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B7 proteins CD80 (B7-1) and CD86 (B7-2) are expressed on most antigen-presenting cells 
and provide critical co-stimulatory or inhibitory input to T cells via their T-cell-expressed 
receptors: CD28 and CTLA-4. CD28 is expressed on effector T cells and regulatory T 
cells (Tregs), and CD28-dependent signals are required for optimum activation of effector 
T cell functions. CD28 ligation on effector T cells leads to formation of distinct molecular 
patterns and induction of cytoskeletal rearrangements at the immunological synapse 
(IS). CD28 plays a critical role in recruitment of protein kinase C (PKC)-θ to the effector 
T cell IS. CTLA-4 is constitutively expressed on the surface of Tregs, but it is expressed 
on effector T cells only after activation. As CTLA-4 binds to B7 proteins with significantly 
higher affinity than CD28, B7 ligand recognition by cells expressing both receptors leads 
to displacement of CD28 and PKC-θ from the IS. In Tregs, B7 ligand recognition leads 
to recruitment of CTLA-4 and PKC-η to the IS. CTLA-4 plays a role in regulation of T 
effector and Treg IS stability and cell motility. Due to their important roles in regulating 
T-cell-mediated responses, B7 receptors are emerging as important drug targets in 
oncology. In this review, we present an integrated summary of current knowledge about 
the role of B7 family receptor–ligand interactions in the regulation of spatial and temporal 
IS dynamics in effector and Tregs.
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iNTRODUCTiON

The adaptive immune system must distinguish between self and non-self in order to provide 
protection from pathogenic challenges while sparing the organism’s own tissues. Recognition of 
B7 ligands (CD80 and CD86, also known as B7-1 and B7-2, respectively) by co-stimulatory CD28 
and co-inhibitory CTLA-4 (cytotoxic T-lymphocyte-associated protein 4, also known as CD152) 
receptors plays a critical role in regulation of effective self versus non-self discrimination. CD28 
signaling is required for optimum proliferation and function of effector T cells, whereas CTLA-4 
plays a critical role in negative regulation of immune responses, as it is required for turning off 
effector T cell signaling and regulatory T cell (Treg) development and suppressive functions. These 
opposing immunomodulatory roles of CTLA-4 and CD28 are of considerable clinical significance. 
CTLA-4 was the first immune checkpoint receptor targeted for cancer immunotherapy, and the 
anti-CTLA-4 antibody ipilimumab is used in the clinic for treatment of advanced melanoma (1). 
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CD28 co-stimulatory function is also relevant for cancer immu-
notherapy, as chimeric antigen receptors (CARs) containing 
CD28 cytoplasmic regions have been shown to induce efficient 
T cell effector functions (2). However, targeting CD28 with the 
superagonistic monoclonal antibody TGN1412 was a tragic 
failure, when administration of the antibody during a phase I 
clinical trial induced severe systemic inflammatory responses in 
healthy volunteers (3). Therefore, a comprehensive understand-
ing of expression patterns, signaling pathways, and functional 
roles of CD28 and CTLA-4 on effector and Treg subsets can have 
significant medical impact.

CD28 and CTLA-4 recognize their B7 ligands in the context of 
the cell-to-cell interface, termed the immunological synapse (IS), 
formed between a T cell and an antigen-presenting cell (APC). 
Receptor ligation at the IS leads to accumulation of interacting 
molecules at different regions of the synapse, forming distinct 
molecular patterns known as supramolecular activation clusters 
(SMAC) (4–6). The canonical mature T cell IS consists of a central 
SMAC (cSMAC) containing TCR (on the T cell) and pMHC 
(on the APC) molecules, surrounded by the peripheral SMAC 
(pSMAC) containing LFA-1 (on T cell) and ICAM-1 (on APC) 
adhesion molecules as well as F-actin. The outer ring of the IS, 
known as the distal SMAC (dSMAC) contains molecules with 
large ectodomains, such as CD45 and CD43. The SMAC regions 
contain smaller microdomains, known as microclusters (7). 
The IS is highly dynamic, with movement of TCR microclusters 
toward the center of the synapse, where they undergo endocyto-
sis. Antigen recognition under physiological conditions does not 
always result in formation of this canonical IS structure; never-
theless this model provides a useful framework for understand-
ing spatial dynamics of molecular interactions at the interface 
between T cell and APC membranes. The IS is the main site of 
immune receptor triggering and recruitment of signaling inter-
mediates, leading to signal initiation and integration. B7 ligand 
recognition leads to distinct localization of CD28 and CTLA-4 
receptors at the SMAC, modulation of cytoskeletal dynamics as 
well as recruitment of protein kinase C (PKC) isoforms to the IS. 
The effect of B7 ligand recognition on the IS dynamics is cell type 
specific, with effector T cells and Tregs displaying different CD28 
and CTLA-4 localization, leading to differential recruitment of 
PKC-θ and PKC-η to the effector T cell and Treg synapses. This 
review presents a brief outline of the roles of CD28 and CTLA-4 
in the immune system, followed by a more detailed discussion of 
CD28 and CTLA-4 localization patterns in the IS, and the conse-
quences of B7 ligand recognition on IS structure and stability in 
T effector and Tregs.

B7 LiGAND ReCOGNiTiON: STRUCTURAL 
FeATUReS AND eXPReSSiON PATTeRNS

B7-1 and B7-2 (CD80 and CD86) molecules share a similar struc-
ture, consisting of one membrane-distal variable domain-like and 
one membrane-proximal constant domain-like immunoglobulin 
superfamily (IgSF) domain. Purified CD80 crystallizes in a 
dimeric form, and undergoes spontaneous homodimerization in 
solution (8), whereas CD86 crystalizes as a monomer (9). The 
two different oligomeric states of B7 were also observed using 

Forster resonance energy transfer (FRET) analysis on the surface 
of APCs, with CD80 present on the cell surface mainly in the 
form of dimers, and CD86 being monomeric (10, 11). CD80 and 
CD86 are expressed on dendritic cells (DCs), macrophages, and 
B cells, with CD86 displaying higher constitutive expression and 
more rapid upregulation after activation. B7 molecules are also 
expressed on activated mouse and human effector T cells (12–14). 
CD80 and CD86 bind to CTLA-4 with significantly higher affinity 
than to CD28. CD80 is a stronger ligand, with KD 0.2  μM for 
CTLA-4 and 4  μM for CD28 interaction, whereas the KD for 
CD86 binding to CTLA-4 is 2 and 20 μM for CD28 (15).

CD28 monomers consist of a V-like IgSF extracellular domain, 
transmembrane regions, and a short cytoplasmic tail with no 
enzymatic activity. CD28 is expressed on the cell surface as a gly-
cosylated, disulfide-linked homodimer of 44 kDa chains. In adult 
humans, CD28 is constitutively expressed on approximately 80% 
of CD4+ and 50% of CD8+ T lymphocytes. Loss of CD28 expres-
sion, most marked in the CD8 compartment, has been observed 
in humans during aging and autoimmune diseases (16–18). CD28 
is expressed on all mouse T cells, and it is not downmodulated 
during aging (19). Repeated in vitro antigenic stimulation (20, 21) 
and exposure to common-γ chain cytokines or type I interferons 
(22) leads to downregulation of CD28 expression on human T 
cells. However, in vivo antigenic stimulation has been reported to 
increase CD28 surface levels on mouse T cells (23).

