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ABSTRACT: The current COVID-19 pandemic caused by a novel coronavirus
SARS-CoV-2 urgently calls for a working therapeutic. Here, we report a
computation-based workflow for efficiently selecting a subset of FDA-approved
drugs that can potentially bind to the SARS-CoV-2 main protease MPRO. The
workflow started with docking (using Autodock Vina) each of 1615 FDA-approved
drugs to the MPRO active site. This step selected 62 candidates with docking
energies lower than −8.5 kcal/mol. Then, the 62 docked protein−drug complexes
were subjected to 100 ns of molecular dynamics (MD) simulations in a molecular
mechanics (MM) force field (CHARMM36). This step reduced the candidate pool
to 26, based on the root-mean-square-deviations (RMSDs) of the drug molecules
in the trajectories. Finally, we modeled the 26 drug molecules by a pseudoquantum
mechanical (ANI) force field and ran 5 ns hybrid ANI/MM MD simulations of the
26 protein−drug complexes. ANI was trained by neural network models on
quantum mechanical density functional theory (wB97X/6-31G(d)) data points. An
RMSD cutoff winnowed down the pool to 12, and free energy analysis (MM/PBSA) produced the final selection of 9 drugs:
dihydroergotamine, midostaurin, ziprasidone, etoposide, apixaban, fluorescein, tadalafil, rolapitant, and palbociclib. Of these, three
are found to be active in literature reports of experimental studies. To provide physical insight into their mechanism of action, the
interactions of the drug molecules with the protein are presented as 2D-interaction maps. These findings and mappings of drug−
protein interactions may be potentially used to guide rational drug discovery against COVID-19.
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■ INTRODUCTION

The COVID-19 pandemic, caused by the novel coronavirus
SARS-CoV-2 with crown-like spikes on the surface (Figure 1),
is wreaking havoc on the whole world.1 Since the outbreak of
COVID-19 in late 2019, more than 36 million cases have been
reported with over 1 million fatalities (source: Worldometer,
Oct 8, 2020). Coronaviruses can infect mammals and can then
easily mutate to enable transfer from animals to humans.2

SARS-CoV-2 spreads mainly from human to human and is
rapidly becoming the world’s leading cause of death. Currently,
no targeted vaccines or treatments are as yet available for
SARS-CoV-2, and there is an urgent need to develop them.
The aim of the present study is to use computational
approaches to explore protein-drug interactions that can be
useful in the fight against COVID-19.
The main protease, or MPRO, of SARS-CoV-2 was identified

shortly after the outbreak and its crystal structure was solved
(Protein Data Bank (PDB) entry: 6LU7).3 There are now
significant efforts aimed at developing drugs that can inhibit
MPRO. However, no inhibitors against MPRO or other targets
are available to treat COVID-19, as drug discovery is an
expansive and time-consuming process.4 When a new target

protein is identified, a potential shortcut is to test, or
repurpose, drugs that are FDA-approved. The concept of
drug repurposing has proven to be successful in the past and is
the most convenient method for screening drugs for novel
diseases. Computations based on drug repurposing have
identified the HIV antivirals Lopinavir and Ritonavir as
potentially effective against COVID-19.5,6 The latter group
and others have conducted drug repurposing computational
analyses specifically targeting MPRO.6−9

With the current advances in computational techniques in
combination with physical chemistry methods that utilize
machine learning algorithms, we are witnessing numerous
impressive predictions in the field of drug discovery. These
computations are used for screening and prediction of binding
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affinities and to generate fingerprint interactions with target
proteins.10 Protein-drug docking and molecular dynamics
(MD) simulations can reveal interaction fingerprints that
potentially hold key to design other potent drugs.11 The
accuracy of MD simulations relies on the parametrization of
the force fields.12 Classical molecular mechanics (MM) force
fields, such as CHARMM,13 AMBER,14 and OPLS,15 can
probably model 99% of the properties of biomolecular systems
by solving Newton’s equation of motion. However, the crucial
1% involves quantum chemistry (i.e., electronic and nuclear
interactions) and is beyond the realm of classical force fields.16

