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Context: Advanced Glycation End-Products (AGEs) are signaling proteins associated to several vascular and neurological complications 
in diabetic and non-diabetic patients. AGEs proved to be a marker of negative outcome in both diabetes management and surgical 
procedures in these patients. The reported role of AGEs prompted the development of pharmacological inhibitors of their effects, giving 
rise to a number of both preclinical and clinical studies. Clinical trials with anti-AGEs drugs have been gradually developed and this review 
aimed to summarize most relevant reports.
Evidence Acquisition: Evidence acquisition process was performed using PubMed and ClinicalTrials.gov with manually checked articles.
Results: Pharmacological approaches in humans include aminoguanidine, pyridoxamine, benfotiamine, angiotensin converting 
enzyme inhibitors, angiotensin receptor blockers, statin, ALT-711 (alagebrium) and thiazolidinediones. The most recent promising anti-
AGEs agents are statins, alagebrium and thiazolidinediones. The role of AGEs in disease and new compounds interfering with their effects 
are currently under investigation in preclinical settings and these newer anti-AGEs drugs would undergo clinical evaluation in the next 
years. Compounds with anti-AGEs activity but still not available for clinical scenarios are ALT-946, OPB-9195, tenilsetam, LR-90, TM2002, 
sRAGE and PEDF.
Conclusions: Despite most studies confirm the efficacy of these pharmacological approaches, other reports produced conflicting 
evidences; in almost any case, these drugs were well tolerated. At present, AGEs measurement has still not taken a precise role in clinical 
practice, but its relevance as a marker of disease has been widely shown; therefore, it is important for clinicians to understand the value 
of new cardiovascular risk factors. Findings from the current and future clinical trials may help in determining the role of AGEs and the 
benefits of anti-AGEs treatment in cardiovascular disease.
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1. Context
Advanced Glycation End-Products (AGEs) are ubiqui-

tous signaling proteins related with vascular and neuro-
logical complications of diabetes. They include various 
compounds formed by the Maillard reaction, which is a 
non-enzymatic glycation of free amino groups by sugars 
and aldehydes. AGE formation begins under hyperglyce-
mic or oxidative stress conditions and is characterized 
by conversion of reversible Schiff-base adducts to cova-
lently bound Amadori products, which undergo further 
rearrangements that terminate in the formation of ir-
reversibly bound compounds known as AGEs (1). These 
reactions can be triggered by glucose-6-phosphate, glyc-
eralde-hydes-3-phosphate, glyoxal (GO), methylglyoxal 

(MGO) and 3-deoxyglucosone (3DG) (2). AGEs serum levels 
have been associated to several vascular and neurological 
complications, especially in the cardiovascular field and 
a flourishing production of literature is pointing at AGEs 
as a marker of negative outcome in both diabetes man-
agement and surgical procedures on these patients (3, 4). 
Detection and measurement techniques for AGEs have 
been gradually improved over the past 10 years start-
ing from antibody and immune-based methods to the 
new readily available skin auto fluorescence techniques, 
which hold a promise for future bedside management 
of patients with diabetes (5). The reported role of AGEs 
in vascular complications of diabetes and cardiovascu-
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lar disease also prompted the development of pharma-
cological inhibitors of their effects, giving rise to many 
experimental activities and a number of both preclinical 
and clinical studies. Although most studies confirm the 
usefulness of these pharmacological approaches, other 
reports produced contradictory findings. This review 
aimed to summarize most relevant issues in anti-AGE 
treatment, considering clinical experience in cardiovas-
cular disease and discuss the potential benefits inhering 
their use in the clinical side.

1.1. AGEs Pathophysiology and Mechanisms of Action
AGEs damage cells and tissues through different 

mechanisms: intracellular glycation of proteins, which 
leads to impaired cell function; binding of circulating 
AGEs to cellular receptors, with activation of signal 
transduction cascade and alteration of genes expres-
sion; accumulation of AGEs in the extracellular matrix, 
which results in cross-linking and diminished vessels 
compliance.

