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Dendritic cells (DCs) are central players in the initiation and control of responses, reg-
ulating the balance between tolerance and immunity. Tolerogenic DCs are essential in 
the maintenance of central and peripheral tolerance by induction of clonal T cell deletion 
and T cell anergy, inhibition of memory and effector T cell responses, and generation 
and activation of regulatory T cells. Therefore, tolerogenic DCs are promising candidates 
for specific cellular therapy of allergic and autoimmune diseases and for treatment of 
transplant rejection. Studies performed in rodents have demonstrated the efficacy and 
feasibility of tolerogenic DCs for tolerance induction in various inflammatory diseases. 
In the last years, numerous protocols for the generation of human monocyte-derived 
tolerogenic DCs have been established and some first phase I trials have been con-
ducted in patients suffering from autoimmune disorders, demonstrating the safety and 
efficiency of this cell-based immunotherapy. This review gives an overview about meth-
ods and protocols for the generation of human tolerogenic DCs and their mechanisms of 
tolerance induction with the focus on interleukin-10-modulated DCs. In addition, we will 
discuss the prerequisites for optimal clinical grade tolerogenic DC subsets and results of 
clinical trials with tolerogenic DCs in autoimmune diseases.

Keywords: tolerogenic dendritic cells, regulatory T cells, immunotherapy, tolerance, nanoparticles

iNTRODUCTiON

The antigen-specific induction of immunological tolerance in the context of autoimmune and 
allergic diseases, which are driven by undesired immune responses against the body’s own or for-
eign antigens, has long been described as ultimate solution for the treatment of excessive immune 
activation. Nowadays, common treatment options are life-long, systemic immune suppression, 
which however may lead to serious side effects like chronic infections or malignant transformation. 
Therefore, various cell types have been investigated to establish permanent antigen-specific immune 
tolerance toward the causative triggers. Dendritic cells (DCs) as key players in controlling immune 
responses by either inducing immunity or establishing tolerance through interaction with multiple 
immune cells seem to be excellent candidates for the re-establishment of permanent antigen-specific 
tolerance. Since their discovery in 1973 by Ralph M. Steinman, several in vitro protocols have been 
established for the generation of potent, stable tolerogenic DCs whereof some have recently been 
used for the treatment of transplantation rejection, autoimmune and allergic disorders in vivo. In 
addition, to avoid ex vivo generation and modulation of DCs, DC-specific in vivo targeting, e.g., by 
antibodies or nanoparticle-based approaches, which can directly deliver immunomodulatory drugs 
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to DCs, have emerged as a promising tool. In this review, we will 
outline the different protocols for generation of tolerogenic DCs, 
their mechanisms of tolerance induction, and summarize their 
use in preclinical and clinical settings.

ROLe OF DCs iN iMMUNiTY AND 
TOLeRANCe

Recognition of DCs as professional antigen-presenting cells has 
come a long way. Antonio Lanzavecchia once stated that DCs 
seemed “too rare to be relevant” (1). With the Steinman lab 
pioneering DC immunology in the 1980s, the field started to 
expand rapidly and apart from their function in induction and 
maintenance of immunity, they also became relevant as promis-
ing candidates for immunotherapy with regards to tolerance 
induction.

Some refer to DCs as “nature’s adjuvants” highlighting their 
central role in the induction of immune responses. DCs populate 
almost all body surfaces in order to serve as sentinels detecting 
pathogens either by membrane-bound toll-like receptors (TLRs) 
or within the cytosol through nucleotide-binding oligomeriza-
tion domain-like receptors (NLR) (2, 3). They do not kill the 
pathogen directly but use an even more sophisticated approach 
that induces long-lasting antigen-specific responses sufficiently 
bridging innate and adaptive immunity. By utilizing a proteolytic 
machinery (endolysosomal and proteosomal), they partially 
degrade antigens to peptides to subsequently display peptide/
major histocompatibility (MHC) complexes on their surface (4). 
Although other cells such as macrophages and B  cells are also 
able to present antigens via MHC, DCs are the only cell type 
to activate naïve T cells and to induce antigen-specific immune 
responses in all adaptive immune cells (4). They can for instance 
directly induce antibody production by presenting intact antigen 
to antigen-specific B cells without engaging T cells (5). DCs take 
a guiding role in immune responses as they interrogate, interpret, 
and transmit the nature of the antigenic stimulus, thereby shap-
ing even T cell polarization via different intracellular signaling 
pathways (6).

Immature DCs (iDCs) are predominantly found in the peri-
pheral tissues where they patrol and extensively take up large 
quantities of membrane-bound or soluble antigen by macropino-
cytosis and phagocytosis. However, at an immature state, DCs are 
inefficient in displaying MHC/peptide complexes on their surface 
as, e.g., their lysosomal activity is attenuated (3). The ability to 
channel MHC/peptide complexes to the surface increases upon 
engagement of pathogen recognition receptors such as TLRs or 
NLRs, which drive DC maturation (7). DCs change their capacity 
from antigen accumulation to T cell activation within only 1 day. 
Expression of chemokine receptors [C–C chemokine receptor 
(CCR) 1, CCR2, CCR5, CCR6, and C–X–C chemokine receptor 
(CXCR) 1] facilitates immature DC recruitment to the site of 
inflammation. Activation of DCs results in CCR6 downregula-
tion and CCR7 and CXCR4 upregulation directing DCs toward 
the lymph node (8, 9).

Dendritic cell maturation, however, has a high degree of 
plasticity meaning that differentiated mature DCs (mDCs) can 

easily convert to tolerogenic DCs. This has been shown, e.g., by 
a group that stimulated activated DCs with pro-inflammatory 
interferon-γ (IFN-γ), which promoted the expression of 
indoleamine 2,3-dioxygenase (IDO) leading the respective DCs 
to acquire tolerogenic potential (10).