CTLA-4 shares structural similarity with CD28, forming 
homodimers of V-like IgSF monomers. CTLA-4 contains a 
36-amino-acid-long cytoplasmic tail with no enzymatic activ-
ity. CTLA-4 is not expressed on the surface of resting effector T 
cells (24, 25), but is expressed constitutively in Tregs (26) under 
control of Foxp3 and NFAT (27–29). In both conventional T 
cells and Tregs, surface CTLA-4 is continuously endocytosed 
via a clathrin- and dynamin-mediated pathway, and recycled to 
the plasma membrane (30–34). Activation of effector and Tregs 
leads to upregulated levels of CTLA-4 on the cell surface. CTLA-4 
internalization is mediated by the heterotrimeric adapter protein 
AP-2 (30, 34, 35) [regulation of CTLA-4 trafficking is the subject 
of an excellent recent review in Ref. (36)], whereas CTLA-4 traf-
ficking from the trans-Golgi network to the cell surface involves 
formation of a multimeric complex consisting of transmembrane 
adapters TRIM and LAX, as well as small GTPase Rab8 (37, 
38). CTLA-4 present in recycling endosomes is protected from 
lysosomal targeting through interaction between LRBA protein 
(lipopolysaccharide-responsive and beige-like anchor protein) 
and CTLA-4’s tail region (39). Since its lysosomal degradation 
involves interaction with another clathrin adaptor complex AP-1 
that binds to the same tyrosine-based motif (Y201) of CTLA-4 
as LRBA (35) (the interaction motifs in CTLA-4 cytoplasmic 
region are summarized in Figure 1), it has been suggested that the 
binding of LRBA may prevent interaction with AP-1 and thereby 
protect the protein from degradation (39).

Both CTLA-4 and CD28 rely on the amino acid motif 
MYPPPY in the vicinity of Y139 in human CTLA-4 and Y123 in 
CD28 for binding to the B7 proteins (46–48). Importantly, despite 
the identical amino acid sequence of the interaction site, CTLA-4 
and CD28 are capable of effectively discriminating between B7 
proteins. A key study from the Allison lab (48) reported that 
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FiGURe 1 | Molecular interactions in B7 ligand recognition. (A) Schematic representation of CD28 and CTLA-4 binding to the B7 ligands. (B) Schematic 
representation of the cytoplasmic regions of CTLA-4 (top sequence) and CD28 (bottom sequence). Known interaction partners of CTLA-4 are shown above and of 
CD28 below the alignment, and the motifs implicated in these interactions are color coded as indicated. Figure based on Hou et al. (40), Isakov and Altman (41, 42), 
Margulies (43), Schneider and Rudd (36), Sharpe and Freeman (44), and Stamper et al. (45).
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the binding of a B7 ligand was critical for the concentration of 
CTLA-4 at the IS and contributed to the concentration of CD28, 
and that CD86 was a preferred ligand for CD28 and CD80 for 
CTLA-4. Antigen-pulsed B cells expressing CD80 effectively 
concentrated CTLA-4 at the synapse. Furthermore, in synapses 
formed by B cells expressing only CD80, there was evidence for 
competition between CTLA-4 and CD28 for ligand binding, as 
CD28 accumulation was reduced even further when CTLA-4 was 
present at the IS. Conversely, peptide-pulsed B cells expressing 
only CD86 strongly increased the accumulation of CD28 at the 
synapse, but failed to recruit CTLA-4 (48).

CD28 iN ReGULATiON OF THe iMMUNe 
ReSPONSe

CD28 is the prototypic co-stimulatory molecule, and CD28 
ligation leads to enhanced cytokine production, cell survival, 
and proliferation of effector T cells. The critical role of CD28-
mediated signaling in optimum T cell responses is demonstrated 
by the T cell effector functions afforded to second-generation 
CARs containing cytoplasmic regions of CD28 and CD3ζ, but 
not by first-generation CARs lacking CD28 sequences (2). The 
cytoplasmic region of CD28 contains two main signaling motifs 
(summarized in Figure  1): a proximal YMNM motif and a 
distal proline-rich PYAP motif (49). The YMNM motif mediates 
phosphatidylinositol 3-kinase (PI3K) binding (50–52), leading to 
Akt activation; YMNM can also bind to GRB2/GADS adaptor 
proteins (51, 53) and the PYAP motif binds to Lck (54), filamin A, 
and GRB2/GADS (53, 55). The YMNM motif is followed imme-
diately by another poly-proline motif PRRP, reported to bind the 
kinase Ikt (56). Analysis of knock-in mutant mice revealed that 

the PYAP motif is critical for IL-2 production and proliferation 
in vitro, as well as for in vivo antibody production and germinal 
center formation (57), whereas YMNM plays a role in augment-
ing T cell proliferation (58). Interestingly, knock-in T cells with 
both their YMNM and PYAP motifs mutated display less severe 
activation defects than CD28-deficient T cells, suggesting some 
functional role for the PRRP motif and/or yet unidentified cyto-
plasmic sequences.

CD28 is required for the thymic generation and peripheral 
maintenance of a functional Treg population. CD4+ Foxp3+ 
Tregs are key negative regulators of T cell-mediated immunity 
and are required for the control of spontaneous responses to 
self through several mechanisms (59, 60). Contact-mediated 
suppression relies on CTLA-4 interactions with its ligands and 
is discussed in detail below. Bystander suppression is mediated 
by suppressive cytokines, mainly IL-10 (61) and TGF-β (62) 
produced by activated Tregs, and by induction of cytokine star-
vation in target cells by IL-2 clearance (63). B7 ligand recogni-
tion plays an important role in Treg development and function, 
summarized in Table  1. In CD28-deficient NOD mice, the 
percentage of peripheral Tregs is strongly reduced (64). Similar 
reductions are observed in NOD mice lacking both CD80 and 
CD86, leading to the conclusion that the B7–CD28 interaction 
is required for the formation of the full Treg repertoire. The 
reduction in the percentage of Tregs in NOD mice treated with 
B7-blocking CTLA-4-Ig correlates with a higher incidence of 
spontaneous autoimmune diabetes (64). Subsequent analysis 
revealed that Treg deficiency in CD28−/− mice can be traced 
back to thymic development. The percentage of Treg precursors 
among thymic CD4 single-positive cells is significantly reduced 
in CD28−/− mice as well as in NOD mice injected with anti-CD80 
and CD86 antibodies (65), and in B7 double knockout mice (66). 
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TABLe 1 | B7 ligand recognition in Treg synapse formation and 
suppressive functions.

Surface 
interactions

Biological significance 
for Tregs

Reference

CD28–B7 Motility
Tonic signals necessary 
for survival

Lu et al. (160), Thauland  
et al. (163)
Zhang et al. (71)

CD28–B7 Antigen recognition
Motility stop signal

Apostolou et al. (176), Jordan 
et al. (68), Knoechel et al. (177), 
Walker et al. (178)
Lu et al. (160), Thauland  
et al. (163)

TCR–pMHC Synapse formation and 
stabilization

Onishi et al. (161)

Activation Schmidt et al. (179), Zhang 
et al. (71)

LFA-1–ICAM-1 Proliferation Walker et al. (178), Zheng  
et al. (155)

Surface accumulation  
of CTLA-4

Catalfamo et al. (170)

CTLA-4–B7 Synapse stabilization Onishi et al. (161),  
Zanin-Zhorov et al. (151)TCR–pMHC

LFA-1–ICAM-1 Contact suppression Kong et al. (152), Qureshi  
et al. (146)
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CTLA-4 iN ReGULATiON OF THe iMMUNe 
ReSPONSe