1.1.1. Intracellular Glycation of Protein
Under high-glucose level conditions in endothelial 

cells, basic fibroblast growth factor (bFGF) undergoes 
increased glycation resulting in reduced mitogenic 
activity (6). Intracellular AGE formation reduces the 
expression of endothelial NO synthase (eNOS) and in-
activates nitric oxide (NO); this explains the imparted 
vasodilatory response that occurs in diabetes (7). In 
diabetic rats, MGO-induced modifications of mito-
chondrial proteins were associated with increased su-
peroxide formation in mitochondria (8). Furthermore, 
MGO modifies glutathione reductase and glutathione 
peroxidase, resulting in increased oxidative stress (9). 
MGO also impairs proteasome function (10) and alters 
overall cellular function (11).

1.1.2 Binding of Circulating AGEs to Cellular Receptors 
After diffusion from the cell, circulating AGEs can 

bind to receptors on different cells, with activation of 
signaling pathways. Numerous AGE-binding proteins 
have been identified, such as macrophage scavenger 
receptors, AGE-R1, AGE-R2 and RAGE (12). The most stud-
ied receptor for AGEs is RAGE, a member of the immu-
noglobulin superfamily expressed in most tissues (13). 
Apart from AGEs, other ligands for RAGE include mem-
bers of the S100/calgranulin family and high-mobility 
group box-1 (14). AGEs binding to RAGE induces signal-
ing pathways of mitogen-activated protein kinases 
(MAPK) (15), cdc42/rac and Jak/STAT (16), which modu-
late expression of genes for endothelin-1, vascular 
cell adhesion molecule 1 (VCAM-1), E-selectin, vascular 
endothelial growth factor (VEGF), inflammatory cyto-
kines and others (17). RAGE expression is down regu-
lated by peroxisome proliferator-activated receptor 

gamma (PPARγ) activation (18). Activation of AGE–RAGE 
axis increases self-expression of RAGE and NFkB-p65, 
which leads to a continuation and amplification of the 
signaling pathways and inflammation (19). Studies on 
diabetic mice confirmed the role of RAGE in the devel-
opment of vascular alterations (20). The AGE–RAGE in-
teraction determines a proliferation and activation of 
smooth muscle cell via angiotensin-2 pathway, with a 
possible explanation for accelerated atherosclerosis in 
diabetes (21).

1.1.3 Accumulation of AGEs in the Extracellular Matrix
AGE-RAGE activation increases transforming growth 

factor beta-1 (TGF-β1) levels, with enhanced activity of 
matrix metalloproteinase 2 (MMP-2); on the other hand, 
RAGE signaling promotes MMP-9 activity. These factors 
determine alterations in collagen IV turnover (22). Ex-
tra-cellular matrix (ECM) is highly susceptible for gly-
cation because of its slow turnover rate, and AGE accu-
mulation is responsible for the formation of cross-links 
(23), with subsequent mechanical alterations (24) lead-
ing to decreased elasticity and increased stiffness of 
vessels (25) and myocardium (26), increased thickness, 
narrowing of the vessel lumen (27), development of glo-
merular sclerosis and atherosclerosis. AGE formation in 
ECM also interferes with matrix–cell interactions, with 
alterations in signaling and adhesion; these may be 
an important initial event in diabetic microangiopa-
thy (28). AGE production induces apoptosis in macro-
phages followed by the osteogenic differentiation of 
aortic smooth muscle cells, resulting in atherosclerotic 
vascular calcifications (29).