The original concept of tolerance induction by DCs is attrib-
uted to low amounts of surface MHC and co-stimulatory mol-
ecules such as cluster of differentiation (CD) 80 and CD86 found 
on iDCs. In contrast, the CD80/CD86high expressing mature DC 
counterpart would rather activate effector T cells. However, in an 
uninfected individual, maintenance of self-tolerance is ensured  
by a continuous input of short-lived DCs that provide self-antigens 
in the lymphatic tissues. Notably, DCs isolated in the cold from 
germ-free mice show expression of co-stimulatory molecules 
and activate T  cells to enter cell cycle (11). This indicates that 
the original view of tolerance induction is highly dependent on 
DCs’ mutual state of development and activation, as well as the 
surrounding microenvironment of cytokines and growth factors.

Dendritic cells in the thymus establish (central) self-tolerance 
by the display of self-antigens to developing T  cells inducing 
T cell negative selection or Treg differentiation (12). Induction 
of peripheral T cell anergy and apoptosis, attenuation of effector 
and memory T cell responses, and the generation and activation 
of regulatory T cell (Treg) subpopulations has been attributed to 
a variety of tolerogenic DC subtypes (13–16).

Dendritic cell subtypes in humans can be characterized by 
anatomical localization and respective function. In steady state, 
blood DCs are immature precursors of tissue or lymphoid organ 
DCs. Epithelial tissues contain non-lymphoid or migratory DC 
subtypes (17). Lymphoid tissues harbor resident DC populations, 
which lack migratory capacities and play a role in retrieval of  
antigen and maintenance of antigen-specific immune responses 
(e.g., follicular DCs that recycle and “store” antigen for prolonged 
B  cell activation in lymph node germinal centers) (18). Upon 
pathogen encounter and subsequent inflammatory state, the DC 
content of tissue and lymphoid organs is altered. Steady state 
DCs are diluted by CD14+ classical monocytes and precursors of 
inflammatory DCs. Blood DCs might also enter tissues via CD62 
ligand (L) and CXCR3 expression, which allows extravasation (19).

Site-specific appearance contaminating monocytes/mac-
rophages and diverse inflammatory stimuli hinder a distinct 
phenotypical characterization of DC subsets. However, DCs were 
originally defined by their characteristic dendritic morphology 
and extraordinary capacity for antigen presentation and T  cell 
priming (20, 21). These classical or conventional DCs (cDCs) 
are now classified into two main subsets, the CD11b+ and CD8+/
CD103+ cDCs in mice and the corresponding blood dendritic 
cell antigen (BDCA)-1+ (CD1c+) and BDCA-3+ (CD141+) 
cDCs in humans. Beyond these subsets, however, a significant 
functional, genetic, and phenotypic diversity of DCs has been 
recently appreciated. There have been huge recent efforts by the 
scientific community to identify strategies in order to align DC 
phenotypes in a tissue and cross-species specific manner via flow 
cytometry. A set of lineage-imprinted markers recently published 
by Guilliams et  al. is sufficient to differentiate between human 
plasmacytoid DCs [pDC: CD45+CD11clow human leukocyte 
antigen-D related (HLADR)high interferon response factor (IRF) 
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FigURe 1 | Flow cytometric phenotyping of dendritic cells (DCs) aligned across tissues. Surface marker expression of human and mouse DCs in a variety of tissues 
was defined previously by Guilliams et al. (22) for cDC1s and conventional type 2 DCs (cDC2s). To identify DC subpopulations, a multi-color FACS staining, FSC/
SSC pre-gating, and linage (lymphocytes and NK cells) as well as macrophage exclusion has to be performed. If applicable for the desired tissue, afterward, CD45 
immune cells are gated for CD1αhighCD11cint Langerhans cells (LCs). LCs excluded cells are then identified by the expression of either CADM1highC172alowCD141hig

hCD26highCD11cmid-high as cDC1s or CADM1highC172ahighCD1chighCD11chigh cDC2s. In humans and mice, DC cell fate can be additionally identified on the level of 
transcription factors: DCs in general are dependent on flt-3. cDC1 development depends on BTAF3 and high levels of IRF8, whereas cDC2 evolution is dependent 
on IRF4 but independent of BATF3.
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8highIRF4mid], conventional type 1 (cDC1s), and conventional 
type 2 DCs (cDC2s) (Figure  1). The authors provide a smart 
strategy to identify human cDC1s within (monocyte/mac-
rophage excluded) CD14−CD16− cells as cell adhesion molecule 
(CADM)1highCD172alowCD11cmid/highCD26high cells and cDC2s as 
CADM1lowCD172ahighCD1chighCD11chigh cells validated by means 
of mass spectrometry and even on transcription factor level. This 
strategy is robust even under inflammatory conditions, in dif-
ferent tissues and allows identification of the same DC subset in 
macaques, humans, and mice (22).

A sophisticated identification strategy will allow for a more 
profound analysis of DC fates in mice and humans with regard 
to immunological functions of DCs in immunity and tolerance.

geNeRATiON AND SUPPReSSive 
MeCHANiSMS OF TOLeROgeNiC DCs

During classical immune responses, after encountering an antigen 
in combination with a danger signal, DCs upregulate the expres-
sion of co-stimulatory molecules, lymph node-homing receptors 
plus MHC molecules, and start the secretion of pro-inflammatory 

cytokines (21). Those processes enable DCs to migrate to the 
lymph nodes and initiate the activation of naïve T cells. Full T cell 
activation requires a three step signaling process. First, the bind-
ing of the T cell receptor (TCR) to its cognate antigen, which is 
presented on MHC molecules, second, the engagement of CD28 
with co-stimulatory molecules like members of the B7 protein 
family CD80 and CD86, and third, interaction of DC-secreted 
cytokines with appropriate respective cytokine receptors (23).

