darker shading indicates correct predictions are
made in more cross-validations. For example, melanoma
patient TB52 was classified poorly by all three methods,
whereas TB36 was always classified well. There are more
misclassified samples in the smaller class for ovarian can-
cer. The lung cancer data set has balanced class sizes and
no tendency in misclassification was observed.

Differential distribution selection identifies different sets of
genes to existing assessment types, many which are known
disease-related genes

Considering all the samples for each data set, the top 50
genes ranked by differential distribution had only minor
overlaps with both differentially expressed and differentially
variable genes (Figure 6A). Ovarian cancer had the smallest
overlaps between methods, with at most two genes in com-
mon between each possible pair of selections. For the ovar-
ian cancer and lung cancer data sets, one gene was common
to all three selection types. Regardless of the data set con-
sidered, all pairwise overlaps between selection types were
12% or less of the size of the set union.

The selected features also had little overlap (Figure 6B).
For melanoma and lung cancer, only one feature was cho-
sen by all three assessment types. For all three cancers, the
DE and DV selections had just one gene in common. There
were no common genes between DE and DD selection for
ovarian cancer. The size of the gene list chosen also varied
widely from data set to data set. DE selection gave the most
compact sets, ranging from 10 to 30 features. DD selection
for lung cancer gave the biggest set of features, choosing all
150 that were considered. It also chose 110 features for the
melanoma data set, while the other two methods chose 10
or 20 features.

Although these sets of genes had little overlap, the DD-
selected genes were enriched for those of biological signifi-
cance (Figure 6C). Considering the top-ranked genes, DD
selection provided the most disease-associated genes for the
melanoma and ovarian cancer data sets over different sub-
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Figure 3. Feature selection proportions and balanced error rates of DV classification for seven simulated data sets. (A) Proportions of selected genes. The
average percentage of selected genes that are in the specified simulated change categories over all cross-validations is shown. The bottom row shows the
proportions of simulated changes. (B) Balanced error rates of class predictions. The distributions of error rates across all cross-validation iterations are
shown as boxplots.

sets of top-ranked genes. For lung cancer, it selected almost
as many high-scoring genes as DE. DV selection provided
the lowest cumulative score of previously disease-associated
genes for every data set. The low recall of DV was clear-
est for the lung cancer data set, where the cumulative sum
plateaus at top rankings no higher than 50. The top-ranking
DV features of ovarian cancer were almost entirely unasso-
ciated with the disease.

Differential distribution is the most stable method of ranking
and selecting features

In cross-validation using the cancer data sets, differential
distribution selection yielded more features in common over
all pairs of cross-validations. Considering the highest rank-
ing genes, the DD-selected features were typically two to
three to times more stably ranked than DE features, depend-
ing on the data set (Figure 7A). For lung cancer, the stability
was as much as six times higher. DD feature ranking was
also more stable than DV feature ranking for the ovarian
and lung cancer data sets. The lung cancer data set bene-
fitted the most from DD selection, with stabilities ranging
between 30% and 35%. The lung cancer data set had the
highest selection stability overall, whereas the ovarian can-
cer data set achieved the lowest.

Feature selection based on differential distribution was
also the most stable (Figure 7B). The DD median selection
score was about twice as large as the second highest median
score, except for melanoma, where it was nearly identical
to DV’s score. For the ovarian and lung cancers, the second
highest median score was from DV selection. The median

score of DE selection was the lowest in every data set. The
interquartile range for DD scores was the largest, except for
melanoma, where DV had a slightly larger spread. The ex-
pression distribution of the most frequently selected feature
in each data set and of each feature type is illustrated (Sup-
plementary Figure S3). The most stable genes for ovarian
cancer have much less noticeable differences between sur-
vival classes than the most stable genes for the other two
cancers.

DISCUSSION

Stable and accurate prediction of sample classes from gene
expression signatures or other omics data sets remains a
challenging problem in cancer prognosis and omics re-
search. Previous research (19), as well as our own, has found
that DE and DV methods select rather different sets of
genes. Feature selection using all samples in a data set had
a minimal overlap, ranging from 1% to 3% for the cancers
considered. These large differences in selected sets moti-
vated the development of measures that combine the char-
acteristics of both DE and DV methods. Here, we have de-
veloped a kernel density-based DD measure with a corre-
sponding prognostic algorithm and showed that it performs
well in terms of classification and stability on both simu-
lated and three sets of real high-dimensional transcriptome
data.