CTLA-4 is a critical negative regulator of the immune response. 
Germline CTLA-4 knockout in mice results in massive lym-
phoproliferation (78), and is lethal at 3–4 weeks of age (78, 79). 
The peripheral T cell profile in these animals is strongly skewed 
toward CD4 cells that rapidly proliferate in a CTLA-4-Ig-sensitive 
manner  –  indicating the dependence on B7–CD28 interac-
tion – and infiltrate non-lymphoid tissues (78, 80). Introduction 
of CTLA-4-sufficient Tregs reverts the lymphoproliferative 
disorder and prevents early lethality in CTLA-4 knockout mice 
(81), whereas blocking of CTLA-4 on Tregs completely abro-
gates their suppressive function (62, 66, 82). CTLA-4-deficient 
Tregs are unable to control lymphopenia-driven homeostatic 
expansion of conventional CD4 cells (83). Importantly, interac-
tion between CTLA-4 and B7 expressed on effector T cells was 
found to be dispensable for the control of the latter in mixed 
bone marrow chimera experiments as both B7−/−CTLA-4−/− and 
B7+/+CTLA-4−/− effector T cells were efficiently suppressed by 
CTLA-4-sufficient Tregs (66). B7 expression is also not required 
on Tregs themselves (66). These data indicate that B7 expressed 
on a cell subset distinct from effector and Tregs mediates interac-
tions with Treg-expressed CTLA-4 and immune suppression. 
CTLA-4-deficient Tregs are characterized by similar expression of 
CD25, PD1, GITR, and of suppressive cytokines IL-10 and IL-35 
(83). Foxp3 promoter-controlled deletion of CTLA-4 in Tregs 
resulted in lymphoproliferative disease and tissue infiltration, and 
was lethal at ~7–8 weeks of age [i.e., somewhat delayed compared 
to germline knockout Ref. (84)]. Similarly to Foxp3-driven CD28 
deficiency, thymic development of Tregs was normal, as was their 
survival in the periphery. However, cells lacking CTLA-4 were 
unable to control proliferation of target cells stimulated by anti-
CD3 antibody and DC, and to induce tumor rejection (84).

Unlike CD28, CTLA-4 is not required for Treg development 
in the thymus. CTLA-4 is expressed by a subset of thymocytes 
predominantly residing at the corticomedullary junction (85) 
and is strongly upregulated upon induction of negative selec-
tion (86). There is no requirement for CTLA-4 expression to 
initiate central Treg development and peripheral expansion, as 
CTLA-4 knockout mice exhibit elevated percentage of Tregs and 
increased Ki67 expression, indicative of their active proliferation 
(87). Moreover, deletion of CTLA-4 in TCR-transgenic mice 
increases the frequency of Foxp3-positive Treg precursors in the 
thymus and leads to the formation of a specific population of 
Foxp3-positive DP thymocyte subsets in the thymic cortex (85). 
However, CTLA-4 can play a role in formation of the induced 
Treg population, as CTLA-4 has been shown to induce expression 
of Foxp3 and Treg conversion in the intestine (88).

CD28 AND iMMUNOLOGiCAL SYNAPSe 
ARCHiTeCTURe iN eFFeCTOR T CeLLS

CD28 shows a unique cSMAC localization pattern that is impor-
tant for its efficient co-stimulatory functions. CD28 co-localizes 
with TCR microclusters at the earliest observable time-point after 

Peripheral homeostatic expansion of Tregs – but not effector T 
cells – in normal syngeneic hosts is also strongly suppressed by 
anti-CD80 and CD86 antibodies (66). A mechanistic explana-
tion for the thymic requirement for CD28 was proposed by Tai 
et al. (67) who examined the consequences of CD28 deletion in 
a TCR-transgenic model. Mice expressing the AND TCR and 
its agonist ligand, a pigeon cytochrome c peptide, were found 
to effectively induce thymic Tregs only in the presence of CD28. 
This means that while a strong selection signal through TCR is 
indeed required (68), it is not sufficient for the full initiation 
of the agonist selection program leading to the generation of 
Tregs, and that a co-stimulatory signal from mTEC-expressed 
B7 molecules through CD28 is also required. It is noteworthy 
that a small proportion of regulatory phenotype T cells were still 
generated in the absence of CD28 but these cells lacked suppres-
sive capacity (67). Earlier data from the same group indicated 
that CD28 is also required for the deletion of thymocytes by 
negative selection (69, 70).

A study using mice in which CD28 was selectively deleted 
in cells expressing Foxp3 (Cd28-ΔTreg), reported only a minor 
decrease in the percentage of thymic Treg precursors (71). This is 
in line with previous observations that CD28 is involved in the gen-
eration of early, Foxp3-negative Treg precursors (72). However, in 
stark contrast to earlier studies, homeostatic expansion of Tregs 
in the periphery was reported to occur independently of CD28 
(73). Tregs from CD28-ΔTreg mice displayed reduced suppres-
sive capacity, and consequently CD28-ΔTreg animals developed 
spontaneous autoimmunity (71). Costimulation through CD28 
is required for in vivo expansion of Tregs in the presence of TCR 
stimulation and IL-2 (74). CD28 stimulation is also required for 
the conversion of naïve CD4 T cells into Tregs in vivo (75, 76) 
and in vitro (77).
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TABLe 2 | CD28 in regulation of cytoskeleton dynamics at the immunological synapse.

Cytoskeletal regulator CD28-induced modification effect on cytoskeleton Reference

Vav1 Phosphorylation, leading to activation Vav1 controls activity of small Rho GTPases Cdc42 
and Rac1 that regulate actin polymerization activity 
of WASP and WAVE2, respectively

Nunes et al. (102), Raab et al. 
(104), Salazar-Fontana et al. (103), 
Schneider and Rudd (106)

Filamin A Direct interaction with CD28, 
phosphorylation

Filamin A has a role in actin crosslinking Muscolini et al. (111), Tavano et al. 
(108)

Cofilin Dephosphorylation, leading to activation Actin severing protein. Blocking cofilin–actin 
interaction reduces T cell:APC conjugation

Lee et al. (119), Wabnitz et al. 
(120)

Rltpr Unknown Actin-uncapping protein. Wild-type Rltpr is required 
for CD28-dependent costimulation, but this seems 
to be independent of its actin-uncapping function

Liang et al. (113)

CapZIP Phosphorylation Actin-uncapping protein. CapZIP is required for 
CD28-dependent costimulation, but its effect on T 
cell cytoskeleton are unknown

Tian et al. (110)
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agonist pMHC recognition (89, 90), and the early accumulation 
of CD28 at the IS shows similar kinetics and localization as the 
TCR complex. In a mature IS, CD28 is present at the cSMAC, but 
segregates away from TCR (90, 91). This segregation of CD28 
from TCR at the IS is required for optimum T cell activation, 
as shown in a study comparing different anti-CD3 and CD28 
micropatterns on planar stimulatory surfaces (92). The spatial 
separation of TCR and CD28 at the mature IS is regulated by 
localization of CD28 ligands, as full length CD80 separates from 
TCR at the IS, but CD80 with deleted cytoplasmic region localizes 
with TCR (93). Moreover, the tailless CD80 molecule does not 
provide an optimum co-stimulatory signal and does not show 
efficient accumulation at APC: T cell contact interface (94, 95). 
This suggests a role for B7 interactions with cytoskeleton and/or 
other cytoplasmic components in regulation of IS architecture. 
CD28 recruitment and maintenance at the synapse requires both 
CD28 and TCR ligand binding (90, 96). CD28 accumulation 
at the synapse has been shown to be independent of antigenic 
pMHC affinity to TCR, with weak and strong agonist pMHC 
complexes inducing similar levels of CD28 recruitment (97). The 
role of CD28-mediated signaling and interactions in regulation 
of CD28 localization at the synapse is somewhat controversial, 
with a report indicating unperturbed IS localization of CD28 
with mutated or deleted cytoplasmic region (90), whereas 
another study observed impaired IS localization of CD28 with 
deleted cytoplasmic domain or with a mutation at Y188 within 
the CD28 PYAP motif (96).