In contrast, tolerogenic DCs exploit several immunosuppres-
sive mechanisms to induce tolerance (Figure  2). Tolerogenic 
DCs often display an immature or semi-mature phenotype that 
is characterized by low expression of co-stimulatory and MHC 
molecules and altered cytokine production. Presentation of low 
levels of antigen without co-stimulation leads to T  cell anergy 
(24) and promotion of regulatory T cell differentiation in vitro 
and in vivo (25–27). TCR signaling in combination with co-stim-
ulation results in activation of the transcription factors nuclear 
factor of activated T cells (NFAT), activator protein (AP)-1, and 
nuclear factor “kappa-light-chain-enhancer” of activated B-cells 
(NF-κB) that subsequently induce a transcriptional program 
resulting in T cell activation (28). It is not yet exactly clear how 
absence of co-stimulation results in a transcription profile that 
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FigURe 2 | Immunosuppressive mechanisms of tolerogenic dendritic cells (DCs). Immunosuppressive mechanisms of tolerogenic DCs include secretion of 
immunomodulatory mediators, like interleukin (IL)-10 and TGF-β, or retinoic acid, resulting in induction of tolerogenic DCs, inhibition of effector T cell function, and 
Treg generation. In addition, absence or reduction of major histocompatibility and co-stimulatory molecules is involved in induction of anergic T cells with regulatory 
capacity. Furthermore, expression of immune-modulatory/-inhibitory molecules like PDL-1/-2, CTLA-4, and ILT-3/4 or expression of death receptors like TRAIL or 
FAS represent mechanisms to inhibit efficient T cell responses by tolerogenic DCs. In addition, deprivation of nutrition factors by the expression of indoleamine 
2,3-dioxygenase (IDO) and heme oxygenase-1 (HO-1) results in reduced T cell proliferation and Treg induction, respectively. In a similar way, shedding of soluble 
CD25 leads to IL-2 deprivation and reduced T cell proliferation.
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favors Treg induction but impaired CD28-induced activation of 
the rat sarcoma/mitogen activated protein kinase (Ras/MAPK) 
pathway results in deficient AP-1 activation. In the absence 
of AP-1, NFAT proteins, possibly in combination with other 
transcription factors or by forming dimers, may subsequently 
initiate a transcriptional program that cumulates in T cell anergy 
and Treg induction (29). However, recent studies demonstrated 
that phenotypically mDCs are also capable of inducing Tregs, 
indicating that the phenotype does not necessarily determine 
the immunogenic or regulatory function of DCs (13, 30, 31). 
Furthermore, secretion of anti-inflammatory cytokines like 
interleukin (IL)-10 and transforming growth factor-β (TGF-β) 
and reduced expression of pro-inflammatory cytokines by DCs 
critically contribute to tolerance induction. Production of IL-10 
by tolerogenic DCs is indispensable for regulatory function in 
multiple settings (32–34) and DC-released TGF-β is important 
for tolerance induction as DC-specific ablation of the TGF-β 
activating integrin αvβ8 (Itgb8) results in autoimmunity and 
colitis as demonstrated in transgenic CD11c-Cre/Itgb8fl/fl mice 
(35). Moreover, TGF-β secretion by tolerogenic DCs is important 
for the regulation of TH17 responses in neuro-inflammation as 
shown in CD11cDNR mice, which is a dominant-negative form 
of TGF-β receptor II resulting in diminished TGF-β signaling 

(36). Furthermore, IL-10 and TGF-β, which are secreted by 
tolerogenic DCs in the tumor microenvironment, facilitate and 
reinforce tumor escape (37). In addition, several immunosup-
pressive features of tolerogenic DCs rely on induction of apopto-
sis in responding T cells including Fas cell surface death receptor 
(FasL/Fas) interactions (38) and tumor necrosis factor-related 
apoptosis-inducing ligand (TRAIL)/TRAILR engagement (39). 
Tolerogenic DCs may also express various inhibitory receptors 
like for example programmed cell death ligand (PDL)-1, PDL-2 
(40, 41), inhibitory Ig-like transcripts (ILT) (42, 43), and cyto-
toxic T-lymphocyte-associated protein 4 (CTLA-4) (44), which 
act on T cells by dampening TCR signaling and competing with 
CD28, respectively. Tolerogenic DCs also alter T cell responses 
by modulation of metabolic parameters for example by the 
release of IDO and the induction of heme oxygenase-1 (HO-1)  
to control levels of tryptophan and carbon monoxide. IDO 
facilitates the degradation of tryptophan to N-formylkynurenin 
leading to reduced T cell proliferation (45, 46), whereas HO-1 
inhibits hemoglobin, resulting in production of carbon mon-
oxide, which leads to reduced DC immunogenicity (47, 48). In 
addition, tolerogenic DCs are also capable of producing retinoic 
acid (RA) (49), inducing Treg differentiation (50). Shedding of 
CD25 by DCs and subsequent deprivation of IL-2 was recently 
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FigURe 3 | Human tolerogenic dendritic cells (DCs) are induced by various immunosuppressive drugs and mediators. Immuno-activating and -inhibitory surface 
molecules as well as secreted signaling molecules are demonstrated. Arrows indicate up/downregulation or unchanged expression or secretion by human 
tolerogenic DCs compared to either mature DCs (activating surface molecules + secretion) or immature DCs (iDCs) (inhibitory surface molecules), respectively.  
As an exception, expression of activation molecules, and secretion of immune mediators marked with * are compared to iDCs. Note: in some protocols, tolerance-
inducing agent is added at the beginning and during the entire culture of tolerogenic DCs, whereas others are added at the end of the culture for 1–3 days  
either with or without a maturation stimulus. Protocols that involve a maturation stimulus are marked with an orange flash. *Compared to iDCs.

5

Domogalla et al. How Tolerogenic DCs Shape Immunity

Frontiers in Immunology | www.frontiersin.org December 2017 | Volume 8 | Article 1764

proposed as additional immunosuppressive mechanism for the 
suppression of effector T cell proliferation (13).

Several human tolerogenic DC subsets have been character-
ized in vitro based on their tolerogenic capacities. iDCs display 
minimal expression of co-stimulatory molecules and no secretion 
of inflammatory cytokines, demonstrating the aforementioned 
optimal requirements for tolerance induction, which has also 
been demonstrated in vitro (51). However, iDCs are unstable and 
may differentiate into immunogenic DCs under inflammatory 
conditions (13, 52).

Therefore, many protocols have been established to generate 
stable human DCs with tolerogenic capacities in vitro (Figure 3). 
The opportunity to genetically modify human DCs has been 
exploited to directly induce tolerogenic properties by the recom-
binant expression of FasL (53), PD-L1 plus TRAIL (54), or IDO 
(55) all of which lead to the induction of T  cell apoptosis and 
suppression of effector T cell function, respectively. Additionally, 
DCs can genetically be engineered to secrete enhanced levels of 
IL-10 (56) or TGF-β (57) resulting in broad immunosuppression.