1.2. AGEs in Cardiovascular Disease
AGEs have been shown to induce inflammation and 

intracellular Reactive Oxygen Species (ROS), which 
leads to the expression of many atherosclerosis-related 
genes, including VEGF (30). AGE increases the levels of 
Low-Density Lipoprotein (LDL) through a reduction in 
its plasma clearance, contributing to atherosclerosis 
(31). Elevated serum AGEs were found in patients with 
coronary artery disease (32) and associated with aortic 
stiffness and correlated with disease severity (33). AGE 
deposits have been found in atherosclerotic plaques 
and within myocardium fibers (34, 35). Serum levels 
of AGEs are associated with markers of left ventricular 
diastolic dysfunction (36). Furthermore, AGE levels are 
higher in case of peripheral artery disease in patients 
with diabetes (3). Receptors for AGEs (RAGE) have been 
found to be overexpressed in carotid artery explants, as 
the vulnerable area of the plaque and have been related 
with inflammatory reactions (37). The soluble form of 
the extracellular domain of RAGE is known as sRAGE, 
which is able to prevent AGE-RAGE interaction, thus 
blocking the signal transduction pathway ultimately 
leading to cellular damage (38). AGEs also provide prog-
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nostic information about operative outcome and suc-
cess rate of interventions in cardiovascular disease. 
In patients with diabetes undergoing percutaneous 
coronary intervention (PCI) with balloon angioplasty 
or bare-metal stent (BMS) implantation, elevated levels 
of serum AGEs were a risk factor for development of in-
tra-stent restenosis (39). The prospective ARMYDA-AGEs 
Study (40) showed that in patients with diabetes on 
optimized glycemic control who underwent PCI with 
drug-eluting stent (DES) implantation, high AGEs levels 
in plasma were an independent predictor of intra-stent 
restenosis and stent lumen loss at six months. Thus, AGE 
levels represent a valuable marker of adverse outcome 
after PCI (41). Plasmatic AGE levels can predict heart 
failure and new cardiac events (42, 43) and proved to 
be better than HbA1C measurements in predicting the 
progression of diabetic complication (44). In patients 
with diabetes, with HbA1C < 6.0% and without clinically 
relevant complications, serum levels of AGEs were high-
er in comparison to a control normoglycemic cohort 
with comparable HbA1C and determine a prothrom-
botic state, which might explain the increased rate of 
vein graft failure after surgical myocardial revascular-
ization (45). In fact, AGEs activated RAGE expression, 
inhibited PPARγ expression, enhanced intracellular 
ROS formation and increased neutrophil-endothelial 
adhesion. AGE levels were proved to be associated with 

poor outcome and adverse events in patients after car-
diac surgery; AGEs were also related with prolonged 
intubations and long hospitalization in Intensive Care 
Unit (46). Increased serum levels of AGEs, as well as skin 
tissue values (47), can predict total and cardiovascular 
mortality in patients with diabetes during a long term 
follow-up (4). 

2. Evidence Acquisition
Evidence acquisition process was performed on 

PubMed (www.ncbi.nlm.nih.gov/pubmed) and Clinical-
Trials.gov. Search terms included “AGEs, advanced glyca-
tion end products, cardiovascular disease, cardiac, diabe-
tes, drugs”, with manually checked articles.

3. Results
A number of drugs had been developed to interfere 

with the glycation pathway. Despite most of them are 
solely used in preclinical settings, some are approved 
for human treatment. Albeit a detailed discussion of the 
mechanism of actions and preclinical findings of these 
compounds exceeds the purpose of this review, a sche-
matic description of each anti-AGEs compound is provid-
ed in Table 1. Results of human clinical trials with inher-
ent each compound would be described in details below 
and are summarized in Table 2. 

Table 1.  Anti-AGEs Compounds a

Drug Mechanism of Anti-AGEs Activity

Aminoguanidine Post-Amadori inhibitor by trapping dicarbonyl intermediates, NOS inhibitor

Pyridoxamine Prevents the transformation of protein-Amadori intermediates to protein-AGE products, post-Amadori 
inhibitor by trapping carbonyl intermediates

Benfotiamine Post-Amadori inhibitor by trapping dicarbonyl intermediates

ACEIs Pre-Amadori and post-Amadori inhibitor, transition metal ion chelator

ARBs Agonist of PPARγ

Statins Stimulate RAGE shedding

Alagebrium (ALT-711) Breaks carbon-carbon bonds between carbonyls (“AGE-breaker”)