CD28 ligation has been shown to induce rapid internalization 
of the receptor, with half of the endocytosed fraction degraded 
in lysosomes and half recycled back to the cell surface (98). 
CD28 downregulation depends on PI3K (73), with preferential 
endocytosis of CD28 molecules associated with PI3K (98). CD28 
is endocytosed via clathrin-coated pits, and this process requires 
coupling of WASP to PI3K and CD28 via sorting nexin 9 (73). 
CD28 downregulation from the synapse can also be influenced 
by stoichiometry of its B7 ligands (11). FRET analysis of B7 
fluorescent protein fusions demonstrated that CD80 is present 
at the cell surface as a mixed population of dimers and mono-
mers, with CD86 predominantly present in monomeric form 
(10). Experimental increase in CD80 dimerization resulted in 

enhanced T cell: APC conjugate formation and more sustained 
accumulation of Lck and PKC-θ at the IS (11).

Co-stimulatory signals play a critical role in regulation of 
cytoskeleton dynamics at the IS during T cell interaction with 
APC (summarized in  Table 2). CD28 ligation induces movement 
of actin cytoskeleton toward the IS (99), and CD28 engagement is 
required for sustained actin accumulation at the IS (100). CD28 
stimulation alone leads to actin polymerization and recruitment 
of actin at the IS (101). CD28 signaling is important in multiple 
pathways involved in actin filament nucleation, elongation, and 
depolymerization. The guanine nucleotide exchange factor Vav1 
controls the activity of small Rho GTPases Cdc42 and Rac1 that 
regulate actin polymerization activity of WASP and WAVE2, 
respectively. WASP and WAVE2 are actin nucleation-promoting 
factors that, together with the Arp2/3 complex, facilitate forma-
tion of new actin filaments.

CD28 ligation induces tyrosine phosphorylation of Vav1 (102), 
and CD28-dependent actin remodeling requires Cdc42 (103) and 
Rac1 (104). The molecular interactions linking CD28 to Vav1 
phosphorylation are not yet fully elucidated. CD28-dependent 
Vav1 phosphorylation has been shown to require binding of the 
adaptor protein GRB2 to CD28 (105, 106), but a recent report 
provided evidence for GRB2-independent Vav1 binding to 
CD28 and a role of PIP5K1A (phosphatidylinositol 4-Phosphate 
5-Kinase α) and Vav1 cooperation in regulation of actin, down-
stream of CD28 (107). Jurkat cells expressing CD28 with mutated 
C-terminal PYAP motif, important for GRB2 binding, failed to 
recruit Vav1 to the IS or to rearrange actin after CD28 ligation 
(107); however, Vav1 phosphorylation in response to CD28 liga-
tion was not assessed in this study, and in another report the PYAP 
motif was shown to be dispensable for CD28-dependent Vav1 
phosphorylation (108). The Arp2/3 actin nucleation complex 
cooperates with filamins, large multidomain proteins with a role 
in actin crosslinking (109), to establish actin structure. Filamin 
A is phosphorylated (110) and recruited to the IS (108) after 
CD28 ligation in T cells, with the PYAP motif on the cytoplasmic 
region of CD28 mediating the interaction with filamin A (108, 
111). Knockdown of filamin A expression did not affect CD28-
mediated Vav1 phosphorylation, but reduced Cdc42 activity and 
impaired CD28-mediated costimulation (108). However, changes 
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TABLe 3 | Molecular determinants of PKC-θ localization at the immunological synapse.

interaction/activity Molecular determinants effect on immunological synapse Reference

PKC-θ–CD28 Polyproline motif within the PKC-θ V3 hinge region  
and PYAP motif in CD28; Lck-mediated interaction

PKC-θ V3 hinge and CD28 PYAP motif are required for 
CD28 cSMAC localization 

Kong et al. (124)

PKC-θ–CD28 Sumoylation of PKC-θ at lysines 325 and 506 Abrogated PKC-θ sumoylation reduces PKC-θ 
localization at the IS and its colocalization with CD28, 
induces colocalization of PKC-θ and filamin A at 
periphery of the IS

Wang et al. (139)

PKC-θ–DAG C1 domains of PKC-θ C1 domains mediate initial PKC-θ recruitment to the 
synaptic membrane, but they do not support PKC-θ 
central accumulation at the synapse

Basu et al. (134), 
Carrasco and Merida 
(136), Quann et al. (135)

PKC-θ kinase  
activity

Unknown, possibly through autophosphorylation at 
threonine 219 between the tandem C1 domains

PKC-θ kinase activity is required for its recruitment to 
the IS 

Cartwright et al. (138), 
Thuille et al. (137)

Rltpr Unknown, no interaction between Rltpr and PKC-θ 
has been detected

Wild-type Rltpr is required for PKC-θ and CARMA1 
recruitment to cSMAC 

Liang et al. (113)

February 2016 | Volume 7 | Article 246

Brzostek et al. B7 Regulation of Synapse Dynamics

Frontiers in Immunology | www.frontiersin.org

in actin structure or dynamics at the IS of filamin A knockdown 
cells have not been reported. Moreover, knocking down filamin A 
did not impair ezrin accumulation at the IS (108).

Actin filaments contain a fast growing barbed end, which can 
be bound to actin capping protein. Capping protein binding to 
the barbed end prevents addition of new actin subunits, limit-
ing the filament elongation. Actin capping and subsequent actin 
polymerization can be regulated by actin-uncapping proteins 
(112). An actin-uncapping protein Rltpr is required for CD28-
dependent costimulation (113), and Rltpr colocalizes with CD28 
in CD80-dependent signaling microclusters (113), suggesting a 
role of Rltpr in CD28-mediated actin rearrangement at the syn-
apse. However, a direct role of Rltpr for CD28-dependent actin 
modification is unclear. Rltpr does not immunoprecipitate with 
CD28 (113) and is not phosphorylated after CD28 ligation (110). 
Moreover, an Rltpr mutation that abolishes CD28-mediated 
costimulation does not impair Rltpr’s actin-uncapping ability 
or CD28-dependent actin rearrangements at the synapse (113). 
The Rltpr mutation that reduced CD28-dependent costimulation 
abrogates CD28-dependent recruitment of PKC-θ and Carma1 
to the IS (113) through a yet unidentified molecular mechanism, 
suggesting that Rltpr acts as an adaptor at the IS independently 
of its actin-uncapping functions. A recent phosphoproteomic 
screen identified actin-uncapping CapZIP as part CD28 signal-
ing network (110). Importantly, CapZIP is required for CD28-
dependent costimulation of cytokine production (110). However, 
it has not yet been reported if CapZIP can directly interact with 
CD28 and if it is required for CD28-dependent changes in 
actin dynamics. In summary, the current evidence suggests that 
CD28-dependent signaling may regulate actin capping through 
actin-uncapping proteins CapZIP and potentially Rltpr.