Furthermore, human tolerogenic DCs are induced by various 
immunosuppressive drugs (Figure 3) that are often systemically 
used to control excessive immune responses like corticosteroids, 
rapamycin, cyclosporine, or by acetylsalicylic acid (58). For 
instance, the corticosteroid dexamethasone is capable of inducing 

tolerogenic DCs that exhibit low expression of co-stimulatory  
molecules combined with highly expressed inhibitory receptors 
ILT-2 and ILT-3 and secrete large amounts of IL-10 and IDO 
resulting in the induction of T cells with regulatory capacities (15, 
59–61). In a similar way, the immunosuppressive drug rapamycin, 
which inhibits mechanistic target of rapamycin persuades human 
DCs to express a stable tolerogenic phenotype with reduced 
expression of MHC and co-stimulatory molecules in combina-
tion with a high ILT-3 and ILT-4 expression, leading to Treg 
generation in vitro and in vivo (15, 59, 62–64). Furthermore, in the 
presence of acetylsalicylic acid, DCs downregulate the expression 
of co-stimulatory molecules, whereas inhibitory molecules like 
ILT-3 and PD-L1 are upregulated resulting in Treg induction (65).

In addition, incubation with the immunosuppressive cytokines 
TGF-β and IL-10 alone or in combination facilitated the genera-
tion of a tolerogenic DC phenotype (Figures 2–4) (48, 66). For 
instance, TGF-β dampens the antigen-presenting capabilities of 
DCs by downregulation of MHC and co-stimulatory molecules 
and upregulation of PDL-1 resulting in T  cell anergy (15, 36, 
59, 67, 68). The comprehensive tolerogenic properties of IL-10 
induced tolerogenic DCs will be discussed in detail in the next 
chapter. However, other bioderivates are also capable of inducing 
DCs with tolerogenic function (Figure  3). In the presence of 
hepatocyte growth factor, DCs express various tolerance-inducing 
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FigURe 4 | Phenotype of monocyte-derived interleukin (IL)-10 dendritic cells 
(DCs) obtained by different protocols. Immuno-activating and -inhibitory 
surface molecules as well as secreted signaling molecules and the T cell 
response are depicted. Arrows indicate up/downregulated or unchanged 
expression or secretion by human IL-10-modulated tolerogenic DCs 
compared to mature DC. IL-10 DCs are generated by addition of the 
immunosuppressive cytokine during the maturation step at the end of the 
culture, whereas DC10 are obtained by incubation with IL-10 during the 
entire culture period.
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molecules like IDO, IL-10, TGF-β and TRAIL, which may 
induce T  cell with regulatory functions (48, 69). Furthermore, 
treatment of human DCs with vitamin D3 (VitD3) triggers a 
tolerance-inducing phenotype that is characterized by enhanced 
IL-10 secretion, augmented IDO production and the expression 
of PDL-1 and Trail. Resulting DC populations are either capable 
of inducing antigen-specific T  cell apoptosis or expansion of 
Tregs (59, 60, 70–72). The immunoregulatory neuropeptide 
vasoactive intestinal peptide prevents full maturation of DCs and 
induces high IL-10 secretion (73). Furthermore, a recent study by 
Olivar et al. demonstrated tolerogenic capacities of human DCs 
that are generated in the presence of the complement factor H 
resulting in reduced expression of co-stimulatory molecules on 
DCs, enhanced IL-10 and TGF-β gene expression and induction 
of forkhead box P3 (FOXP3)+ Tregs (74).

Since a comparative study by Boks et  al. in 2012 identified 
human IL-10-modulated tolerogenic DCs (IL-10 DCs) as the 
most potent candidates for antigen-specific induction of toler-
ance in vivo (15), their generation and suppressive mechanisms 
will be highlighted in the next chapter.

MeCHANiSM OF TOLeRANCe iNDUCTiON 
BY HUMAN iL-10-MODULATeD 
TOLeROgeNiC DCs

Interleukin-10 DCs have been playing a pivotal and central role 
in the research field of tolerogenic DCs for over two decades. 
However, a variety of in vitro protocols exist for the generation of 
IL-10 DCs leading to a huge amount of data that are challenging 
to compare (Figure 4).

Interleukin-10-modulated DCs are usually generated from 
monocytes when cultured in the presence of IL-4 and GM-CSF to 
induce iDCs. The two most prominent protocols add IL-10 either 
during the whole culture (referred to as DC10s in the following) 
or at a later time point together with a maturation stimulus 
(referred to as IL-10 DCs) (13–15, 24, 75–79).

Gregori and colleagues generated DC10s using the first 
mentioned protocol and characterized them as CD14+ 
C D 1 6 +C D 1 1 c +C D 1 1 b +C D 4 0 +H L A- DR +C D 8 0 +C D 8 3 + 
CD86+CD163+ and CD1a−CD1c−CD68−CD115−MDC8 DCs. In 
contrast, mDCs are CD14− and CD16−, but express comparable 
amounts of CD80, CD83, CD86, and HLA-DR (77). It can be 
argued that the high expression of CD14 and CD16 indicate a 
macrophage-like phenotype (80). However, the lack of expres-
sion of the monocyte marker CD115 and the macrophage marker 
CD68 in combination with the constitutive expression of CD83, a 
DC-associated molecule, identified DC10s as immune cells of the 
DC lineage. Moreover, they show a DC-like morphology and are 
capable of driving naïve T cells to develop into antigen-specific 
Tr1 cells (77). DC10s also express the co-inhibitory molecules 
ILT-2, ILT-3, ILT-4, and HLA-G, and their capability to induce 
anergic Tr1 cells is ILT-4 dependent (77). Amodio et al. stated 
that the expression of HLA-G on DC10s is donor dependent and 
correlates with the expression of ILT-4 and with the frequency 
of Tr1 induction (78). These Tr1 cells are CD49b+ and LAG3+ 
and secrete high levels of IL-10, low IL-2, no IL-4, no IL-17, 

and variable amounts of IFN-γ (81–83). After LPS and IFNγ 
stimulation, mDCs and DC10s secrete comparable amounts of 
pro-inflammatory IL-6, but neither secrete the TH1-inducing  
cytokine IL-12, yet, DC10s produce slightly higher amounts of 
TNFα and considerably more IL-10 (77). The major function of 
tolerogenic DCs, the induction of Tregs, was found to be depend-
ent on IL-10 secretion (77), similar to the upregulation of HLA-G 
on CD4+ T cells through stimulation with DC10s (78).