TZDs Agonist of PPARγ, Reduces RAGE Expression

ALT-946 b Post-Amadori inhibitor by trapping dicarbonyl intermediates, NOS inhibitor

OPB-9195 b Post-Amadori inhibitor by trapping dicarbonyl intermediates, agonist of PPARγ

Tenilsetam b Post-Amadori inhibitor by trapping dicarbonyl intermediates, transition metal ion chelator

LR-90 b Post-Amadori inhibitor by trapping dicarbonyl intermediates, transition metal ion chelator

TM2002 b Transition metal ion chelator

sRAGE b Prevents AGE binding to RAGE

PEDF b Serine-protease inhibitor which reduces AGE-RAGE signal transduction, activation of PPARγ signal 
transduction

a  Abbreviations: ACEIs: Angiotensin Converting Enzyme Inhibitors. ARBs: Angiotensin Receptor Blockers. NOS: Nitric Oxide Synthase. TZDs: 
Thiazolidinediones.
b  No human data with this agent has been published.
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Table 2. Summary of Clinical Trials About Compounds Interfering With the Glycation Pathway a

Study Type Drug Cohort Duration of 
Treatment

Effect of Anti-AGEs Drug

ACTION (2004) (48) R, DB, PC aminoguanidine 690 T1DM 2-4 years No beneficial effects in progression of overt nephropathy. 
Modest attenuation of complications of diabetes mellitus

ACTION-2 (1999) (49) R, DB, 
PC, M

aminoguanidine 599 T2DM Not 
Available

Unpublished data. Study discontinued due to lack of efficacy and 
safety concerns

Williams et al. (2007) (50) R, DB, 
PC, M

pyridoxamine 212 T1/2DM 6 months Beneficial reduction from baseline in serum creatinine

Stirban et al. (2006) (53) O benfotiamine 13 T2DM 3 days Beneficial reduction in AGE levels and markers of oxidative stress

Rabbani et al. (2009) (54) R, PC thiamine 40 T2DM 3 months Beneficial reduction in urinary albumin excretion

Fraser et al. (2012) (57) R, DB, PC benfotiamine 67 T1DM 2 years No changes in peripheral nerve function or inflammatory 
markers

Alkhalaf et al. (2010) (55) R, DB, PC benfotiamine 82 T2DM 3 months No changes in 24 h urinary albumin excretion or injury 
molecules

Alkhalaf et al. (2012) (56) R, DB, PC benfotiamine 82 T2DM 3 months No changes in plasma or urinary AGEs. No changes in plasma 
markers of endothelial dysfunction and inflammation. No 

clinical benefit

Sebekova et al. (2003) (58) PC ramipril 29 T2DM 2 months Reduced fluorescent AGEs. Reduction in blood pressure and 
proteinuria. No changes in creatinine clearance

Komiya et al. (2008) (59) O valsartan 15 T2DM 1 year Reduced AGEs levels. No changes in oxidative markers. Decline 
in microalbumin levels in urine not statistically significant. No 

changes in carotid artery intima-media thickness

Ono et al. (2013) (60) O candesartan 25T2DM 3 months Reduced urinary excretion of AGEs and albumin

Saha et al. (2010) (61) PC candesartan 32 T2DM 3 months Reduction in CML. Slightly increase in creatinine clearance

Scharnagl et al. (2007) (62) R, DB, 
PC, M

cerivastatin 69 IGT/DM 3 months Beneficial reduction in AGE, cholesterol, apoB and LDL levels

Cuccurullo et al. (2006) (63) R, O simvastatin 70 T2DM 4 months Beneficial reduction in carotid plaque RAGE expression through 
diminished AGE generation. Might cause plaque stabilization by 
inhibiting PGE2-dependent MMP, responsible for plaque rupture

Nakamura et al. (2010) (64) O atorvastatin 10 CKD 1 year Reduction from baseline in proteinuria and AGEs levels. No 
changes in glomerular filtration rate