CD28 signaling regulates actin dynamics through control of 
activity of the actin-severing protein cofilin. Cofilin is a ubiq-
uitously expressed 19  kDa protein that cleaves actin filaments, 
thus, promoting actin depolymerization, but also creating new 
barbed ends for filament elongation (114). Cofilin’s actin binding 
capacity is negatively regulated by its phosphorylation at serine 3 
(115, 116), and binding to phospholipids (117). Blocking cofilin 
interaction with actin reduces T cell proliferation and cytokine 
production, as well as conjugation with APCs (118). In resting 

human T cells, cofilin is present mainly in the inactive phospho-
rylated form, and CD28 or CD2 signal together with TCR, but 
not TCR signal alone, induces cofilin dephosphorylation and 
actin binding (119, 120). The precise sequence of signaling events 
linking CD28 ligation to cofilin activation is unknown. Cofilin is 
dephosphorylated by serine phosphatases PP1 and PP2A (121), 
and CD3/CD28-induced cofilin dephosphorylation requires Ras 
(120). Additionally, CD28 may regulate cofilin activity through 
control of levels of membrane phospholipids (114).

There is strong evidence that CD28-dependent regulation 
of actin dynamics is important for the effector T cell functions. 
CD28 enhances T cell:APC conjugate formation in  vitro (122, 
123). Knock-in mice with mutated PYAP motif show reduced 
IL-2 production and proliferation in vitro, and impaired in vivo 
antibody production and germinal center formation (57). This 
could be a result of impaired cytoskeletal rearrangement, as the 
PYAP motif is implicated in Vav1 and filamin A recruitment. 
However, the effects of PYAP mutations on cytoskeletal dynamics 
and synapse stability have not yet been reported for primary T 
cells, and this motif is also important for binding to Lck (54), 
GRB2/GADS (53, 55), and PKC-θ (124), as discussed below. 
Analysis of a mouse mutant with inducible inhibition of Csk, a 
negative regulator of Src family kinases, strongly suggested that 
CD28-dependent actin remodeling is critical for initiation of full 
TCR signal in thymocytes (125). However, thymocytes from PYAP 
mutant knock-in mice do not show obvious phenotypic defects 
(57), suggesting that CD28-independent pathways can regulate 
actin cytoskeleton dynamics during thymocyte development.

CD28 AND ReGULATiON OF PKC-θ 
LOCALiZATiON AT THe eFFeCTOR 
T CeLL iS

CD28 plays a critical role in regulation of the IS localization of the 
novel protein kinase C (nPKC) isoform PKC-θ (summarized in 
Table 3). The PKC family consists of 10 serine/threonine kinase 
isoforms, with important roles in regulation of multiple cellular 
processes in different cell types. All nPKC isoforms (PKC-θ, 
PKC-δ, PKC-ϵ, and PKC-η) require diacylglycerol (DAG), but 
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not Ca2+, for activation, and are expressed in T cells and play 
multiple roles in regulation of T cell signaling and effector func-
tions (126). Central localization of PKC-θ is one of the hallmarks 
of the mature effector T cell IS. A seminal study by Monks at al. 
identified PKC-θ as the only PKC isoform recruited to effector 
T cell IS (127). However, more recent studies show that PKC-η 
and PKC-ϵ are also recruited (128–130), with some evidence 
that their recruitment precedes that of PKC-θ (129). PKC-ϵ and 
PKC-η display homogeneous distribution over the entire synapse, 
whereas PKC-θ displays discrete cSMAC localization contained 
within the peripheral actin ring (128–132).

An important study using lipid bilayers presenting antigen and 
co-stimulatory signal, and TIRF microscopy to examine PKC-θ 
localization at the effector T cell IS, revealed initial colocalization 
of PKC-θ with TCR/CD28 microclusters (90). This was followed 
by PKC-θ recruitment to the cSMAC, where it segregated, 
together with CD28, to TCRlow regions in the periphery of cSMAC 
(90). The initial stages of PKC-θ recruitment to the effector T cell 
IS do not depend on CD28 ligand binding, but CD28 ligation 
is required for sustained PKC-θ localization at the synapse and 
colocalization of PKC-θ with CD28 (90, 133). PKC-θ interacts 
with CD28 after PMA treatment (90) (which induces PKC activa-
tion) and TCR/CD28 stimulation (124).

The molecular determinants of PKC-θ synapse localization 
have been mapped to the V3 hinge region and C1 domains (132). 
nPKCs share a conserved structure, with an amino-terminal 
C2 domain, tandem C1 domains, and V3 hinge linked to a 
carboxyl-terminal kinase domain. PKC-θ interaction with CD28 
and cSMAC localization requires a polyproline motif within the 
V3 hinge region (124), and V3 hinge regions from PKC-ϵ and 
PKC-η mediate their diffuse accumulation at the synapse (134). 
A carboxyl-terminal poly-proline motif (PYAP) in the CD28 
cytoplasmic tail is required for its interaction with PKC-θ, with 
strong evidence suggesting that this is an indirect interaction 
mediated through Lck, with the Lck SH3 domain binding to the 
polyproline motif in PKC-θ V3 and the Lck SH2 domain binding 
a phosphorylated tyrosine within the CD28 PYAP motif (124). 
Tyrosine 188 within the PYAP motif was also identified as critical 
for CD28 and PKC-θ central synapse localization in an earlier 
study (96).

Additionally, C1 domains of PKC-θ also play a role in its 
synapse localization, through interaction with DAG at the 
synapse membrane (134, 135). C1 domains can mediate initial 
PKC-θ recruitment to the synaptic membrane (135), but they 
do not support PKC-θ central accumulation and retention and 
the membrane (136), and nPKC C1 domains are not sufficient 
to determine the respective synapse localizations of PKC-θ 
versus PKC-ϵ and PKC-η (134). Phosphorylation of PKC-θ 
threonine 219 (T219), in a hinge region between the tandem 
C1 domains, is required for PKC-θ localization at the IS (137). 
Moreover, sustained synapse localization is dependent on PKC-
θ kinase activity (137, 138), most likely through a requirement 
for PKC-θ autophosphorylation at T219 (132, 137). PKC-θ 
recruitment to the IS also requires expression of wild-type Rltpr 
actin-uncapping protein (113). T cells from mice expressing an 
Rltpr mutant could not recruit PKC-θ to the IS (113). The precise 
role of Rltpr in the regulation of PKC-θ synapse localization is 

unknown but seems to be independent of Rltpr actin-uncapping 
function, and no direct interactions between Rltpr and PKC-θ 
have been observed (113).

A recent report identified a novel activation-dependent post-
translational modification of PKC-θ that modulates CD28–PKC-
θ interactions and IS architecture (139). TCR stimulation of 
resting murine and human T cells leads to conjugation of SUMO1 
(small ubiquitin-like modifier) to PKC-θ lysine (K) 325 and K506 
by SUMO E3 ligase PIASxβ (139). Importantly, TCR and CD28 
costimulation resulted in stronger PKC-θ sumoylation than TCR 
stimulation alone. Sumoylation-resistant PKC-θ with mutated 
K325 and K506 residues showed reduced interaction with 
CD28 and filamin A, and diffuse localization at the membrane 
in the IS (139). Inhibiting PKC-θ sumoylation through PIASxβ 
knockdown or overexpression of a desumoylating enzyme also 
abrogated PKC-θ localization at the IS, and reduced its colo-
calization with CD28 (139). Wild-type PKC-θ segregated from 
filamin A at the IS, with mainly pSMAC localization of filamin 
A. Inhibition of PKC-θ sumoylation altered the IS architecture, 
inducing colocalization of PKC-θ and filamin A at the periphery 
of the synapse (139).