Gregori et al. have also identified the in vivo counterpart of 
the in  vitro generated DC10s as naturally occurring DC10s in 
humans. They were sorted from peripheral blood from healthy 
volunteers as CD14−CD11c+CD83+ and analyzed for their 
poststimulation cytokine profile. In accordance with the find-
ings from monocyte-derived DCs, their IL-12 secretion was 
negligible, but they produce relevant amounts of IL-6 and TNFα. 
Most importantly, their IL-10 levels were significantly increased 
compared to iDCs and mDCs (77).
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A slightly different phenotype can be observed, when IL-10 
DCs are generated using the latter previously mentioned protocol 
in which IL-10 is added for the last 2 days of the culture during 
the maturation step (Figure 4). Here, presence of IL-10 prevents 
full DC maturation, indicated by intermediate expression of the 
co-stimulatory molecules CD80 and CD86, as well as the DC 
maturation marker CD83 (13, 75). The tolerogenic phenotype 
is further established through the increased expression of the 
co-inhibitory molecules ILT-3 and ILT-4 (13, 15). This IL-10 
triggered surface marker modulation is dependent on gluco-
corticoid-induced leucin zipper, a transmembrane molecule, 
which blocks NF-κB, MAPK, and AP-1 (84). The results for the 
expression of HLA-DR and CD14 on IL-10 DCs are contradictory. 
Our studies revealed that the whole IL-10 DC population shows 
an intermediate HLA-DR expression and that a subpopulation 
of IL-10 DCs are CD14+ (24), whereas other groups found that 
HLA-DR expression is comparable to mDCs and IL-10 DCs are 
exclusively CD14− (85). In comparison with mDCs, IL-10 DCs 
stimulate a reduced T cell activation and are capable of inducing 
an antigen-specific anergy in CD4+ or CD8+ naïve T  cells (24, 
75, 76). The induction of anergy is associated with the increased 
expression of the MAPK p38 and its effector molecules MAPK-
activated protein kinases 2 and 3 (86) as they upregulate the 
expression of the cyclin-dependent kinase inhibitor 1B (p27Kip1), 
leading to a cell cycle arrest in the G1 phase (79). The induced 
Tregs in turn have the ability to efficiently suppress syngeneic 
effector CD4+ and cytotoxic CD8+ T cells in a cell-to-cell contact-
dependent and antigen-specific manner (15, 24, 79).

IL-10 DCs were identified as the most suitable candidate for 
DC-mediated tolerance-vaccination therapies as was shown by a 
comprehensive study by Boks et al. They compared five protocols 
for ex vivo induction of human tolerogenic DCs (through VitD3, 
dexamethasone, TGF-β, rapamycin, and IL-10) with regard to 
prerequisites for clinical applications in humans such as potent 
migratory capacity, sufficient Treg induction, and the stability 
of the tolerogenic phenotype under inflammatory conditions to 
guarantee the safety of the therapy (13, 15). The protocol using 
IL-10 for tolerogenic DC generation was shown to be superior as 
compared to the other tested protocols, with respect to the stability 
of the tolerogenic phenotype and the suppressive capacity of the 
induced Tregs (15). Boks et al. also revealed that co-maturation 
was indispensable for the stability of the phenotype and for the 
migratory capability in all protocols tested (15).

However, in their study, IL-10 DCs displayed a limited migra-
tory capability due to a reduced CCR7 expression (15). This was 
confirmed by another comparative study by Adnan et al., which 
compared tolerogenic DC protocols in a similar way. However, 
they also showed that IL-10 DCs induce higher numbers of 
IL-10+CD4+ Tregs than tolerogenic DCs generated with other 
protocols [involving protein kinase C inhibitor (PKCI), VitD3, 
dexamethasone, TGF-β, rapamycin, and peroxisome proliferator-
activated receptor γ + all-trans RA] and that the Tregs induced 
by both IL-10 and PKCI-treated tolerogenic DCs exhibited a 
higher suppressive capacity compared to Tregs induced by other 
tolerogenic DC protocols (13, 15, 59, 84, 85). In accordance 
with that, among all protocols tested by Boks et al., only IL-10 
DC-induced Tregs exhibited a significantly enhanced suppressive 

function, compared to other tolerogenic DCs. Therefore, Boks 
et al. concluded that IL-10 DCs are the most suitable candidates 
for tolerogenic DC-based therapies for allergic and autoimmune 
diseases and transplantation rejections (15).

Recent investigations of our own laboratory refined this thesis 
by identifying two subpopulations of the human tolerogenic 
IL-10 DCs, distinguishable by the expression of CCR7 and CD83 
(CD83highCCR7+ and CD83lowCCR7− IL-10 DCs) (13). Both IL-10 
DC subsets were capable of inducing Tregs, but the CD83high IL-10 
DC-induced Tregs exhibited a significantly enhanced suppressive 
capacity. It is evident from the proliferation, cytokine production, 
and surface makers that Tregs induced by CD83high IL-10 DCs 
exhibit a more activated phenotype compared to Tregs induced 
by CD83low IL-10 DCs. In addition, the tolerogenic phenotype 
of the CD83high IL-10 DC population was found to be extremely 
stable in the presence of IL-1β, IL-6, and TNFα, mimicking an 
inflammatory environment (13). In contrast to mDCs, IL-10 DCs 
and predominantly the CD83high subpopulation express increased 
amounts of membrane-associated and soluble CD25, the latter 
of which was found to play a role in the suppression of T  cell 
proliferation (13). CD25 is known to exert seemingly contradict-
ing functions: the membrane-bound molecule may be involved 
in the stimulation of T cells, whereas the soluble form attenuates 
T cell proliferation by trapping IL-2 (87, 88).