Kass et al. (2001) (26) R, DB, PC M alagebrium 93 SH 2 months Beneficial increment in total arterial compliance, beneficial 
diminished arterial pulse pressure. No effects on systemic 

arterial resistance, cardiac output and heart rate

Little et al. (2005) (65) O alagebrium 23 diastolic 
HF

4 months Beneficial decrease in left ventricular mass. Beneficial increase in 
left ventricular diastolic filling and quality of life

Zieman et al. (2007) (66) DB alagebrium 13 SH 2.5 months Beneficial increase in arterial endothelial function. Might reduce 
arterial stiffness and vascular remodeling

BENEFICIAL (2010) (67) R, DB, PC alagebrium 102 systolic 
HF

9 months No changes in exercise tolerance, diastolic and systolic function, 
AGE accumulation, NT-pro-BNP and NYHA functional class

Oudegeest-Sander et al. 
(2013) (69)

R, DB, PC alagebrium 48 sedentary 
life

1 year No changes in vascular function. Lack in potentiating the effect 
of exercise training

Fujimoto et al. (2013) (70) R, DB, PC alagebrium 62 sedentary 
life

1 year No changes in hemodynamic, left ventricular geometry, 
exercise capacity. Might have favorable effect in age-related left 

ventricular stiffening

Oz Gui et al. (2010) (71) R, PC pioglitazone 62 T2DM 3 months Increase in sRAGE levels

Gada et al. (2013) (72) R, PC rosiglitazone 111 T2DM 6 months Increase in sRAGE levels. Reduction in other 3 protective markers 
indicating a negative effect

PioRAGE (2014) (38) R, PC pioglitazone 63 T2DM 6 months Reduced RAGE and increased sRAGE expression

a  Abbreviations: CKD: Chronic Kidney Disease. DB: Double Blinded. DM: Diabetes Mellitus. HF: Heart Failure. IGT: Impaired Glucose Tolerance. M: 
Multicentric. MMP: Matrix Metalloproteinase. O: Open. PC: Placebo-Controlled. R: Randomized. SH: Systolic Hypertension. 
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3.1. Aminoguanidine (Pimagedine)
ACTION trial evaluated the safety and efficacy of amino-

guanidine regarding the rate of progression of diabetic 
nephropathy. Overall, 690 patients with type-1 diabetes 
with known diagnosis of nephropathy and retinopathy 
were enrolled. After 2-4 years, aminoguanidine therapy 
was successful in reducing 24-hour proteinuria and in 
preventing the decrease in glomerular filtration rate. On 
the other hand, the effect on serum creatinine levels was 
not significant. Moreover, a minority of patients treated 
with aminoguanidine, in comparison with controls, 
experienced a progression of retinopathy. Overall, this 
study demonstrated that inhibiting AGEs production can 
result in a clinically significant attenuation of diabetes 
complications (48). ACTION II compared aminoguani-
dine with placebo on the progression of renal disease 
in 599 patients with type-2 diabetes and nephropathy. 
Side effects in high dose arm of the study, such as flu-like 
symptoms, hepatic abnormalities, gastrointestinal dis-
turbances and anemia, caused an early discontinuation 
of this study, which failed to prove a role for aminogua-
nidine (49).

3.2. Pyridoxamine
Pyridoxamine reduced change from baseline in serum 

creatinine and urinary TGFβ1 excretion after a 6-month 
treatment in 212 patients with diabetes and nephropa-
thy (50). A study reported an accelerated decline in renal 
function in case of vitamin B6, B9 and B12 cotherapy (51), 
but vitamin B6 is unlikely to be the cause (52), and thus 
pyridoxamine treatment seems to be safe.