The localization of PKC-θ to the center of the IS is critical for 
its functions in effector T cells. Mutations of the poly-proline 
motif in the V3 region of PKC-θ reduced activation of primary 
effector CD4+ T cells (124). Critically, overexpression of murine 
V3 domain sequesters PKC-θ from CD28 and cSMAC in mouse 
CD4+ T cells, and reduces PKC-θ-dependent gene expression 
in vitro, as well as CD4+ Th2 and Th17 immune responses in vivo 
(124). Similarly, expression of sumoylation-resistant PKC-θ 
mutants, with impaired synapse localization, does not rescue 
defects in cytokine production, activation of PKC-θ dependent 
transcription factors, and Th2 differentiation of human T cells 
with downregulated expression levels of endogenous PKC-θ 
(139). Additionally, mutations in the CD28 PYAP motif, required 
for PKC-θ interaction with CD28 and for IS localization, severely 
impaired effector T cell functions in vivo (57). However, it must 
be noted that PKC-θ synapse localization seems to be inseparable 
from its interaction with CD28, and the observed functional 
effects of impaired PKC-θ synapse recruitment could also be 
caused by reduced CD28 interactions with PKC-θ, Lck, and/or 
filamin A.

CTLA-4 DYNAMiCS AT THe eFFeCTOR 
AND Treg iS

Recognition of B7 ligands by CD28 and CTLA-4 at the effector 
T cell IS leads to competitive displacement of CD28 and PKC-θ 
from its central region. In the absence of stimulation, regula-
tory and conventional T cells express similar levels of CD28, 
but CTLA-4 expression is significantly higher in unstimulated 
Tregs (71, 140, 141). TCR signaling induces polarization of both 
intracellular (142) and membrane pools of CTLA-4 toward the IS 
of effector T cells, and TCR signal strength determines CTLA-4 
localization at the IS (97). CTLA-4 is recruited to the effector 
T cell cSMAC with delayed kinetics relative to that of TCR and 
CD28, segregates away from CD3high regions and forms a ring-like 
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FiGURe 2 | Dynamics of B7 ligand recognition at effector and Treg iS. 
(A) B7 (CD80 or CD86) ligation leads to accumulation of CD28 and 
associated PKC-θ at the T effector cell IS. High-affinity B7 binding by CTLA-4 
on Tregs leads to accumulation of CTLA-4 and the associated PKC-η at the 
Treg IS, and exclusion of CD28 and PKC-θ from the IS. (B) CTLA-4 ligand 
binding in Tregs results in the trans-endocytosis of the B7 ligands. This 
reduces the amount of the B7 ligands on the surface of the APC, leading to 
reduced co-stimulatory signals delivered to effector T cells.
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structure (141). CTLA-4 recruitment to and stabilization at the 
IS depends on its ligand binding, but occurs at both high and 
low B7 ligand densities (141). Critically, recruitment of CTLA-4 
to the IS influences CD28 localization, due to competition for 
ligand binding. At high ligand densities, CTLA-4 recruitment 
leads to exclusion of CD28 from the cSMAC and its accumula-
tion outside the pSMAC (141). At low ligand densities, CTLA-4 
prevents formation of CD28 clusters at the T effector IS (141). 
Importantly, CTLA-4-mediated displacement of CD28 from the 
cSMAC leads to impaired synaptic localization of PKC-θ (141). 
CTLA-4 ligation has also been reported to reduce the size of T 
cell: APC contact interface and to reduce ZAP70 microcluster 
formation (143).

The localization of CTLA-4 in the T effector synapse depends 
on the molecular dimensions of the extracellular region of the 
protein, as CTLA-4 molecules with elongated ectodomains failed 
to accumulate at cSMAC despite unimpaired ligand binding 
(141). However, it has not been reported if CTLA-4 with elon-
gated ectodomains affected CD28 clustering at the synapse, and 
it is not known whether similar dimensions of CD28 and CTLA-4 
receptor–ligand complexes are important for efficient regulation 
of co-stimulatory signal and/or competition for ligand binding 
at the synapse. The matching sizes of activating and inhibitory 
receptor–ligand complexes are critical for signal integration and 
regulation of NK-cell functions (144, 145), and it is plausible that 
a similar requirement exists for co-stimulatory and co-inhibitory 
signaling in effector T cells.

A molecular mechanism for CTLA-4 involvement in the 
downregulation of CD80/CD86 has been established in the 
seminal work by Qureshi et al. (146). Using co-cultured CHO cells 
expressing either human CTLA-4 or GFP-tagged human CD86, 
they observed transfer of GFP signal into CTLA-4 expressing 
cells, and its accumulation in the endolysosomal system, indica-
tive of CD86 trans-endocytosis. Endocytosis-deficient CTLA-4 
failed to induce trans-endocytosis of CD86-GFP and resulted in 
the accumulation of CD86 at cell contacts. These findings were 
confirmed using purified human Tregs incubated with DC where 
CD86 expression on the surface of the DC was reduced in the 
presence of Tregs but not effector T cells, and TCR stimulation 
increased the rate of trans-endocytosis (146). The most direct 
consequence of reduction of B7 proteins on the surface of APC 
is manifested in fewer and less prolonged interactions between 
APC and effector T cells (147, 148) reduced PKC-θ recruitment 
and activation in these cells (149) and, consequently, repression 
of IL-2 production by effector T cells (150). Recently, it has been 
shown that surface expression of CTLA-4 on effector T cells is 
sufficient for downregulation of CD86 expression from APCs 
(40).

Tregs display radically different synapse localization of CD28 
and PKC-θ than effector T cells (summarized in Figure 2). In a 
stimulating planar lipid bilayer system, the recruitment of CD28 
to the Treg IS is barely detectable, whereas CTLA-4 is recruited 
robustly, in stark contrast to conventional CD4 T cells (141). 
Displacement of CD28 from Treg synapses by CTLA-4 coincides 
with the absence of PKC-θ clusters in the cSMAC zone of Treg 
synapses. Similarly, the switch of developmental program during 
the in  vitro conversion of naïve CD4 T cells into Tregs results 

in a loss of PKC-θ signal at the synapse. Correct localization of 
CTLA-4 to the IS is functionally important, as elongation of the 
extracellular domain of CTLA-4 resulted in a loss of its concentra-
tion in the synapse and reduction of suppressive activity of Tregs 
(141). In a lipid bilayer system, addition of CD80 or ICAM-1 to 
the bilayer increases the recruitment of PKC-θ to the synapse in 
both effector and Tregs, but stimulation through TCR strongly 
decreases the recruitment in Tregs (151). Reduction of PKC-θ 
activity results in increased Treg proliferation and elevated sup-
pressive capacity (151).

An important insight into the signaling mechanism down-
stream of CTLA-4 recruitment to the Treg synapse was provided 
in a recent study by Kong et  al. (152) which identified PKC-η 
as the only PKC isoform physically interacting with CTLA-4. In 
Tregs, a phosphorylated form of PKC-η binds constitutively to 
CTLA-4. PKC-η localizes to the IS in close proximity to the TCR 
(152). Interaction between PKC-η and CTLA-4 was found to be 
critical for Treg function. Phosphorylated serine residues S28, 
S32, and S317 of PKC-η are responsible for the interaction with 
CTLA-4, and loss of S28 or S32 results in a strong inhibition of 
some Treg suppressive functions. The importance of PKC-η was 
further emphasized by the finding that, although PKC-η-deficient 
Tregs expressed normal levels of functional LFA-1 required for 
the stabilization of contacts with APC, they showed a marked 
decrease in their ability to continuously clear CD86 from the 
APC surface. While CD86 clearance on first contact with APC 
was unaffected by the loss of PKC-η, the reduction of CD86 on 
reintroduced APC was substantially delayed (152). These findings 
suggest that PKC-η is not directly involved in CTLA-4-induced 
trans-endocytosis, and that a feedback signaling mechanism 
from PKC-η may be required for the recycling of CTLA-4 from 
the endolysosomal system. It remains to be elucidated whether 
or not the amount of surface-expressed CTLA-4 is reduced and 
its intracellular retention or lysosomal degradation is accelerated 
in the absence of PKC-η. In an earlier study, a deletion of amino 
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acids 191–223 of the intracellular domain of CTLA-4 did not 
substantially affect the in vitro suppression of target T cell prolif-
eration in the presence of CD3 crosslinking antibody and APC, 
or in vivo suppression in a colitis model (26). Kong et al. have 
shown that this deletion-mutant of CTLA-4 retains its association 
with PKC-η, suggesting that the remaining cytoplasmic portion 
(amino acids 182–191) of CTLA-4 is sufficient for suppressive 
signals using PKC-η.