Quantum chemistry methods, in particular density functional
theory (DFT) and highly accurate coupled cluster (CCSD-
(T)/CBS), can provide accurate solutions to Schrödinger’s
equation, but are too expensive both for large systems and for
large-scale uses on even relatively small systems. To bridge the
gap, machine learning methods, especially those based on
neural networks, with augmentations in data, have become
powerful to improve scalability without sacrificing accu-
racy.17,18 Recently, the Roitberg group developed a suite of
ANI force fields, including ANI-2x and ANI-1ccx, that uses
neural network-based training.19,20 ANI-2x was trained on
millions of small molecules, covering C−H−N−O−S−F−Cl
atoms, against their DFT energies, whereas ANI-1ccx was
trained on 500 thousand CCSD(T)/CBS data points but
limited to C−H−N−O atoms. ANI-2x has similar accuracy to
DFT but is 106 times faster, a speed that matches classical
force fields. While DFT is limited approximately to 500 atoms
and CCSD(T)/CBS to 10 atoms, ANI can be used on systems
with ∼10 000 atoms.19,20 Moreover, with a speed comparable
to classical force fields, ANI is suitable for large-scale uses, such
as in drug screening or refinement.
Here, we report computational drug repurposing against the

MPRO protein using a workflow that encompasses several levels
of sophistication, from docking all the way to MD simulations
with the ANI-2x force field. Starting with 1615 FDA-approved

drugs, docking selected the 62 most promising candidates. MD
simulations with the CHARMM36 MM force field trimmed
this list down to 26. Hybrid ANI/MM MD simulations
produced a final list of 9 drugs, of which 3 are found to be
active according to literature reports. Free energy analysis
(based on MM/PBSA) and interaction mapping provided
additional insight into the mechanism of target inhibition and
guidance for rational drug discovery against COVID-19.

■ COMPUTATIONAL METHODOLOGIES

Molecular Docking. The crystal structure of MPRO (PDB
entry 6LU7 chain A)3 was downloaded from the RCSB Protein
Data Bank. To prepare MPRO for docking, we used AutoDock
Tools (ADT)21 to assign charges and atom/bond types. For
drug repurposing, we chose a database of 1615 drugs that are
FDA-approved and readily available in the market. We
obtained the dock-ready drugs from ZINC1522 and used
open babel codes23 to perform file format conversion from
SDF (structure data file in ZINC15) to PDBQT (used by
Autodock Vina24). Screening against MPRO was performed
using Autodock Vina, based on a 28 × 28 × 28 Å3 grid box
centered at the active site, that is, the pocket where the N3
inhibitor was bound in the crystal structure. Docking of each
drug produced a score for filtering, as well as a pose for further
validation by MD simulations.

Classical Molecular Dynamics Simulations. All MD
simulations were conducted using NAMD.25 We used the
CHARMM-GUI Web server26 to generate the CHARMM36m
parameters and topology files for the protein and the
SwissParam server27 to generate topology and parameters for
the drugs. Each protein-drug complex (produced by Autodock
Vina) was solvated in a triclinic box using the TIP3P water
model.28 0.15 M ions (Na+ and Cl−) were added to provide
charge neutralization and electrostatic screening. The systems
were subjected to 5000 steps of steepest descent energy
minimization and equilibration under constant NVT (1 ns)
and constant NPT (2 ns). During the equilibration, position
restraints were applied to both protein and drug molecules.
The temperature (303 K) and pressure (1 atm) were
controlled by the Langevin and Langevin piston methods.29

The particle mesh Ewald method was used to treat long-range
electrostatic interactions.30 A 100 ns production run was then
carried out for each equilibrated system at constant NPT
without restraints. Snapshots were evenly sampled from 20 to
100 ns of the production run to (1) calculate average lig-
RMSD, that is, average (over 8000 snapshots) of the root-
mean-square-deviations of the drug, after aligning the protein
secondary structural elements to the snapshot at 20 ns, and (2)
carry out MM/PBSA analysis (over 800 snapshots; see below).

Hybrid ANI/MM Molecular Dynamics Simulations. We
combined the accurate ANI-2x force field for drugs with the
CHARMM36m/TIP3P force fields for proteins and solvent to
run hybrid ANI/MM MD simulations31 of the MPRO-drug
complexes (Figure 2), as implemented in the NAMD
package.32 In these hybrid ANI/MM simulations, the total
potential energy (U) of the system was defined as the sum of
the energies of the ANI region (i.e., the drug molecule) and
the MM region (protein and solvent) and the interaction
energy between the drug and the MM region:31

U U U U(r) (r ) (r ) (r , r )ANI ANI MM MM ANI/MM ANI MM= + +
(1)