However, most importantly, dependent on their high expres-
sion of CCR7, the CD83high IL-10 DCs displayed a pronounced 
migratory capability that is superior to that of CD83low or  
unsorted IL-10 DCs (13, 81, 89). Therefore, in conclusion, the 
tolerogenic characteristics of the most promising population of 
tolerogenic DCs, IL-10 DCs can be further improved by sorting 
for CD83high IL-10 DCs.

NANOPARTiCLe-BASeD IN VIVO 
iNDUCTiON OF TOLeROgeNiC DCs

The above discussed protocols greatly expanded the knowledge  
of tolerogenic DC biology and enabled scientists to generate 
tolerogenic DCs that are stable under inflammatory condi-
tions and may be used for antigen-specific clinical application. 
However, for this purpose, DC precursors need to be isolated 
from the patient’s blood, modulated ex vivo and re-injected into 
the patient, which is a time-consuming and expensive process. 
In addition, recent data suggest that monocyte-derived DCs, 
which are used in such immunotherapeutic approaches may 
rather be allocated to the family of monocytes, which have less 
T cell stimulatory capacities than DCs in vivo (90, 91). Therefore, 
nanoparticle-based drug delivery systems that enable directed 
cell-type specific targeting in vivo in combination with delivery 
of multiple drugs in one formulation have emerged as another 
promising approach in DC-based immunotherapy.

For cell type-specific targeting, nanoparticles can be chemi-
cally conjugated to antibodies, peptides, carbohydrates, or 
cytokines that address receptors that are preferentially expressed 
on DCs (92–95). For instance, targeting of human DCs in vivo 
with subsequent antigen presentation and robust humoral and 
cellular responses can be achieved by antibodies against the 
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the patients to affect the inflammatory immune response of autoimmune or 
allergic diseases.
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c-type lectin receptor DEC205 as shown in a recent phase 1 clini-
cal trial (96). In addition, other possible receptors that have been 
used to specifically target DCs include DC-SIGN, the mannose 
receptor, Fc receptors, CD40, or CD11c (93, 97, 98). Even though 
most approaches focus on induction of immunity for example 
in the context of tumor immunotherapy, cell-type-specific nano-
particle delivery is also a promising strategy to prevent excessive 
immune responses and induce DCs with tolerogenic capacity. 
For instance, polymeric synthetic nanoparticles that target DCs 
have been used to induce OVA-specific tolerance by delivery of 
rapamycin (99). In a similar approach, Zhang et al. were able to 
prevent antibody formation against substituted factor VIII (100). 
Intriguingly, Clemente-Casares et al. generated nanoparticles that 
target disease relevant peptides toward MHC II molecules, which 
subsequently trigger the expansion of antigen-specific Tr1 cells 
and regulatory B cells in different autoimmune disease models 
such as type 1-diabetes, inflammatory bowel disease, rheumatoid 
arthritis, and multiple sclerosis resulting in alleviation of disease 
symptoms (101).

USe OF TOLeROgeNiC DCs iN CLiNiCAL 
APPLiCATiONS

Over the last decades, numerous trails with DC-based immu-
notherapies have been conducted using activated, mDCs to 
stimulate antitumor immune responses, and some have shown 
objective clinical benefits in patients with different types of can-
cer, including prostate cancer or malignant melanoma (102–104). 
Currently, several immunotherapeutic approaches are being 
studied using tolerogenic human DCs for treatment of inflam-
matory, autoimmune, and allergic diseases as well as transplant 
rejections (58, 105) (Figure 5).

In contrast to standard immunosuppressive therapies, which 
often do not specifically target the cause of disease and are accom-
panied by severe side effects, ex vivo generated tolerogenic DCs 
may be an attractive therapeutic approach to induce, enhance, or 
restore (antigen-specific) tolerance. After loading with exogenous 
or endogenous antigens, one major advantage of tolerogenic DC 
vaccination is their capability to act in an antigen-specific manner.

Evidence from several rodent models clearly showed the 
efficacy of tolerogenic DCs in the fields of inflammatory, auto-
immune, and allergic disorders and transplantation medicine  
(58, 105). To translate the results into the human system, several 
ex vivo studies have been performed as proof of principle experi-
ments demonstrating that human tolerogenic DCs efficiently 
inhibit disease-related immune responses, e.g., by induction of 
Tregs or T cell anergy and apoptosis. With regard to allergic dis-
eases, ex vivo models have shown that human tolerogenic IL-10 
DCs from atopic donors suppressed TH2 immune responses 
by induction of FOXP3+ Tregs and dexamethasone-induced 
tolerogenic DCs activated IL-10 producing Tregs, specific 
for the latex Hev b 5 antigen, in rubber latex allergic patients  
(106, 107). Since tolerogenic DCs are also a promising tool to 
restore tolerance to specific tissue-derived autoantigens, several 
ex vivo studies have been conducted with tolerogenic DCs 
obtained from patients suffering from autoimmune disorders 
(58). Tolerogenic VitD3-treated DCs derived from precursor 

cells of multiple sclerosis patients and loaded with myelin 
peptides induced a stable and antigen-specific hyporesponsive-
ness of autologous T  cells (58, 108), which was shown to be 
TGF-β-dependent (109). Studies in type 1 diabetes patients 
revealed that tolerogenic DCs, generated either in the presence 
of vitamin D or of IL-10/TGF-β, and loaded with the pancreatic 
islet antigen glutamic acid decarboxylase 65 rendered antigen-
specific T cells hyporesponsive toward a second challenge with 
fully competent, antigen-loaded DCs (66, 110). Furthermore, 
monocyte-derived DCs were obtained from systemic lupus 
erythematosus (SLE) patients, treated with dexamethasone/
rosiglitazone and loaded with self-antigens. Those tolerogenic 
DCs can modulate CD4+ T cell activation and are a suitable tool 
for antigen-specific immunotherapy in SLE (111).

Although safety and feasibility of DC-based studies in general 
have already been shown, there are still a lot of open questions 
regarding the DCs manufacturing protocols, the route of applica-
tion, the numbers of DCs, and the frequency and time points 
of injections. In addition, the characteristics of tolerogenic DCs, 
including the phenotype, migratory capacity, stability under 
inflammatory conditions, and the mode of action (induction/
activation of regulatory T and B cells, T cell anergy and apoptosis 
induction, interaction with other immune cells) have to be inves-
tigated and different protocols have to be compared with regard 
to these properties. Aiming to joint efforts in translating tolero-
genic DCs into the clinic by harmonizing protocols and defining 
functional quality parameters, international co-operations in 
science, and technology network have been initiated (112, 113).