Responses to CD80 and CD86 signals in effector T cells are 
largely similar (153, 154). By contrast, addition of anti-CD80 
antibody or CTLA-4 Fab fragments to the co-culture of target 
T  cells, DC, and prestimulated Tregs ablated the suppressive 
function of the latter, whereas addition of anti-CD86 or anti-
CD28 antibodies increased suppression to the same degree 
(155). Furthermore, blocking CD86 inhibited DC-induced 
division of Tregs, whereas blocking CD80 enhanced division 
(155). These data suggest that, in contrast to effector T cells, 
Tregs can effectively discriminate between CD80–CTLA-4 and 
CD86–CD28 signals.

CTLA-4 iN ReGULATiON OF 
ReGULATORY AND eFFeCTOR T CeLL 
SYNAPSe STABiLiTY AND CeLL MOTiLiTY

A growing body of evidence clearly suggests a role for CTLA-4 in 
regulation of synapse stability, duration of conjugation with APC 
and overall motility in Treg and Teff cells. Anti-CTLA-4 blocking 
antibody treatment has been shown to increase effector T cell 
motility in vitro (122, 156) and in vivo (157–159). Importantly, 
it has been reported that CTLA-4 ligation has different outcomes 
for synapse stability and motility of regulatory versus effector 
T cells (122, 160).

Regulatory T cells form a more stable IS than effector T cells, 
and this enhanced synapse stability has been implicated in 
CTLA-4-dependent downregulation of B7 cell surface  expression 
by Tregs. In mixtures with conventional CD4 T cells of same 
specificity, TCR-transgenic Tregs preferentially bind to DCs 
and exclude conventional cells (161). Similarly, in a planar lipid 
bilayer system, Tregs form a more long-lived IS than do effector 
T cells of the same specificity (151). Addition of blocking CTLA-4 
antibody does not overrule the competitive advantage of Tregs, 
but loss of LFA-1 results in its reversal, indicating that LFA-1 
is at least partially responsible for the preferential binding of 
Tregs (161). Stimulated TCR-transgenic Tregs specifically reduce 
expression of both CD80 and CD86 on DC and to lesser degree 
B cells (84, 87, 161, 162). In the absence of stimulating peptide, 
the B7 molecules are not downregulated. CTLA-4-deficient Tregs 
as well as wild-type cells in the presence of CTLA-4 blocking 
antibody do not reduce B7 expression, and neither do Tregs 
from LFA-1−/− mice (84, 161), indicating that the formation of 
a stabilized, LFA-1 dependent, Treg-APC IS is important for the 
B7 downregulation.

B7 ligand recognition can modulate Treg motility. Tregs 
migrate rapidly on non-stimulating bilayers but slow down 
significantly, and increase contact time, upon encountering 
a TCR signal (TCR stop signal) (160, 163). Importantly, the 

stop signal required for the slowing down of Tregs is CTLA-
4-independent, as CTLA-4-deficient TCR-transgenic Tregs 
slowed down as efficiently as CTLA-4-sufficient cells in mixed 
culture with antigen-pulsed DC (160). Similarly, addition of 
blocking CTLA-4 antibody to Tregs on lipid bilayers containing 
CD80, pMHC, and ICAM-1 did not affect their motility (163). 
Although active displacement of CD28 from the IS by CTLA-4 
precludes an active role for the former in the establishment and 
stabilization of Treg–APC synapses, a growing body of data 
indicates that CD28 may be important for the orchestration of 
Treg motility and contact half-life with APC prior to mature 
synapse formation. However, data on involvement of CD28 in 
stop signaling remain contradictory. While CD28-deficient 
Tregs stop normally in mixed culture (160), CD28-blocking 
antibody interfered with the stop signal (163). Specific loss of 
CD28 in Tregs reduces surface expression of CTLA-4 on these 
cells and results in reduced suppressive capacity and systemic 
autoimmunity (71), indicating that tonic signaling input down-
stream of transient B7–CD28 interactions may regulate recycling 
of CTLA-4 protein. CD86 and CD28 input is also important for 
DC-induced proliferation of Tregs (155).

Unlike Tregs, effector T cells are sensitive to CTLA-4-
dependent reversal of the TCR stop signal. In the first report 
of CTLA-4 dependent reversal of TCR stop signal, Schneider 
et  al. (156) used anti-CTLA-4 stimulation and observed that 
it enhanced effector T cell motility on LFA-1-coated plates. 
Moreover, anti-CD3 antibody induced reduction in T cell 
motility, but a combination of anti-CD3 and anti-CTLA-4 did 
not elicit this stop signal. In the same study, CTLA-4 expression 
on effector T cells increased their motility and reduced their 
contact time with APCs in the context of antigen recognition 
in the lymph node (156). CTLA-4 was also shown to reverse the 
TCR stop signal in human effector T cell clones in vitro (122). 
Additionally, CTLA-4 antibody treatment enhanced effector T 
cell motility in the context of an anti-tumor response (158, 159). 
However, two other 2 photon imaging studies did not report this 
differential effect of CTLA-4 blockade on regulatory and effec-
tor CD4+ T cell populations (157, 164). A study using a mouse 
model of T cell responses in pancreatic islet grafts reported that 
CTLA-4 blockade slightly increased motility of both effector and 
Treg populations, suggesting that CTLA-4 marginally reduces 
CD4+ T cell motility in vivo (157). However, the imaging per-
formed in this study was conducted in an immunoprivileged site 
(the islet grafts were injected into the anterior chamber of the 
eye), which could have affected the cellular motility observed. 
Moreover, the role of TCR signal in the reported effector and 
Treg motility changes is unknown, as this study observed direct 
interactions between pancreatic peptide-specific TCR-transgenic 
CD4 T cells and islet cells, which do not express MHC class II 
and, thus, cannot present antigenic peptide to T cells. Another 
study investigating motility of tolerized diabetogenic CD4+ T 
cells reported no effect of CTLA-4 blockade on T cell motility 
(164). However, this study did not differentiate between effector 
and Treg populations, and the effect on CTLA-4 on control, non-
tolerized diabetogenic T cells was not reported (164). Overall, the 
results from these two studies indicate that CTLA-4 has limited 
effect on motility of self-antigen-specific CD4+ effector T cells, 
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similar to its relatively limited effect on Treg motility. Given that 
the natural Treg lineage consists of self-reactive T cells (165), 
this raises an interesting possibility that the role of CTLA-4 in 
regulation of synapse stability and cellular motility of CD4+ T 
cells depends on their TCR specificity.