3.3. Benfotiamine
Benfotiamine, proved to prevent endothelial dysfunc-

tion and oxidative stress in patients with diabetes receiv-
ing a meal rich in AGEs (53). In 40 type-2 diabetic patients 
with microalbuminuria, thiamine administration for 
three months determined a regression in urinary albu-
min excretion (UAE) (54). Conversely, a study performed 
in 2010 on 82 patients with diabetes and advanced renal 
disease treated with benfotiamine or placebo for three 
months failed to reduce UAE (55). The same group in 
2012 proved that in 82 patients with type-2 diabetes, ben-
fotiamine treatment for three months did not reduce 
plasma or urinary AGEs, markers of endothelial dysfunc-
tion and inflammation; hyperglycemia-induced vascular 
complications were not clinically improved (56). In 67 
patients with diabetes and neuropathy, benfotiamine ad-
ministration for two years did not significantly improve 
peripheral nerve function or reduced markers of inflam-
mation (57).

3.4. Angiotensin Converting Enzyme Inhibitors
In 2003, a study enrolled 29 patients, 12 of which had 

diabetes and treated with ramipril, to evaluate its effect 

on AGEs formation and oxidative stress. After two months, 
ramipril reduced blood pressure, proteinuria and fluores-
cent AGEs, despite unchanged creatinine clearance and N 
(ε)-carboxy-methyl-lysine (CML) concentration (58).

3.5. Angiotensin Receptor Blockers
In 2008, 15 patients with diabetes and hypertension 

were treated with valsartan to study its effect on AGEs. 
At one year follow-up, a significant decrease in AGEs lev-
els was demonstrated. However, there were no changes 
in oxidative markers and in carotid artery intima-media 
thickness, and the decline in urinary microalbumin levels 
was not statistically significant (59). Another study dem-
onstrated that in 25 patients with diabetes and hyperten-
sion treated with candesartan for three months, urinary 
excretion of AGEs and albumin were reduced compared 
to baseline (60). In 2010, 32 patients, 11 of which diabetics 
with significant proteinuria, were treated with candesar-
tan for three months, observing a reduction in CML and a 
slightly increase in creatinine clearance (61).

3.6. Statin
A study examined the effect of cerivastatin on serum 

concentration of AGEs in 69 patients with diabetes or 
pre-diabetes (62). After a 3-month treatment, cerivastatin 
improved lipids profile and decreased CML levels. An-
other study considered atherosclerotic plaques and the 
effect of statin treatment on their expression of RAGE and 
destabilizing genes; simvastatin was administered in 70 
patients for four months before carotid endarterectomy 
and intraoperative samples examination concluded 
that simvastatin inhibits RAGE expression through a de-
crease in myeloperoxidase-dependent AGE production. 
In addition, an inhibition of matrix metalloproteases 
was reported, thus contributing to plaque stabilization 
through reduced inflammation (63). In another study on 
10 patients with dyslipidemia and chronic kidney disease 
without diabetes treated with atorvastatin, atorvastatin 
treatment for one year determined a reduction in pro-
teinuria and AGEs levels, though not affecting glomeru-
lar filtration rate (64).

3.7. ALT-711 (Alagebrium)
Alagebrium has been extensively investigated in a 

number of clinical trials, sponsored by Synvista Thera-
peutics from 2002 to 2010 (DIAMOND (NCT00043836), 
SAPPHIRE (NCT00045981), SILVER (NCT00045994), SPEC-
TRA (NCT00089713), BREAK-DHF-I (NCT00662116) and 
BENEFICIAL (NCT00516646). However, few data had been 
officially published, and some of these studies had been 
terminated early due to financial constraints. In 2001, a 
pilot study enrolled 93 patients with hypertension ran-
domized to placebo or alagebrium. After two months, 
patients in the treatment arm experienced a decrease in 
arterial pulse pressure with a concomitant increase in 
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vessel compliance (26). In 23 patients with diastolic heart 
failure, alagebrium administration for four months 
determined a decrease in left ventricular mass and im-
provements in diastolic filling (65). Another small study 
considered 13 patients with hypertension, treated for 10 
weeks and concluded that alagebrium enhanced endo-
thelial function and might play a role in reducing arte-
rial remodeling (66). However, the BENEFICIAL trial (67) 
enrolling 102 patients with systolic heart failure, showed 
that alagebrium, despite being well tolerated, did not 
improve exercise tolerance, diastolic or systolic function, 
AGE accumulation, N-terminal of the prohormone brain 
natriuretic peptide (NT-proBNP) level or New York Heart 
Association (NYHA) class after 9-month treatment (68). 
A recent study (69) enrolled 48 healthy individuals with 
sedentary life, who were randomized into four groups; 
training + alagebrium, training + placebo, no training 
+ alagebrium and no training + placebo. After one year 
of treatment, endothelial function and arterial stiffness 
did not change and alagebrium treatment had no inde-
pendent or synergic effect on vascular function. Another 
study (70) randomized 62 healthy individuals into four 
groups in a similar way and subjects underwent heart 
catheterization to define hemodynamic. After one year of 
treatment, alagebrium had no effect on hemodynamics, 
left ventricular shape or exercise capacity, but improved 
left ventricular stiffness.