Figure 1. Replication cycle of SARS-CoV-2. The virus invades a
human cell by attaching its spike protein to a cell surface receptor (a).
Upon entering the cell, the virus breaks up to release its genetic
material (b). The viral RNA hijacks the ribosome of the host cell to
produce viral proteins (c). Viral proteins and RNA are assembled into
new viral particles, which are eventually released from the host cell to
infect other cells (d). The viral main protease (MPRO) is essential for
cleaving the viral polypeptide chain into functional proteins needed to
assemble new viruses.
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The UANI/MM (rANI, rMM) term comprised MM nonbonded
interactions between the MM region and the drug, that is,
Coulombic and Lennard-Jones interactions between the ANI
atoms and MM atoms:31
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Starting from the last snapshot of the classical MD
simulations, we ran 5 ns of ANI/MM MD simulations for
each selected protein-drug complex. The NAMD input script
for the ANI/MM simulations is listed in Supporting
Information. From the 5 ns simulations, we sampled 2500
snapshots to calculate the average lig-RMSD (with the final
snapshot of the classical MD simulations as the reference).
MM/PBSA Free-Energy Calculations. To compute the

MM/PBSA free energy of protein-drug binding, we used CaFe
(open source code for calculation of free energy) developed by
Liu et al.33 MM/PBSA is an end point method for estimating
binding free energies, by combining the molecular mechanics
term for the gas-phase energy and Poisson−Boltzmann and
surface area terms for polar and nonpolar solvation energies,
respectively. Specifically, the MM term ΔUANI/MM was similar

to UANI/MM (rANI, rMM) in eq 2, but the interaction was limited
to between drug and protein atoms. The PB term, Gsol

polarΔ , was
obtained by the APBS program34 (interfaced to CaFe), where
the boundary conditions were set to Debye−Hückel values and
charges were mapped to grids using cubic B spline. The SA
term, Gsol

nonpolarΔ , was calculated with the surface tension set to
0.00542 kcal/mol/Å2 and an offset of 0.92 kcal/mol. Finally,
the binding free energy was summed and averaged over saved
snapshots:

G H T S

U G G
bind

ANI/MM sol
polar

sol
nonpolar

Δ = Δ − Δ

≈ ⟨Δ + Δ + Δ ⟩ (3)

The MM/PBSA calculations were done on simulations of
the complex only. Because of inaccuracy in conformational
entropy calculations, we did not include such entropic
contributions. Neglect of entropy tends to make larger ligands
overly favorable. The same energy function was used whether
the snapshots were from the classical MD simulations or from
hybrid ANI/MM simulations. For the latter, we sampled 500
snapshots from the 5 ns trajectories.

■ RESULTS
Our computational drug repurposing workflow against MPRO,
the main protease of SARS-CoV-2, started with docking 1615
FDA-approved drugs (downloaded in dock-ready form from
ZINC15) to the active site of the MPRO crystal structure, using
AutoDock Vina. Docking for each drug produced a score,
representing the binding energy, and a pose for the protein−
drug complex. After ranking the docking scores, we selected 62
candidates with scores equal to or less than −8.5 kcal/mol for
further evaluations.
To assess the reliability of the docking step, we exhaustively

searched the literature for experimental information on the
inhibitory activities of the 62 candidates. We found 10 of the
62 candidates with reported IC50 or KD data against MPRO and
divided the 10 into three categories according to efficacy:
active (A) with IC50 < 10 μM or KD < 100 μM; moderately
active (MA) with 10 μM < IC50 < 20 μM or 100 μM < KD <
200 μM; and inactive (I) with IC50 > 20 μM or KD > 200
μM.35,36 Among the docking-selected candidates, 3, 3, and 4
are in the A, MA, I categories, respectively. The A-category
drugs are atovaquone (IC50 = 1.5 μM),37 midostaurin (KD =
43.5 μM),35 and tadalafil (KD = 52.2 μM).35 The MA-category
drugs are dihydroergotamine (KD = 107.6),35 simeprevir (IC50
= 13.74 μM),36 and mefloquine (IC50 = 14.1 μM).38 The I-
category drugs are pimozide (IC50 = 42 μM),39 itraconazole
(IC50 = 111 μM),39 amphotericin B (reported as “did not
inhibit SARS-CoV-2 infection”),40 and azelastine (IC50 = 20−
100 μM).41

As negative control, we took a random sample of 62 drugs
that were filtered by the docking step (i.e., with score >−8.5
kcal/mol; Table S1) and searched for experimental informa-
tion on them. Only two of these drugs were found in
experimental studies. Elbasvir “did not inhibit SARS-CoV-2
infection”,40 which suggests that it is inactive against MPRO. On
the other hand, quinidine showed some activity in a SARS-
CoV-2 replication inhibition assay,42 but the possible target
proteins were unknown. Taken together, we conclude that the
docking step is successful in selecting candidates that are likely
to be effective in inhibiting MPRO, albeit with a tendency to
also predict false positives.