One major concern in the context of tolerogenic DC-based 
immunotherapies is the stability of the tolerogenic phenotype 
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under inflammatory conditions as DCs express several pattern-
recognition receptors and receptors for growth factors and 
cytokines, which can be stimulated in an inflammatory envi-
ronment. Therefore, clinical grade tolerogenic DCs must be 
intensively tested for a robust, stable phenotype to exclude a loss 
of the regulatory function and a switch to an immunostimulatory 
phenotype of the differentiated DCs, leading to an (antigen-
specific) immune activation rather than to the intended immu-
nosuppressive reaction. Comparative studies revealed that most 
of the tolerogenic ex vivo generated DC populations (by use of, 
e.g., IL-10, TGF-β, VitD3, rapamycin, dexamethasone, PKCI as 
described above), exhibit the aforementioned stable phenotype 
(15, 59). However, both reports demonstrated that tolerogenic 
IL-10 DCs showed the most powerful tolerogenic properties 
in terms of Treg induction with strong suppressive capacities. 
Another important feature is the CCR7-directed migratory 
capacity of tolerogenic DCs toward secondary lymphatic organs, 
resulting in the induction and generation of T  cell-mediated 
immunosuppression. A recent study (as mentioned above) 
revealed that IL-10 DCs are consisting of two different popula-
tions, CD83highCCR7+ IL-10 DC and CD83lowCCR7− IL-10 DC 
subpopulations, both exhibiting tolerogenic properties, resulting 
in Treg induction (13). However, sorting of IL-10 DCs into these 
two subsets ascertained a significantly improved migratory 
capacity of the CD83highCCR7+ IL-10 DC subpopulation com-
pared to CD83lowCCR7− IL-10 DCs, and to the non-separated 
IL-10 DC population as well. The stable phenotype, efficient 
CCR7-directed migration, and, in particular, pronounced tolero-
genic capacity to induce Tregs with high suppressive activity of 
IL-10 DCs is a prerequisite for clinical grade DCs considered for 
vaccinations studies in humans.

Regarding the route of DC administration, different applica-
tions have been used in humans. Tolerogenic DCs have been 
injected intraperitoneally in patients suffering from Crohn’s 
disease (114), intradermally in diabetes, and rheumatoid 
arthritis patients (115, 116), subcutaneously in rheumatoid 
arthritis patients (117) and via arthroscopic injections in joints 
of patients with rheumatoid or inflammatory arthritis (118). In 
all studies, the route of administration has been well tolerated 
without any signs of toxicity. Likewise reports of intravenous 
injections of tolerogenic DCs into nonhuman primates revealed 
their safety (119).

The first attempt to apply tolerogenic DCs to humans was 
undertaken by Ralf Steinman’s group in 2001 (120, 121). They 
showed that subcutaneous applications of human immature 
tolerogenic DCs (2 × 106), generated in the presence of IL-4 and 
GM-CSF and pulsed with antigens, into healthy subjects was well 
tolerated and suppressed antigen-specific CD8+ T cell responses 
up to 6 months. Thus, they pioneered to demonstrate the tolero-
genic potential of DCs in humans in vivo.

Several protocols for tolerogenic DCs have been tested in 
phase I trials with highly encouraging results from a safety point 
of view and in terms of adverse effects such as allergic reactions, 
exacerbations of autoimmunity, and pro-inflammatory immunity 
(114–118) (Table 1).

The first clinical trial with tolerogenic DCs was carried out 
in 10 patients suffering from diabetes type 1 in 2011. They 

were injected intradermally four times at 2-week intervals with 
1 × 107 autologous DCs which have been either un-manipulated 
(controls) or have been treated with antisense oligonucleotides 
targeting CD40, CD80, and CD86 to silence these surface 
molecules. DC treatment was well tolerated without any adverse 
effects and did not induce autoantibody production (115). 
Analysis of the immune response revealed no alterations with 
exception of increased IL-4/IL-10 levels and elevated frequencies 
of a regulatory B220+CD11c+ B  cell population. Importantly, 
the patients did not lose their ability to mount T cell responses,  
e.g., to pathogens, demonstrating the absence of a general 
immune suppression.

Another clinical trial was conducted to analyze the impact of 
tolerogenic DCs in nine patients suffering from Crohn’s disease 
(114). Here, under an escalating protocol tolerogenic, DCs 
(treated with dexamethasone and VitD3) were intraperitonally 
injected in once or biweekly intervals, respectively. The DC vac-
cination was well tolerated and did not induce adverse effects 
from week 1 to 12 and in a follow-up up to 12 months.

In the field of rheumatoid arthritis, three trials have been 
published to date. In one study, 12 patients were subcutane-
ously injected with a low (0.5  ×  107) or high dose (1.5  ×  107) 
of autologous DCs for five times at 2- to 4-week intervals 
(117) (Table 1). The tolerogenic DCs were pulsed with protein 
arginine deiminase 4, heterogeneous nuclear ribonucleoprotein 
A2/B1 (RA33), citrullinated filaggrin, and vimentin antigens 
(=CreaVax-RA). The authors observed only a few patients with 
grade 1 or 2 adverse effects, but a combination of a significant 
decrease in autoantibody levels and a good-to-moderate EULAR 
response at 14 days after initiation of the trial, which was more 
pronounced in the DC high-dose group. Bell et al. reported the 
results of another dose escalation trial (AUTODEKRA trial) with 
rheumatoid arthritis patients who were intra-articularly treated 
with tolerogenic DCs (1 × 106, 3 × 106, or 10 × 106), generated 
in the presence of dexamethasone and VitD3 and loaded with 
autologous synovial fluid as source of autoantigens (118). No 
target knee flares and other severe side effects were observed. The 
authors did not find any trends in disease activity scores (DASs) 
or in consistent alteration of immune parameters in the periph-
eral blood; however, patients with the highest dose exhibited an 
improvement of the clinical symptoms.