3.8. Thiazolidinediones
Thiazolidinediones, known as oral and well-tolerated 

drugs for diabetes, proved to have a role in anti-AGE 
treatment because of their PPARγ-agonist activity, which 
determines an increase in sRAGE expression, which is in-
versely associated with atherosclerosis. A study conduct-
ed in 2010 (71) on 62 patients with diabetes who received 
pioglitazone, rosiglitazone or placebo showed that pio-
glitazone but not rosiglitazone was able to significantly 
raise sRAGE at 12 weeks follow-up. However, another ran-
domized placebo-controlled study conducted in 2013 (72) 
enrolling 111 patients with type-2 diabetes and at high 
risk of coronary heart disease, tested the effects of rosi-
glitazone after six months of treatment. Level of sRAGE 
were augmented, together with high-sensitivity C-reac-
tive protein (hsCRP) indicating a protective effect on in-
flammation. PioRAGE trial (38) involved 63 patients with 
type-2 diabetes, randomly assigned to pioglitazone or 
glimepiride. After a follow-up of 24 weeks, pioglitazone 
could suppress RAGE expression and increase plasma lev-
els of sRAGE, independently on glycaemia effect or insu-
lin resistance index.

4. Conclusions
Considering the overall results of these studies, anti-

AGEs drugs would be an attractive clinical option in the 
near future. The apparent lack of benefits in some trials 
might be related to the small sample size or the short 

follow-up period. In addition, there is no general agree-
ment or evidences about the dose for each drug, which 
differs among various studies; this mined the possibil-
ity to perform a reliable comparison. We reliably specu-
late that some discordant results might have conspired 
against widespread use of these agents. However, consid-
ering many preclinical studies on the role of AGEs as both 
a marker and a cause of disease and on new compounds 
interfering with their effects, we might expect a forth-
coming production of clinical evaluation of new anti-
AGEs drugs. The most recent promising anti-AGEs agents 
are statins, alagebrium and thiazolidinediones even if 
remains unclear which patients would benefit more. An-
other point emerging is that AGEs measurement has still 
not taken a pivotal and widespread role in clinical prac-
tice. It is important for clinicians to critically appraise 
the value of new cardiovascular risk factors. Diabetes 
mellitus remains a major determinant for prognosis, 
but using exclusively glycaemia and glycated hemoglo-
bin to assess the state, prognosis or outcome of patients 
with diabetes is not appropriate anymore. AGE levels add 
new information for the development and progression of 
cardiovascular disease in both diabetic and non-diabetic 
patients, because AGE accumulation occurs before than 
glycated hemoglobin and more closely correlates with 
the severity of the disease, predicting the development of 
cardiovascular complications. A variety of interventions 
against AGE accumulation, predominantly tested in pre-
clinical contexts, appear to show beneficial effects on the 
development of diabetic complications and cardiovascu-
lar diseases. Findings from the current and future clinical 
trials may help in determining optimal therapeutic tar-
get of AGEs in cardiovascular disease.
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