Figure 2. Structure of MPRO and the system for ANI/MM MD
simulations. The system consists of a drug (red surface) bound to
MPRO (cartoon representation), solvated with TIP3P water molecules
and Na+ and Cl− ions (green and brown mesh bubbles) in a box
shown with line representation. For the hybrid ANI/MM MD
simulations, the protein and ions are modeled by the CHARMM force
field, water is modeled as TIP3P, and ligand molecule is modeled by
the ANI-2x force field.
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To reduce the pool of drug candidates and hopefully filter
out the false positives from the docking step, we turned to MD
simulations with a classical force field (CHARMM36m),
starting with the docking-generated pose for each drug. We
were able to obtain parameters for 58 of the 62 drug
candidates from the SwissParam server.27 For each of the 58
protein-drug complexes, we carried out 100 ns classical MD
simulations. From the last 80 ns of the simulations, we
calculated the average lig-RMSD and MM/PBSA binding free
energies for each of the 58 drug candidates (Figure 3). We
then used lig-RMSD as a filter: drug with lig-RMSD > 4 Å,
indicating unstable binding, were filtered, while drugs with lig-
RMSD < 4 Å, of which there were 26, were selected for further
evaluation in the next step. Comparing the 26 selected
candidates against the 10 drugs with experimental information
for MPRO binding, one (pimozide) of the 4 drugs in the I
category was correctly filtered, but we also lost one
(atovaquone) in the A category and one (simeprevir) in the
MA category. So the retained drugs in the A, MA, and IA
categories were 2, 2, and 3, respectively. The docking scores,
lig-RMSDs, and 2D structures of the selected 26 drugs are
shown in Table S2.
To further winnow down the list of candidate drugs and

potentially refine the protein-drug poses, we ran 5 ns hybrid
ANI/MM MD simulations. Filtering first by the average lig-
RMSD, at a 5 Å cutoff, selected 12 drugs (Figure 4). All the
three drugs in the I category were now correctly removed,
along with one in the MA category. So now two active drugs
and one moderately active drug, but no inactive drugs, were in
the selection. We also added a second filter, by MM/PBSA
binding free energy. Three of the 12 drugs with MM/PBSA
binding free energy >0 kcal/mol were further removed. The
final set of 9 drugs still contain the experimentally validated
two active ones (midostaurin and tadalafil) and one
moderately active one (dihydroergotamine). Moreover, two
of the active drugs, dihydroergotamine and midostaurin, have
the lowest MM/PBSA binding free energies, −17.9 and −16.2
kcal/mol, respectively, among the final set of 9 drugs. The 3D

structures of dihydroergotamine and midostaurin bound to
MPRO are shown in Figure 5.
The MM/PBSA binding free energies and their decom-

positions for the 26 candidates evaluated by ANI/MM MD
simulations are listed in Table S3. We also compared these
results with the counterparts calculated from the classical MD
simulations (Figure 3). For all the 9 drugs in the final selection,
the MM/PBSA binding free energies improved on going from
the classical MD simulations to ANI/MM MD simulations,
with an average decrease of −3.0 kcal/mol (Table S4). In
comparison, among the 17 filtered candidates, 9 had increases
in MM/PBSA binding free energies on going from the classical
MD simulations to ANI/MM MD simulations. So the ANI/
MM MD simulations clearly improved both the reliabilities of
the drug selection and the interactions of the selected drugs

Figure 3. Average lig-RMSDs and MM/PBSA binding free energies for 58 drugs in classical MD simulations. The blue bars represent drugs with an
average lig-RMSD below 4 Å and green bars represent drugs with an average lig-RMSD above 4 Å. The orange bars represent average MMPBSA
binding free energies (in kcal/mol) with standard deviations. The drugs are ordered according to docking scores. Not included are 4 drugs with no
available force-field parameters.