Feature selection stability is an important problem, be-
cause if a feature is selected infrequently in a resampling
procedure, that feature may have been selected by chance
and not related to the outcome of interest, which limits its
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Figure 4. Feature selection proportions and balanced error rates of DD classification for seven simulated data sets. (A) Proportions of selected genes.
The first four rows of panels contain results for unweighted and three weighted gene voting modes of the naı̈ve Bayes classifier. The fifth row shows the
proportion of simulated changes. The columns contain results for DMD, Kolmogorov–Smirnov, Likelihood ratio and ensemble of moderated t-statistic and
Bartlett statistic feature selection. The average percentage of selected genes that are in the specified simulated change categories over all cross-validations is
shown. (B) Balanced error rates of class predictions. The distributions of balanced error rates across all cross-validation iterations are shown as boxplots.
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Figure 5. Cross-validated balanced error rates and sample-wise error rates. (A) Distribution of balanced error rates over all iterations of cross-validation.
(B) Sample-wise error rates. Each patient is one column of a heatmap. Each classification type is one row of a heatmap. Details of the selection and classifier
algorithms are provided in the Materials and Methods section. The error rates are binned into five equally sized bins. Colour scales are shaded by class
colour, with a darker colour indicating less frequent misclassification than a lighter colour.
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Figure 6. Feature ranking and selection overlaps. (A) Overlaps between three feature selection types for three cancer data sets. The 50 highest-ranked genes
of each method are used. All samples are used. (B) Overlaps between three feature selection approaches for three cancer data sets. The genes selected by
best resubstitution error rate of each method are used. All samples are used. (C) Cumulative MalaCards scores for the most frequently selected features in
cross-validation.

translational potential. The sources of selection instability
have been previously characterised and ensemble feature se-
lection proposed as a solution (33). This, however, is compu-
tationally costly, as it requires the training of many similar
models. Also, the combining of features from different mod-
els is subjective, and depends on a user-specified parameter;
the minimum number of models the feature was selected in,
in order to be included in the final model. In comparison,
differential distribution selection by the DMD method has
been shown to always be more stable than the popular mod-
erated t-statistic and equally or more stable than the Bartlett
statistic, without requiring the generation of multiple mod-
els and subjectively aggregating them. As shown by Figure
6C, for each data set, the DMD selection type chose more

genes in common with a meta-analysis than DE or DV in
two out of three data sets, suggesting that DD has more
power than either of the alternatives.

Assessment of genes via DV remains a potentially desir-
able type of classification when one seeks to classify sam-
ples using mostly experimentally unexplored genes. The top
ranked DV genesets for each data set had the least over-
lap with currently well-known disease-associated genes, as
defined by MalaCards (Figure 6C). Although this observa-
tion may seem concerning at first, it is actually expected and
can explained by publication bias. Almost all prior research
work on biomarkers has focussed on obtaining markers that
have a systematic change in expression between conditions.
Only one study has attempted classification with differential
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Figure 7. Cross-validation feature ranking and selection stability. For each pair of comparisons, the number of genes in common is divided by the number
of genes in the union and converted to a percentage. (A)The average pairwise overlap of the top ranked genes is calculated for all iterations of cross-
validation. Shapes represent data sets and colours represent different types of classification. (B) The distribution of the pairwise overlaps of the selected
genes is calculated for all iterations of cross-validation. From left to right, the number of data points which are greater than 20% and are not shown as
points is: 475, 16 879, 5301, 305, 593, 5884, 963, 2489 and 29 384.
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variability (20) and the lack of variability-associated disease
genes in public databases is likely to end, once more stud-
ies begin to consider DV or DD classification. Also, in an
independent melanoma data set, DV classification had the
best BER, while the median BERs worsened by three times
as much for DV and DD. A limitation of this comparison is
that there was only one relevant independent data set avail-
able for evaluation. It would be important to determine if
this error rate robustness holds for more independent data
sets.

Figure 5 shows that ovarian cancer had a higher BER
than the other two data sets for all three classification types,
as well as more patients with high patient-specific error
rates. The difficulty of ovarian cancer survival prediction
has been demonstrated recently (35). The lowest FDR value
obtained from fitting a Cox regression model to each gene
was 0.85. Selecting the four best genes simply based on odds
ratio magnitudes and testing them on an independent data
set found that none of them could be validated.

Figure 5B demonstrates that a minority of patients were
difficult to classify using DE, DV or DD. Although most
patients in each class were classified correctly at least 80%
of the time, a small number of patients were classified in-
correctly in the majority of cross-validations. The frequent
incorrect classification happened regardless of the type of
classification done. We suggest that this could be as a result
of differences in medical treatment or other unspecified con-
founding factors. For example, two patients could each have
a gene signature that is associated with poor prognosis, but
one patient may have received better surgical treatment than
the other and, therefore, survive a long time. This issue has
recently been explored in invasive breast carcinoma (36),
where prognosis prediction was shown to be confounded by
ER status, causing some samples to be systematically mis-
classified. Grouping patients by key features of their clini-
cal data before creating separate omics data classifiers for
those groups is a promising new research direction. It pro-
vides extra motivation for researchers not only to increase
their sample sizes, but to obtain thorough clinical data, in
order to make these analyses possible.

In summary, compared to DE and DV, assessing DD
identifies association of different genes to the phenotype,
selects these genes in a more stable manner, and provides
competitive balanced error rates. DE classification only de-
tects changes in means, and misses signatures of transcrip-
tional deregulation. Our results show that the DD approach
selects a different set of features with greater biological rele-
vance than does DE, while maintaining good prognostic ac-
curacy. DD classification is, therefore, a superior approach
for assessing gene expression, providing good classification
accuracy and a complementary set of biological features to
DE or DV selection for biologists to pursue experimentally.
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