Importantly, the different effects of CTLA-4 blockade on 
effector T cells and Tregs have also been observed in a recent 
study using 2 photon microscopy to examine the behavior of 
the two CD4+ T cell populations in intact lymph nodes (13). 
CTLA-4 blockade increased Treg motility but decreased effector 
T cell motility in the presence of antigen, consistent with the pro-
posed role of CTLA-4 in reversal of TCR-induced motility stop 
in effector, but not regulatory, T cell populations. Anti-CTLA-4 
antibody administration increased effector T cell contact time 
with DCs presenting antigen, but reduced Treg contacts with 
DCs, strongly suggesting that CTLA-4 has opposing effects 
on effector and Treg IS stability in vivo. However, as CTLA-4 
blockade increased the steady-state motility of Tregs, but had 
no effect on effector T cell motility in the absence of antigenic 
stimulation, the reduced effector T cell motility and enhanced 
clustering with DCs after anti-CTLA-4 treatment could be the 
result of exclusion of Tregs from T cell: DC clusters, rather than 
a direct effect of CTLA-4 on effector T cells. Interestingly, this 
study also reported regulatory-effector T cell contacts that were 
dependent on Treg recognition of B7 expressed on activated T 
cells (13), suggesting that CTLA-4: B7 interaction plays a role 
in regulation of T:T cell synapse formation and facilitates Treg-
mediated suppression.

The molecular mechanism of CTLA-4-dependent regula-
tion of effector T cell synapse stability and cellular motility is 
unknown. The initial observation that anti-CTLA-4 treatment 
enhances effector T cell motility on LFA-1 coated slides and in 
response to TCR signal was originally interpreted as evidence 
for an as yet unidentified CTLA-4-induced signal overriding the 
TCR stop signal (156). CTLA-4 ligation was shown to reduce IS 
stability (122, 166) and decrease cytoskeletal rearrangements at 
the synapse (166) through an unknown molecular mechanism. 
CTLA-4 ligation was also shown to activate the small G protein 
Rap1 (167, 168), and CTLA-4-induced Rap1 activity was linked 
to destabilization of the IS (53). However, CTLA-4 mediated 
increase in Rap1 activity has also been linked to enhanced 
LFA-1 mediated adhesion (167–169), which is difficult to 
reconcile with the reduced synapse stability. Moreover, an 
in  vivo study reported that intact anti-CTLA-4 antibody and 
its Fab fragments enhanced effector T cell motility equally 
well, suggesting that CTLA-4-dependent signaling did not 
play a role in the motility enhancement (158). Given the role 
of CD28 in regulation of cytoskeletal dynamics, it is plausible 
that CTLA-4 may reduce synapse stability and enhance T cell 
motility through counteracting CD28-mediated cytoskeletal 
rearrangement through competition for B7 ligand binding. 
However, there is conflicting evidence to support this hypoth-
esis. It has been reported that the CTLA-4-dependent increase 
in motility does not require CD28 expression (160), and that 
the cytoplasmic region of CTLA-4 is required for regulation of 
T cell motility (166), suggesting a role for as yet unidentified 
CTLA-4-dependent signaling.

CONCLUSiON

B7 ligand recognition plays an important role in orchestrating the 
IS architecture in both effector T cells and Tregs. During recogni-
tion of antigen, B7 ligand binding induces CD28 localization to 
distinct TCRlow clusters within the central region of the effector T 
cell IS. This CD28 recruitment can be counteracted by CTLA-4 
through competition for ligand binding and/or by removal of 
co-stimulatory ligands through trans-endocytosis. CD28 recruit-
ment to the IS induces PKC-θ localization to the center of the IS, 
through interactions between PKC-θ V3 hinge region and the 
proline-rich motif on the cytoplasmic tail of CD28. CD28 ligation 
leads to cytoskeletal rearrangements at the IS through CD28-
dependent control of multiple pathways regulating cytoskeletal 
dynamics: Vav1 and cofilin activation, filamin A binding, and 
regulation of actin-uncapping proteins. CD28-dependent PKC-θ 
recruitment and modulation of cytoskeleton plays a critical role 
in regulation of effector T cell functions. CTLA-4 is a negative 
regulator of effector T cell functions, and there is evidence that 
CTLA-4 can reduce effector T cell IS stability through reversal of 
the TCR-induced stop signal.

While signaling through CD28 is important for steady-state 
homeostasis, motility, target recognition, and division of Tregs, 
their activation results in active exclusion of CD28 and PKC-θ 
and recruitment of CTLA-4 and PKC-η to the synapse. Both 
phenomena are required for the suppressive function. In contrast 
to conventional CD4 T cells, CTLA-4 and PKC-η act as positive 
regulators of Treg function. Since CTLA-4 binds to B7 proteins 
with significantly higher affinity than CD28 and exclusively 
activates PKC-η (152), it is reasonable to conclude that its affinity 
alone may be sufficient to initiate the exclusion of CD28 from 
potential B7 binding sites. Preferential activation of PKC-η is 
then a direct outcome of exclusive CTLA-4 recruitment. Higher 
affinity of CTLA-4–B7 interactions also explains why Tregs are 
capable of actively recruiting B7 proteins to the synapse, while 
effector T cells are not (170). Increased affinity of B7–receptor 
interaction and recruitment of B7 proteins to the synapse also 
contribute to more long-lived, stable synapses between Tregs and 
APCs as compared to conventional T cells.

B7 ligand recognition induces dissimilar immune synapse 
architecture in mature effector T cells and Tregs, but its role in 
regulation of the immune synapse dynamics at different stages 
of T cell development is poorly understood. It remains to be 
determined if the IS formed by pre-selection thymocytes shows 
the central localization of CD28 and/or PKC-θ, similar to that 
observed in effector T cells. Given that immature thymocytes 
do not show the centralized TCR accumulation at the immune 
synapse (171, 172), and that PKC-θ is not required for NFκB 
activation in thymocytes (173), it is likely that CD28/PKC-θ 
dynamics at the thymocyte IS are different to the dynamics in 
mature effector T cells. At the other end of the T cell’s lifetime, 
CD28/PKC-θ immune synapse dynamics in exhausted T cells or 
T cells from aged individuals are very poorly understood. Anergic 
murine T cells were shown to display unimpaired PKC-θ recruit-
ment (174), but loss of CD28 from human T cells due to repeated 
antigen exposure or aging may have implications on PKC-θ syn-
apse localization, resulting in altered kinetics and architecture of 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


February 2016 | Volume 7 | Article 2411

Brzostek et al. B7 Regulation of Synapse Dynamics

Frontiers in Immunology | www.frontiersin.org

the synapse, and changes in downstream signaling. Furthermore, 
despite the massive amount of data on CTLA-4 biology and the 
growing importance of the CTLA-4 pathway in immunotherapy, 
its role in regulation of T cell functions and IS dynamics remains 
incompletely understood. Since activated effector T cells express 
CTLA-4 and since surface CTLA-4 is capable of B7 extraction 
from target membranes regardless of cell type (146), it will be 
intriguing further to explore the potential role of CTLA-4 in the 
effector T cell-intrinsic restriction of strength and/or duration 
of activation, independently of bystander suppression by Treg-
expressed CTLA-4. At the signaling level, given the role of CD28 
signaling in regulating cytoskeleton dynamics at the IS, CTLA-4 
can likely counteract these CD28-mediated pathways, either 
indirectly through reducing levels of B7 proteins on APCs, or 
directly through interactions yet unidentified with other binding 
partners. PKC-η is a likely candidate, as Tregs lacking PKC-η 
showed enhanced conjugation with DCs, and the CTLA-4–PKC-
η complex has been shown to interact with the focal adhesion 

complex components PAK2 and GIT2, as well as with the guanine 
nucleotide exchange factor αPIX (152), with a known role in 
regulating cytoskeletal dynamics (175). Better understanding of 
the effect of B7 ligand recognition on the IS dynamics at differ-
ent stages of T cell development and in different T cell subsets 
is likely to have significant implications for the development of 
novel immunotherapy strategies.
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