Figure 4. Average lig-RMSD and MM/PBSA binding free energies in
ANI/MM MD simulations. The blue bars represent selected drugs
with average lig-RMSD below 5 Å and green bars represent filtered
drugs with lig-RMSD above 5 Å. The orange bars represent average
MM/PBSA binding free energies with standard deviations. The drugs
are ordered according to average lig-RMSD.
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with the target proteins. This is especially notable since the
MM/PBSA energy function was the same and it was the
refined protein-drug configurations that were responsible for
the enhanced protein−drug binding stability in the ANI/MM
MD simulations.
To gain further insight into the enhanced protein−drug

interactions by ANI, we compared the last snapshots from the
classical and ANI/MM MD simulations of the final 9 drugs.
The results are presented as 2D interaction maps in Figure 6.
ANI/MM produced additional interactions (hydrogen bond-
ing and nonbonded interactions) not sampled in classical MD
simulations. For example, dihydroergotamine formed addi-
tional hydrogen bonds, whereas midostaurin formed additional

nonbonded interactions in the ANI/MM snapshots. Thus,
ANI was indeed able to refine protein−drug poses.

■ DISCUSSION AND CONCLUSION

We have presented an investigation on the development of
potential inhibitors against the main protease of SARS-CoV-2
using a computational drug repurposing approach. The
scientific community is devoting a tremendous amount of
effort to characterizing potential drugs to inhibit this virus, yet
much more information and effort are required before a unique
treatment can be approved.43 Systematic studies on the
interactions of viral proteins with FDA-approved drugs are
crucial for understanding the binding behaviors of these
proteins and can aid in accelerating the development of
biochemical assays.44 MD simulations with classical force fields
can describe many important drug−protein interactions, but
they tend to miss crucial details at the electronic and nuclear
levels.16 These missed details can be recovered when classical
force fields are combined with quantum calculations such as
DFT and CCSD(T)/CBS that can provide the most accurate
descriptions of electronic and nuclear effects for small drug
molecules. In this work, a neural network-trained force field
was used to study interactions of repurposed drug molecules
with the MPRO protein. The workflow developed in this study
(Figure 7), the interaction maps, and the structures of selected
protein-drug complexes may be useful for designing novel
drugs that can be used against COVID-19.
Our workflow encompasses computations at several levels of

sophistication. The starting point is a database of 1615 FDA-
approved drugs. Using molecular docking, the number of
candidate drugs was reduced to 62 with the best docking

Figure 5. 3D structures of dihydroergotamine and midostaurin in
complex with MPRO. The last snapshots of these complexes in ANI/
MM MD simulations are shown: (a) dihydroergotamine and (b)
midostaurin.

Figure 6. 2D interaction maps of the final selection of 9 drugs with MPRO. The last snapshots of classical and ANI/MM MD trajectories are used to
generate the 2D interaction maps. Colored drops represent different properties of interacting residues of the protein. 1, dihydroergotamine; 2,
midostaurin; 3, ziprasidone; 4, etoposide; 5, apixaban; 6, fluorescein; 7, tadalafil; 8, rolapitant; 9, palbociclib. Drugs are in ascending orders of their
ANI/MM MM/PBSA binding free energies.

ACS Combinatorial Science pubs.acs.org/acscombsci Research Article

https://dx.doi.org/10.1021/acscombsci.0c00140
ACS Comb. Sci. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/acscombsci.0c00140?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00140?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00140?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00140?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00140?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00140?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00140?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acscombsci.0c00140?fig=fig6&ref=pdf
pubs.acs.org/acscombsci?ref=pdf
https://dx.doi.org/10.1021/acscombsci.0c00140?ref=pdf


scores. To sample the conformational space of drug−protein
complexes, MD simulations were conducted first using a
classical force field alone, which were then combined with the
neural network-trained force field ANI to provide an accurate
description of the interaction profiles of the drugs with the
protein. Whereas docking and classical MD simulations are
routinely used in drug discovery, here we used hybrid ANI/
MM MD simulations to investigate interactions that may be
ignored by classical MD simulations but could prove useful for
guiding experimental drug design. Additionally, combining
ANI/MM MD trajectories with end point MM/PBSA free-
energy calculations assists in obtaining physically important
information related to drug binding. The MM/PBSA
calculations can be further improved in the future to handle
the ANI/MM interactions.
We have used experimental information in the literature to

assess each step of our workflow. Among the 62 docking-
selected candidates, 10 compounds had experimental data on
their MPRO binding affinities, with 6 active or moderately active
and 4 inactive. We tracked whether these compounds were
filtered or selected in each step of the workflow. Our final
selection of 9 drugs contained three of the experimentally
validated active or moderately active compounds and none of
the inactive compounds. The workflow thus appears to be very
effective according to this measure. Importantly, our ANI/MM
MD simulations improved the binding stability of the 9
selected drugs.
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