In the study of Benham et  al., tolerogenic DCs were gener-
ated in the presence of an NF-κB inhibitor, resulting in CD40 
deficient but highly CD86 expressing tolerogenic DCs, which 
were administered to rheumatoid arthritis patients (116). For an 
antigen-specific immune response, DCs were pulsed with four 
different citrullinated peptide antigens (Rheumavax). 18 patients 
were injected intradermally with a single dose of the tolerogenic 
DCs (either 1 × 106 or 5 × 106). Evaluation of the patients after 1, 
3, and 6 months revealed that the vaccination was well tolerated 
and no side effects in form of (auto-) inflammatory reactions 
have been observed. The authors found a reduction in effector 
T  cells and several inflammatory mediators and an increased 
regulatory to effector T cell ratio in the patients. In addition, the 
DAS was decreased within 1 month in vaccinated patients with 
active rheumatoid arthritis, indicating the biological and clinical 
activity of this therapy.
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TABLe 1 | Use of tolerogenic dendritic cells in clinical applicatsions.

Study indication Patients Protocol for 
tolDC

Antigen Treatment 
regime

Route of 
application

Summary Reference

Phase 1 
randomized 
controlled

Type l 
diabetes

10 (5/5) insulin-
requiring type 1 
diabetic patients

 1. Un-manipulated
 2. Antisense ODN 

targeting CD40, 
CD80, CD86

No antigen 1 × 106 DC four 
times, every 
2 weeks

Intradermal No adverse effects, 
increase of B220+ 
CD11c−B cells, 
no change in 
other immune cell 
populations/biomarkers

(115)

Phase I Rheumatoid 
arthritis

12 CeaVax-retinoic 
acid (RA)

Protein arginine 
deiminase 4, RA33, 
citrullinated fillagrin, 
vimetin antigens

0.5 × 107 or 
1.5 × 107, five 
times at 2- to 
4-week intervals

Subcutaneous Grade 1 or 2 
adverse effects, 
significant decrease 
in antigen-specific 
autoantibodies (55.6%) 
and IFN-γ-secreting t 
cells (91.7%), EULAR 
response of 83.3% of 
patients injected with 
high dose

(117)

Phase I 
randomized 
controlled

Rheumatoid 
arthritis

34 (18 treated/16 
left untreated) 
HLA-DR risk 
genotype-positive 
RA patients

Bay 11-7082 
(NF-κB inhibitor)

Citrullinated 
peptides: collagen 
type II fibrinogen α 
fibrinogen β vimentin

0.5–1 × 106 or 
2.0–4.5 × 106 
one injection

Intradermal Grade 1 adverse 
effects, increased 
ratio of regulatory 
to effector T cells, 
reduction in serum 
IL-15, IL-29, CX3CL1, 
and CXCL11; reduced 
antigen-specific T cell 
responses (p < 0.05)

(116)

Phase I 
escalating

Crohn’s 
disease

12 (2 per cohort) Dexamethasone 
and vitamin A

No antigen 2 × 106, 5 × 106 
or 10 × 106 
once or three 
times (biweekly) 
in escalating 
doses

Intraperitoneal No adverse effects, 
decrease in Crohn’s 
Disease Activity Index 
(CDAI) (p = 0.3) and 
Crohn’s Disease 
Endoscopic Index 
of Severity (p = 0.4), 
lesions improved 
markedly in three 
patients (33%)

(114)

Phase I 
escalating 
randomized 
controlled

Rheumatoid 
arthritis

12 [3 per 
treatment group 
(=9); saline 
control (=3)]

Dexamethasone 
and vitamin D3

Autologous synovial 
fluid

1 × 106, 3 × 106, 
and 10 × 106

Intraarticular Stabilized symptoms in 
two patients receiving 
10 × 106 to lDC, 
but no decrease in 
disease activity score 
28 detectable; no 
immunomodulatory 
effects

(118)
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Further phase I/II studies are under way in the fields of aller-
gic diseases (allergic asthma), autoimmunity (Crohn’s disease, 
diabetes type 1, rheumatoid arthritis, and multiple sclerosis), 
and transplantation medicine (kidney transplantation) (https://
clinicaltrials.gov).

A multitude of protocols has been developed to generate 
human tolerogenic DCs that can be tailored to induce specific 
tolerance. These innovative and attractive tools represent a prom-
ising therapeutic approach to treat inflammatory, autoimmune 
and allergic diseases, and transplant rejections. However, there is 
a high need to define optimal vaccination protocols and to iden-
tify the underlying immune mechanism of tolerance induction 
by human DCs in more detail. In this context, high-throughput 
approaches, e.g., in form of genomics and proteomics, will 

be of great help to analyze critical pathways contributing to 
programming and function of human tolerogenic DCs (122). 
Furthermore, next-generation tolerogenic DC vaccines should 
be integrated into future combinatorial immunotherapy regimes, 
including biologicals, nanoparticles, and in  vivo targeting of  
DCs. So, it was demonstrated that combination of tolerogenic 
DCs with CTLA-4Ig strengthen their tolerogenic effect (123).

CONCLUSiON

Dendritic cells are the most potent professional antigen-
presenting cells of the immune system and bridge innate and 
adaptive immunity by interacting with a large number of differ-
ent cell types, thereby initiating and regulating adaptive immune 
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responses. Hence, DCs are promising targets for immunotherapy 
either for initiating immunity as for example desired for the 
clearance of pathogens or antitumor immunotherapy or for the 
objective to alleviate unwanted and excessive immune responses 
in allergic and autoimmune disorders. Multiple ex vivo protocols 
have been established to induce stable tolerogenic human DCs 
exhibiting numerous different mechanisms to dampen immune 
responses. Those DCs may be used for antigen-specific induction 
of tolerance in vivo, which would be exceptionally beneficial for 
the therapy of allergic and autoimmune disease or in transplanta-
tion medicine. Progress in the fields of improved immunization 
protocols, genome editing, expression of recombinant proteins, 
and nano-dimensional drug delivery may contribute to over-
come obstacles and to open up new unexpected approaches to  

improve the promising therapeutic option of DC vaccination for 
the future.
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